首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vacuolar ATPase was purified from a tonoplast-enriched membrane fraction from barley (Hordeum vulgare cv CM72) roots. The membranes were solubilized with Triton X-100 and the membrane proteins were separated by chromatography on Sephacryl S-400 followed by fast protein liquid chromatography on a Mono-Q column. The purified vacuolar ATPase was inhibited up to 90% by KNO3 or 80% by dicyclohexylcarbodiimide (DCCI). The ATPase was resolved into polypeptides of 115, 68, 53, 45, 42, 34, 32, 17, 13, and 12 kDa. An additional purification step of centrifugation on a glycerol gradient did not result in loss of any polypeptide bands or increased specific activity of the ATPase. Antibodies against the purified holoenzyme inhibited proton transport by the native ATPase. Two peaks of solubilized Ca(2+)-ATPase were obtained from the Sephacryl S-400 column. A peak of Ca(2+)-ATPase copurified with the vacuolar ATPase during all of the purification steps and was inhibited by NO3- and DCCI. It is proposed that this Ca(2+)-ATPase is a partial reaction of the plant vacuolar ATPase. The second Ca(2+)-ATPase was greatly retarded on the Sephacryl S-400 column and eluted after the main protein peak. It was not inhibited significantly by NO3- or DCCI. The second Ca(2+)-ATPase is a major component of ATP hydrolysis by the native membranes.  相似文献   

2.
Sarcoplasmic reticulum with calcium transport activity has been isolated from the cross-striated adductor muscle of the scallop, which lives in cold (< or = 20 degrees C) sea water, by using pH 7.0 buffer solution both to homogenize the tissue and to sediment the membrane fraction. The yield of the preparation was 60-100 mg protein from 100 g of the scallop muscle. Ca(2+)-activated ATPase protein of about 100 kDa accounted for 40-50% of the protein preparation. The maximum activities of ATP-dependent, oxalate-facilitated calcium accumulation and Ca(2+)-ATPase were observed at a pH of about 7.0 and temperature of 20-30 degrees C, and their values were about 2 mumol Ca2+/mg of protein/min and about 3 mumol ATP hydrolysis/mg of protein/min, respectively. At 0 degree C, 10-20% of these activities was maintained, while at 37 degrees C, the activities were irreversibly lost. The Ca(2+)-ATPase activity was half-maximally activated at about 0.3 microM [Ca2+]. The ATPase activity exhibited non-Michaelian behavior with respect to ATP, with two different Km values of approximately 10 microM and 0.1-0.3 mM. GTP, CTP, and ITP were also hydrolyzed by the preparation at a rate of 10-30% of that of ATP. The preparation was stored at -80 degrees C with retention of function for about a year.  相似文献   

3.
The latency of Micrococcus lysodeikticus membrane-bound Mg(2+)-adenosine triphosphatase (ATPase) is expressed by the ratio of its activity assayed in the presence of trypsin ("total") versus the activity assayed in absence of the protease ("basal"). By isolating membranes in the presence of variable concentrations of Mg(2+) (50 mM, 10 mM, or none) and by washing them with different Mg(2+)- and ethylenediaminetetraacetic acid-containing tris(hydroxymethyl)aminomethane-hydrochloride buffers (pH 7.5), we showed that the enzyme latency was dependent on the environmental concentration of this divalent metal ion. Mg(2+) bound to at least two classes of sites. The binding of Mg(2+) to low-affinity sites (saturation at approximately 40 mM external Mg(2+)) induced a high basal ATPase activity, whereas its binding to medium-affinity sites (saturation at about 2 mM Mg(2+)) correlated with low basal activity and a very high stimulation by trypsin. Membranes with tightly bound Mg(2+) (high affinity?) revealed an intermediate behavior for the latency of M. lysodeikticus ATPase. The Mg(2+)/Ca(2+) antagonism as activators of the membrane ATPase was not directly related to Mg(2+) binding by the membranes. The efficiency of the ATPase release from M. lysodeikticus membrane by 3 mM tris(hydroxymethyl)aminomethane-hydrochloride buffer (pH 7.5) was inversely proportional to the concentration of external and/or bound Mg(2+). Deoxycholate (DOC) (1%) solubilized the ATPase from all types of membrane. All the soluble ATPases behaved as Ca(2+)-ATPases, but the DOC-soluble fractions showed degrees of latency like those of the original membranes. The DOC-soluble ATPase preparation revealed a vesicular structure and complex protein patterns by sodium dodecyl sulfate gel electrophoresis. We propose that ATPase latency is modulated via a Mg(2+)-ATPase-membrane complex.  相似文献   

4.
A calmodulin inhibitor, trifluoperazine, suppresses ATP-dependent Ca2+ uptake into microsomes prepared from bovine aortic smooth muscle. From this microsomal preparation which we expected to contain calmodulin-dependent Ca2+-transport ATPase [EC 3.6.1.3], we purified (Ca2+-Mg2+)ATPase by calmodulin affinity chromatography. The protein peak eluted by EDTA had calmodulin-dependent (Ca2+-Mg2+)ATPase activity. The major band (135,000 daltons) obtained after sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) accounted for about 80% of the total protein eluted. This major band was phosphorylated by [gamma-32P]ATP in a Ca2+-dependent manner. All the 32P incorporated into the major band was released by hydroxylaminolysis. The ATPase reconstituted in soybean phospholipid liposomes showed ATP, calmodulin-dependent Ca2+ uptake. The affinity of the ATPase for Ca2+, Km, was 7 microM and the maximum ATPase activity was 1.4 mumol/mg/min. These values were changed to 0.17 microM and 3.5 mumol/mg/min, respectively by the addition of calmodulin. The activity of the purified (Ca2+-Mg2+)ATPase was inhibited by orthovanadate, and the concentration required for half-maximal inhibition was about 1.8 microM which is close to that of plasma membrane ATPases. Judging from the effect of orthovanadate and the molecular weight, the purified (Ca2+-Mg2+)ATPase was considered to have originated from the plasma membrane not from the sarcoplasmic reticulum.  相似文献   

5.
A Mg(2+)+Na(+)+K(+)-stimulated adenosine triphosphatase (ATPase) preparation was isolated from rat ventral prostate by flotation of microsomal membranes in high-density sucrose solutions. The reaction medium for optimum Na(+)+K(+)-stimulated ATPase activity was found to be: Na(+), 115mm; K(+), 7-10mm; Mg(2+), 3mm; ATP, 3mm; tris buffer, pH7.4 at 38 degrees , 20mm. The average DeltaP(i) (Mg(2+)+Na(+)+K(+) minus Mg(2+)+Na(+)) was 9mumoles/mg. of protein/hr., representing a 30% increase over the Mg(2+)+Na(+)-stimulated ATPase activity. At high concentrations, K(+) was inhibitory to the enzyme activity. Half-maximal inhibition of Na(+)+K(+)-stimulated ATPase activity was elicited by ouabain at 0.1mm. The preparation exhibited phosphatase activity towards ribonucleoside triphosphates other than ATP. However, stimulation of P(i) release by Na(+)+K(+) was observed only with ATP as substrate. The apparent K(m) for ATP for Na(+)+K(+)-stimulated activity was about 0.3x10(-3)m. Ca(2+) inhibited only the Na(+)+K(+)-stimulated ATPase activity. Mg(2+) could be replaced by Ca(2+) but then no Na(+)+K(+) stimulation of ATPase activity was noticed. The addition of testosterone or dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) in vitro at 0.1-10mum under a variety of experimental conditions did not significantly increase the Na(+)+K(+)-stimulated ATPase activity. The enzyme preparations from prostates of orchidectomized rats, however, exhibited a drastic decrease in the specific activity of Na(+)+K(+)-stimulated ATPase; these changes were prevented in the orchidectomized rats by injection of testosterone propionate.  相似文献   

6.
Gelsolin is activated by Ca(2+) to sever actin filaments. Ca(2+) regulation is conferred on the N-terminal half by the C-terminal half. This paper seeks to understand how Ca(2+) regulates gelsolin by testing the "tail helix latch hypothesis," which is based on the structural data showing that gelsolin has a C-terminal tail helix that contacts the N-terminal half in the absence of Ca(2+). Ca(2+) activation of gelsolin at 37 degrees C occurs in three steps, with apparent K(d) for Ca(2+) of 0.1, 0.3, and 6.4 x 10(-6) m. Tail helix truncation decreases the apparent Ca(2+) requirement for severing to 10(-7) m and eliminates the conformational change observed at 10(-6) m Ca(2+). The large decrease in Ca(2+) requirement for severing is not due to a change in Ca(2+) binding nor to Ca(2+)-independent activation of the C-terminal half per se. Thus, the tail helix latch is primarily responsible for transmitting micromolar Ca(2+) information from the gelsolin C-terminal half to the N-terminal half. Occupation of submicromolar Ca(2+)-binding sites primes gelsolin for severing, but gelsolin cannot sever because the tail latch is still engaged. Unlatching the tail helix by 10(-6) m Ca(2+) releases the final constraint to initiate the severing cascade.  相似文献   

7.
1. The Ca(2+)-activated luminescent protein obelin was extracted from the hydroid Obelia geniculata. 2. After the addition of a large excess of calcium (greater than 5mm) a peak in the rate of luminescence occurred within 100ms, followed by an exponential decay (k=2.8s(-1)). The obelin activity (light emitted) was measured by the peak height or by the total number of counts recorded on a scalar in the first 10s after addition of Ca(2+). 3. After an overnight extraction in 40mm-EDTA-200mm-Tris-HCl, pH7.0, 7.2x10(11) counts were obtained from 186g of wet hydroids. 4. The stability of the crude extracts was dependent on pH, being optimal at pH7.0. 5. Obelin could be purified threefold with a yield of 69% by selecting the protein precipitated between 60%- and 100%-saturated (NH(4))(2)SO(4). The precipitate could be stored for at least 6 months as a suspension in 40mm-EDTA+saturated (NH(4))(2)SO(4), pH7.0, frozen at -70 degrees C with a recovery of 95-100%. 6. Luminescence was also stimulated by Sr(2+). However, obelin appeared to have a lower affinity for Sr(2+) than for Ca(2+). Mg(2+) inhibited Ca(2+)-activated luminescence. 7. Obelin could be used to assay as little as 50pmol of Ca(2+) in a final volume of 1ml. 8. At pH7.0 in Ca(2+)-EGTA [ethanedioxybis(ethylamine)tetra-acetate] buffers the rate of obelin luminescence was proportional to the square of the free Ca(2+) concentration in the presence and absence of 1 and 10mm-Mg(2+). Over the range 0.1-10mum-Ca(2+) less than 0.03% of the obelin was consumed/s. 9. In order to use obelin to study free ionized Ca(2+) concentrations similar to those found inside cells in the presence of 10mm-Mg(2+) a minimum of 10(8) counts were required. A total of 10(12) counts can be readily extracted from about 200g of wet hydroids. Thus a sufficient quantity of an aequorin-like calcium-activated luminescent protein should now be available to workers in the United Kingdom in order to carry out physiological experiments.  相似文献   

8.
ATPase was found in plasma membrane of cultured endothelial cells from bovine carotid artery. The activity of the enzyme solubilized by octaethyleneglycol mono-n-dodecyl ether was enhanced by the addition of Ca2+ or Mg2+ and was not affected by F-actin and ouabain. Vmax was 2.8 and 10.0 mumol Pi/mg protein per h for Ca2+- and Mg2+-dependent activity, respectively, and the corresponding Km was 4.8 X 10(-4) M and 3.2 X 10(-4) M. Molecular weight of the protein was estimated to be approx. 250 000, as determined by activity-staining electrophoresis with polyacrylamide gels.  相似文献   

9.
神经节苷脂(Gangliosides)是红细胞膜Ca~(2+)-Mg~(2+)ATPase的一种激活剂,这种激活作用也是依赖于Ca~(2+)存在。在200μmol/LCa~(2+)存在的反应体系中,100μg/mLGangliosides对Ca~(2+)-Mg~(2+)ATPase的激活作用最大,为基本酶活性的150%以上。实验还发现CaM拮抗剂三氟拉嗪(TFP)、粉防已碱(Tet)等也同样抑制Gangliosides的这种激活作用。其抑制的IC_(50)值为25μmol/L和30μmo1/L;而此浓度下抑制剂存在的反应体系中,对Ca~(2+)-Mg~(2+)ATPase的基本活性影响不大。  相似文献   

10.
Solubilization of active (H+ + K+)-ATPase from gastric membrane   总被引:2,自引:0,他引:2  
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 +/- 9 mumol Pi and 2.9 +/- 0.6 mumol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 +/- 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1-2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 X g X 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (mumol Pi/mg protein per h) 32 +/- 9 (basal) and 86 +/- 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (mumol p-nitrophenol/mg protein per h) 2.6 +/- 0.5 (basal) and 22.2 +/- 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 +/- 0.041 (basal) and 0.057 +/- 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.  相似文献   

11.
Calcium ion-regulated thin filaments from vascular smooth muscle.   总被引:5,自引:4,他引:1       下载免费PDF全文
Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 x 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g.  相似文献   

12.
The composition and function of fragmented sarcoplasmic reticulum from pig skeletal muscle was examined in the period immediately post mortem. Muscle was defined as being either slowly glycolysing or rapidly glycolysing on the basis of colour, pH and concentrations of glycogen and lactate. The microsomal fraction was separated on a discontinuous gradient of 35, 40 and 45% (w/v) sucrose into heavy and intermediate fractions which sedimented to the interfaces, and a light fraction which remained on the surface of the 35%-sucrose layer. The sarcoplasmic reticulum from rapidly glycolysing muscle had a lower buoyant density than had that from slowly glycolysing muscle. This was reflected in the consistent lack of material in the heavy fraction and a greater proportion in the light fraction. The latter material had significantly lower ratios (w/w) of protein to phospholipid (2.3:1 versus 3.8:1) and of protein to cholesterol (10.4:1 versus 15.6:1). There were no gross differences in phospholipid content or in fatty acid composition of individual phospholipid classes in the membranes from the two types of muscle. Analysis of membrane proteins by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showed that ATPase (adenosine triphosphatase) was a major component of each fraction and that its contribution to the total protein content of the membrane was greater in rapidly glycolysing muscle, suggesting a loss of non-ATPase proteins. The two fractions of sarcoplasmic reticulum prepared from rapidly glycolysing muscle had approximately one-third the normal activities of Ca(2+) binding and Ca(2+) uptake in the presence of ATP and one-half the passive Ca(2+)-binding capacity in the absence of ATP of the fractions from slowly glycolysing muscle. However, the (Ca(2+)+Mg(2+))-stimulated ATPase activities were similar. Efflux from actively loaded vesicles, after the addition of EDTA, consisted of a rapid and a slow phase. Vesicles from rapidly glycolysing muscle lost 60% of associated Ca(2+) (approx. 0.10mumol of Ca(2+)/mg of protein) during the rapid phase, compared with 30% (approx. 0.17mumol of Ca(2+)/mg of protein) in those from slowly glycolysing muscle. The efflux rate during the slower phase was comparable in both types of vesicles. Analysis of the temperature-dependence of (Ca(2+)+Mg(2+))-stimulated ATPase activity revealed that a high-activation-energy process operating in the temperature range 31-45 degrees C in the intermediate and light fractions from slowly glycolysing muscle was not apparent in vesicles from rapidly glycolysing muscle. Conditions that result in the prolonged activation of glycogenolysis in pig muscle post mortem primarily affect the protein components of the sarcoplasmic-reticular membrane, giving rise to a loss of loosely associated proteins. The function of the membranes observed under these conditions does not appear to be due to enhanced permeability of the membrane to Ca(2+) and may be the result of a defect in the transport of Ca(2+) into the vesicles.  相似文献   

13.
The membrane-associated Mg(2+)-activated and Ca(2+)-activated adenosine 5'-triphosphatase (EC 3.6.1.3; ATPase) activities of Escherichia coli were further characterized. The degree of inhibition of membrane-bound Mg(2+)-(Ca(2+))-ATPase by a series of anions (i.e., sodium salts of nitrate, iodide, chloride, and acetate) was found to correlate with the relative chaotropic, or solubilizing, effectiveness of these anions. The enzyme was solubilized from washed membrane ghosts by treatment with 0.04% sodium lauryl sulfate at pH 9.0 and 37 C. Solubilized Mg(2+)-(Ca(2+))-ATPase exhibited an initial increase in activity, followed by fairly rapid inactivation, both ATPase activities being particularly cold-labile. The combined stabilizing effects of lauryl mercaptan (1-dodecanethiol), 0.01 m tris(hydroxymethyl)amino-methane-hydrochloride buffer (pH 9.0), 0.2 mm MgCl(2), and ambient temperature facilitated partial purification of the enzyme, the molecular weight of which was estimated to be approximately 100,000 by the gel filtration technique. In general, the membrane-associated Mg(2+)-(Ca(2+))-ATPase of E. coli resembles both mitochondrial membrane ATPase and the well-characterized membrane ATPases of Bacillus megaterium and Microcococcus lysodeikticus. It is of particular interest that N,N'-dicyclohexylcarbodiimide (DCCD), a known inhibitor of mitochondrial ATPase, of mitochondrial oxidative phosphorylation, and of the membrane-bound Mg(2+)-ATPase of Streptococcus faecalis was found to inhibit both the membrane-bound and the solubilized forms of E. coli Mg(2+)-(Ca(2+))-ATPase. The sensitivity of the membrane-associated Mg(2+)-(Ca(2+))-ATPase of E. coli to both anions and cations, its allotopic behavior, and its susceptibility to inhibition by DCCD favor the idea that this enzyme plays a key, probably polyfunctional, role in such biological activities of the membrane as oxidative phosphorylation and ion transport.  相似文献   

14.
Henzl MT  Agah S  Larson JD 《Biochemistry》2004,43(34):10906-10917
Association of the parvalbumin AB and CD-EF domains was examined in Hepes-buffered saline, pH 7.4, employing fragments from rat alpha and beta. All of the interactions require Ca(2+). In saturating Ca(2+), the alpha AB/alpha CD-EF (alpha/alpha) complex displays an association constant of (7.6 +/- 0.4) x 10(7) M(-1). Ca(2+)-binding data for a mixture of the alpha fragments are compatible with an identical two-site model, yielding an average binding constant of (8.5 +/- 0.2) x 10(5) M(-1). The beta/beta interaction is significantly weaker, exhibiting an association constant of (3.0 +/- 0.6) x 10(6) M(-1). The Ca(2+)-binding constants for beta/beta are likewise diminished, at (1.0 +/- 0.1) x 10(5) and (2.3 +/- 0.2) x 10(4) M(-1). The magnitude of the apparent DeltaDeltaG(degree)' for Ca(2+) binding by alpha/alpha and beta/beta, at 3.4 kcal/mol, approaches that measured for the intact proteins (3.6 kcal/mol) and is substantially larger than the 1.5 kcal/mol value previously measured for the isolated CD-EF domains. This result suggests that the AB domain can modulate the Ca(2+) affinities of the CD and EF sites. Interestingly, the heterologous alpha/beta complex displays a larger association constant [(6.6 +/- 0.4) x 10(6) M(-1)] than the homologous beta/beta complex and heightened Ca(2+) affinity [binding constants of (1.3 +/- 0.1) x 10(6) and (8.8 +/- 0.2) x 10(4) M(-1)]. By contrast, beta/alpha associates more weakly than alpha/alpha and exhibits sharply reduced affinity for Ca(2+). Thus, the interaction between the beta AB domain and beta CD-EF domain may act to attenuate Ca(2+) affinity in the intact protein.  相似文献   

15.
In this study, the response of the sarcoplasmic reticulum (SR) to prolonged exercise, performed in normoxia (inspired O(2) fraction = 0.21) and hypoxia (inspired O(2) fraction = 0.14) was studied in homogenates prepared from the vastus lateralis muscle in 10 untrained men (peak O(2) consumption = 3.09 +/- 0.25 l/min). In normoxia, performed at 48 +/- 2.2% peak O(2) consumption, maximal Ca(2+)-dependent ATPase activity was reduced by approximately 25% at 30 min of exercise compared with rest (168 +/- 10 vs. 126 +/- 8 micromol.g protein(-1) x min(-1)), with no further reductions observed at 90 min (129 +/- 6 micromol x g protein(-1) x min(-1)). No changes were observed in the Hill coefficient or in the Ca(2+) concentration at half-maximal activity. The reduction in maximal Ca(2+)-dependent ATPase activity at 30 min of exercise was accompanied by oxalate-dependent reductions (P < 0.05) in Ca(2+) uptake by approximately 20% (370 +/- 22 vs. 298 +/- 25 micromol x g protein(-1) x min(-1)). Ca(2+) release, induced by 4-chloro-m-cresol and assessed into fast and slow phases, was decreased (P < 0.05) by approximately 16 and approximately 32%, respectively, by 90 min of exercise. No differences were found between normoxia and hypoxia for any of the SR properties examined. It is concluded that the disturbances induced in SR Ca(2+) cycling with prolonged moderate-intensity exercise in human muscle during normoxia are not modified when the exercise is performed in hypoxia.  相似文献   

16.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

17.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

18.
The preparation of ox heart myosin and its partial digestion with cellulose-bound papain is described. A procedure is outlined by which heavy meromyosin subfragment 1 can be covalently bound to a cellulose ion-exchange matrix. Attachment of heavy meromyosin subfragment 1 to the insoluble matrix results in a change in the ion specificity towards ATP hydrolysis. Unlike the soluble enzyme the bound form is activated by both Ca(2+) and Mg(2+). Maximal activation by Ca(2+) occurred at a lower concentration for the bound enzyme. Mg(2+) activates at a concentration which causes near-maximal inhibition of the Ca(2+)-activated adenosine triphosphatase (ATPase) of the non-bound enzyme. The Mg(2+)-activated ATPase of the bound enzyme was in turn inhibited by the presence of Ca(2+). The activation by Mg(2+) resembles the characteristic enzymic action of the actin-subfragment 1 complex.  相似文献   

19.
The membrane-bound (Na+ + K+)-activated ATPase (ATP phosphohydrolase, EC 3.6.1.3) system was treated with the nonionic detergent octaethylene-glycoldodecyl ether, yielding a transparent supernatant after centrifugation. The supernatant was highly active with both ATPase and p-nitrophenylphosphatase, with initial specific activities of 2300 mumol Pi released . mg-1 protein. h-1 and 350 mumol p-nitrophenol released.mg-1 protein.h-1, respectively. The supernatant was purified to 95--100%, with respect to the 96 000 dalton and the 56 000 dalton peptides. The solubilized enzyme was gel filtered in Sepharose 4B-Cl and displayed 2 peaks, both with catalytic activity. The low molecular weight particles eluted at Kav = 0.54, corresponding to a molecular weight of approximately 500 000 daltons and the particles had a specific activity of 2100 mumol Pi.mg-1 protein.h-1. Both peaks contained phospholipid with 60 mol phospholipid bound per 300 000 g protein. The low molecular weight particles had a molecular weight of 276 000 as determined by sedimentation equilibrium analysis.  相似文献   

20.
Hua S  Inesi G  Nomura H  Toyoshima C 《Biochemistry》2002,41(38):11405-11410
Fe(2+) can substitute for Mg(2+) in activation of the sarcoplasmic reticulum (SR) ATPase, permitting approximately 25% activity in the presence of Ca(2+). Therefore, we used Fe(2+) to obtain information on the binding sites for Mg(2+) and the Mg(2+)-ATP complex within the enzyme structure. When the ATPase is incubated with Fe(2+) in the presence of H(2)O(2) and/or ascorbate, specific patterns of Fe(2+)-catalyzed oxidation and cleavage are observed in the SR ATPase, depending on its Ca(2+)-bound (E1-Ca(2)) or Ca(2+)-free conformation (E2-TG), as well as on the presence of ATP. The ATPase protein in the E1-Ca(2) state is cleaved efficiently by Fe(2+) with H(2)O(2) and ascorbate assistance, yielding a 70-75 kDa carboxyl end fragment. Cleavage of the ATPase protein in the E2-TG state occurs within the same region, but with a more diffuse pattern, yielding multiple fragments within the 65-85 kDa range. When Fe(2+) catalysis is assisted by ascorbate only (in the absence of H(2)O(2)), cleavage at the same protein site occurs much more slowly, and is facilitated by ATP (or AMP-PNP) and Ca(2+). Amino acid sequencing indicates that protein cleavage occurs at and near Ser346, and is attributed to Fe(2+) bound to a primary Mg(2+) site near Ser346 and neighboring Glu696. In addition, incubation with Fe(2+) and ascorbate produces Ca(2+)- and ATP-dependent oxidation of the Thr441 side chain, as demonstrated by NaB(3)H(4) incorporation and analysis of fragments obtained by extensive trypsin digestion. This oxidation is attributed to bound Fe(2+)-ATP complex, as shown by structural modeling of the Mg(2+)-ATP complex at the substrate site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号