首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of the mechanisms regulating milk yield in sows is crucial for producers to make the best management decisions during lactation. Suckling of mammary glands by piglets is one factor that is essential for development of these glands during lactation and for the maintenance of lactation in sows. The process of mammary development is not static as the majority of it takes place in the last third of gestation, continues during lactation, is followed by involution at weaning and starts over again in the next gestation. During involution, the mammary glands undergo a rapid and drastic regression in parenchymal tissue, and this can also occur during lactation if a gland is not suckled regularly. Indeed, the pattern of regression is similar for glands that involute at weaning or during lactation. Suckling during 12 to 14 h postpartum is insufficient to maintain lactation and the process of involution that occurs in early lactation is reversible within 1 day of farrowing but is irreversible if a gland is not used for 3 days. However, milk yield from a gland which is ‘rescued’ within the first 24 h remains lower throughout lactation. Suckling does not only affect milk yield in the ongoing lactation, but it also seems to affect that of the next lactation. Indeed, non-suckling of a mammary gland in first-parity sows decreased development and milk yield of that gland in second parity. Nursing behaviour of piglets in early lactation was also affected, where changes were indicative of piglets in second parity being hungrier when suckling glands that were not previously used. It is not known, however, if the same effects would be seen between the second and third lactation. Furthermore, the minimum suckling period required to ensure maximal milk yield from a gland in the next lactation is not known. This review provides an update on our current knowledge of the importance of suckling for mammary development and milk yield in swine.  相似文献   

2.
Age at weaning affects the behaviour of piglets weaned in conventional confined environments. The adaptation of piglets to this event, which exposes piglets to important stressors, has not been examined in detail in outdoor systems. The aim of this study was to compare the behaviour of piglets weaned at 3 or 4 weeks of age in an outdoor production system. Six replicates of four piglets born and raised outdoors, originated from different litters but previously acquainted, were weaned at the age of approximately 20 (D20) or 30 (D30) days in 36 m2 outdoor pens and offered high-quality diets. Their behaviour was recorded by direct visual observation during four consecutive days after weaning (days 1 to 4). Data were analysed by repeated measures ANOVA. An effect of weaning age was observed on feeding and rooting ( P < 0.01), and a day-by-weaning age interaction for escape attempts, vocalizing, walking and fighting ( P < 0.01), and playing ( P < 0.03). Compared to D30 piglets, D20 piglets showed a higher frequency of escape attempts on day 1, vocalized more during days 1 and 2, and walked more during days 1 to 3 ( P < 0.05). Feeding behaviour, on the other hand, was higher in D30 piglets on days 1 to 3 ( P < 0.05). On days 3 and 4, D30 piglets spent more time interacting with peers (playing and fighting; P < 0.05) and on day 4 were more active than D20 piglets ( P < 0.05). As previously reported in confined environments, age at weaning affected the behaviour of piglets raised on the outdoors system. Weaning appeared to be more stressful for the piglets at 3 than at 4 weeks of age. The impact of weaning age on welfare cannot be ignored, especially when outdoor breeding of pigs is proposed to address welfare concerns of the public.  相似文献   

3.
Intensive farming may involve the use of diets, environments or management practices that impose physiological and psychological stressors on the animals. In particular, early weaning is nowadays a common practice to increase the productive yield of pig farms. Still, it is considered one of the most critical periods in swine production, where piglet performance can be seriously affected and where they are predisposed to the overgrowth of opportunistic pathogens. Pig producers nowadays face the challenge to overcome this situation in a context of increasing restrictions on the use of antibiotics in animal production. Great efforts are being made to find strategies to help piglets overcome the challenges of early weaning. Among them, a nutritional strategy that has received increasing attention in the last few years is the use of probiotics. It has been extensively documented that probiotics can reduce digestive disorders and improve productive parameters. Still, research in probiotics so far has also been characterized as being inconsistent and with low reproducibility from farm to farm. Scientific literature related to probiotic effects against gastrointestinal pathogens will be critically examined in this review. Moreover, the actual practical approach when using probiotics in these animals, and potential strategies to increase consistency in probiotic effects, will be discussed. Thus, considering the boost in probiotic research observed in recent years, this paper aims to provide a much-needed, in-depth review of the scientific data published to-date. Furthermore, it aims to be useful to swine nutritionists, researchers and the additive industry to critically consider their approach when developing or using probiotic strategies in weaning piglets.  相似文献   

4.
Piglet mortality from farrowing to weaning is a major concern, especially in outdoor organic production systems. This issue might impair animal welfare and generate economic losses for the farmer. In particular, it is difficult to apply management tools that are commonly used for indoor pig production systems to organic or outdoor production systems. Genetics and breeding approaches might be used to improve piglet survival. However, knowledge remains limited on the genetic background underlying survival traits in organic pigs that are born and reared outdoors. Here, we investigated the mortality of piglets from farrowing to weaning in an outdoor organic pig population and suggested genetic strategies to reduce piglet mortality in this production system. The experiment included mortality records of piglets from farrowing to weaning (around 69 days of age). Pedigree-based threshold models were used to analyse the mortality traits of piglets at 0–3 days of age, 4–11 days, and 12 days to weaning. Stillborn piglets were included in the group of piglets that died at 0–3 days of age. We found that the mortality rate from farrowing to weaning was, on average, 19.2%. However, most piglet deaths (79.1%) occurred at 0–11 days of age. As the age of piglets increased, the direct heritability of piglet mortality rose from 0 to 0.04, whereas maternal heritability decreased from 0.03 to a non-significant value. Piglets with higher BW had a lower mortality rate. However, the genetic correlations between maternal effects on piglet mortality and piglet BW were not significant; thus, selection for piglets with higher BW at around 10 days of age, through improving maternal genetics, would not reduce piglet mortality. Piglet mortality increased from sows with increasing number of parities. Crossbreeding also reduced piglet mortality. In conclusion, selection focusing on sow genotype, the use of younger sows, and crossbreeding could contribute to maintain piglet mortality at lower levels in outdoor organic pig production systems.  相似文献   

5.
Weaning of beef calves is usually done abruptly and early compared to the natural weaning of the species, and is associated with simultaneous exposure of calves to a range of social and environmental stressors. Behavioural and physiological responses to weaning indicate detrimental effects on the welfare of these animals. The development and assessment of weaning methods aiming at reducing or avoiding this problem must be supported by scientific knowledge of the morphological, physiological and psychological mechanisms involved in the establishment, maintenance and braking of the cow-calf bond. Solutions also depend on the understanding of the various stressors associated with weaning, among which are the change in diet, cessation of nursing, separation from the dam, the change to a new spatial environment and the need for social reorganization following removal of the adults from the group. This review discusses these issues and assesses the effectiveness of the methods so far proposed for improving the welfare of beef calves during the weaning period.  相似文献   

6.
Mixing at young ages reduces fighting in unacquainted domestic pigs   总被引:1,自引:0,他引:1  
Under normal farming practices, piglets from different litters are often mixed around the time of weaning, and a high incidence of fighting and minor injuries often occur. The aim of this experiment was to determine the effect of age on the incidence of fighting in piglets mixed before weaning, at different ages between 5 and 26 days. We found no significant relationship between age and the likelihood that a pair of piglets would fight during the first 75 min after mixing. However, the duration of the first fight observed increased from 101+/-38 s at 5 days to 621+/-278 s at 26 days, mainly because of higher levels of unretaliated harassment and resting during the bouts. Younger pigs also showed 80% fewer injuries from the fighting. The results suggest some potential welfare advantage to allowing litters to mix at younger ages.  相似文献   

7.
The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farm piglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by 1H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide ‘metabolic rescue'' for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation.  相似文献   

8.
Early life microbiome perturbations can have important effects on host development, physiology and behaviour. In this longitudinal study, we evaluated the impact of early feeding on gut microbiome colonization in neonatal piglets. Early-fed (EF) piglets had access to a customized fibrous diet from 2 days after birth until weaning in addition to mother's milk, whereas control piglets suckled mother's milk only. Rectal swabs were collected at multiple time points until 6 weeks of age to investigate microbiota development using 16S rRNA gene profiling. The dynamic pre-weaning microbiota colonization was followed by a relatively stable post-weaning microbiota, represented by Prevotella, Roseburia, Faecalibacterium, Ruminococcus, Megasphaera, Catenibacterium and Subdoligranulum. EF piglets showed an accelerated microbiota maturation, characterized by increased microbial diversity, pre-weaning emergence of post-weaning-associated microbes and a more rapid decline of typical pre-weaning microbes. Furthermore, the individual eating behaviour scores of piglets quantitatively correlated with their accelerated microbiome. Importantly, EF piglets displayed a smoother relative weight gain and tended to reach a higher relative weight gain, in addition to reduced diarrhoea scores in the first week post-weaning. Overall, these findings demonstrate the beneficial impact of early feeding on microbiota development as well as pig health and performance during the weaning transition.  相似文献   

9.
He Q  Tang H  Ren P  Kong X  Wu G  Yin Y  Wang Y 《Journal of proteome research》2011,10(11):5214-5221
Arginine plays an important role in preventing intestinal dysfunction and metabolic disorders caused by early weaning stress. However, little is known about how arginine mitigates early weaning stress. This study was conducted to evaluate the effects of weaning stress and dietary arginine supplementation on the metabonome in the serum of piglets using (1)H NMR spectroscopy in conjunction with multivariate data analysis. Thirty castrated male piglets aged 21 d were evenly divided into three groups and fed in three different regimes: sow-fed (SF), weaned with l-alanine supplementation (ALA), and weaned with arginine supplementation (ARG). We found that early weaning stress led to a significantly reduced bodyweight gain (15.6%) and that supplementation with arginine can improve growth rates in piglets by 5.6% (P < 0.05). The early weaning stress was associated with marked alterations in lipid and amino acid metabolisms and perturbations in population and/or activities of gut microorganisms, which were manifested in increased levels of organic acids, amino acids, and acetyl-glycoproteins and reduced levels of choline metabolism and lipoproteins. Dietary supplementation with arginine could partially counteract the changes of metabolites induced by weaning stress, such as lipid and amino acid metabolisms. However, arginine was not able to restore disturbed gut microbiota. These results demonstrate the central role of arginine supplementation in regulating the metabolisms of weaned piglets.  相似文献   

10.
This study tested the hypothesis that late weaning and the availability of creep feed during the suckling period compared with early weaning, improves feed intake, decreases stress and improves the integrity of the intestinal tract. In this study with 160 piglets of 16 litters, late weaning at 7 weeks of age was compared with early weaning at 4 weeks, with or without creep feeding during the suckling period, on post-weaning feed intake, plasma cortisol (as an indicator of stress) and plasma intestinal fatty acid binding protein (I-FABP; a marker for mild intestinal injury) concentrations, intestinal morphology, intestinal (macro)molecular permeability and intestinal fluid absorption as indicators of small intestinal integrity. Post-weaning feed intake was similar in piglets weaned at 4 weeks and offered creep feed or not, but higher (P < 0.001) in piglets weaned at 7 weeks with a higher (P < 0.05) intake for piglets offered creep feed compared with piglets from whom creep feed was witheld. Plasma cortisol response at the day of weaning was lower in piglets weaned at 7 weeks compared with piglets weaned at 4 weeks, and creep feed did not affect cortisol concentration. Plasma I-FABP concentration was not affected by the age of weaning and creep feeding. Intestinal (macro)molecular permeability was not affected by the age of weaning and creep feeding. Both in uninfected and enterotoxigenic Escherichia coli-infected small intestinal segments net fluid absorption was not affected by the age of weaning or creep feeding. Creep feeding, but not the age of weaning, resulted in higher villi and increased crypt depth. In conclusion, weaning at 7 weeks of age in combination with creep feeding improves post-weaning feed intake and reduces weaning stress but does not improve functional characteristics of the small intestinal mucosa.  相似文献   

11.
While beneficial for sow reproductive efficiency and biosecurity, segregated early weaning (SEW) leads to a systemic immune response that adversely affects the digestive physiology and post-weaning growth of pigs. Two experiments were conducted to evaluate the effects of a glucocorticoid receptor agonist (GA) on growth performance, measures of immune function and intestinal integrity of SEW pigs. In both experiments, pigs were fed corn-soybean meal-based starter diets. In the first experiment, 48 pigs (initial BW 4.8 ± 0.7 kg) were weaned at 21 ± 1 days and randomly assigned to three GA treatment groups: 0, 0.2 and 0.6 mg GA/kg of BW injected intramuscularly. Treatments were administered one day before weaning. Pigs in the 0 mg GA group received sterile saline in place of GA. Body weight was measured daily from one day before to 7 days post-weaning, and then weekly until 28 days post-weaning. Piglets treated with 0.2 mg GA had a higher BW than piglets in other treatment groups during the 28-day course of the study (P <0.02). To further explore the mechanisms behind this result, a second experiment was performed in which a total of 18 gilts (BW 5.6 ± 0.85 kg) were randomly assigned into three treatment groups: suckling plus saline (UWS), weaned treated with GA (WGA; 0.2 mg GA/kg BW) and weaned plus saline (CON). Treatments were administered one day before and 3 days post-weaning. The WGA and CON groups were weaned at 23 ± 2 days, while the UWS group remained with sow for the duration of the study. Body weight was measured daily and blood plasma was collected at 0, 1, 4 and 5 days post-weaning. All gilts were euthanized 5 days after weaning and jejunum samples were collected for mucosal scrapings, histomorphological analysis and gene expression analysis. Plasma levels of interleukin-1β (IL-1β) and haptoglobin were lower in WGA pigs compared with CON (P <0.02), while plasma total antioxidant capacity was higher in WGA pigs compared with both CON and UWS groups (P <0.01). Relative to CON, GA downregulated IL-18 gene expression in the jejunum, as assessed by both tissue homogenate and mucosal scrapings, but it upregulated claudin-IV gene expression only in the tissue homogenate (P <0.01). These results suggest that GA treatment improves the growth performance of SEW pigs in part by mitigating the negative effects of systemic inflammation. However, the effect of GA on barrier integrity requires further investigation.  相似文献   

12.
Post-natal development of the porcine microbiota composition and activities   总被引:1,自引:0,他引:1  
The current study describes the development of the porcine microbiota and its metabolic activities during the neonatal and weaning period. Using 16S rRNA-based approaches, we first analysed the ileal and colonic microbiota of neonatal piglets at days 2, 5 and 12 after birth. To further investigate the effect of weaning at 3 weeks of age, 19-day-old piglets (n = 64) were randomly allocated into two groups. Half of the piglets remained with their sows throughout the study, while the remaining piglets were weaned. As revealed by sequence analysis of 16S rRNA gene amplicons, the samples of 2-day-old piglets harboured a consortium of bacteria related to Escherichia coli, Shigella flexneri, Lactobacillus sobrius, Lactobacillus reuteri and Lactobacillus acidophilus. Moreover, species-specific real-time polymerase chain reaction assays unveiled that L. sobrius and L. reuteri predominated in the ileal samples of the neonatal and unweaned piglets with population levels up to 7 x 10(8) cells per gram of lumen content. Following weaning, however, these two lactobacilli were detected at significantly lower levels (< 10(3)) in the ileal samples. Furthermore, a shift in composition and metabolic activities of the predominant microbiota, and emergence of clostridia and E. coli, were encountered in the intestinal samples of the piglets after the early post-weaning period.  相似文献   

13.
Neonates with intrauterine growth retardation (IUGR) often suffer from impaired cellular immunity, and weaning may further aggravate adverse effects of IUGR on development and function of the immune system. In this study, we investigated effects of glutamine supplementation on immune status in the intestines of weaning pigs with IUGR, focusing on molecular mechanisms underlying altered immune response. Piglets with IUGR were weaned at 21 days of age and received orally 1.22 g alanine or 1 g glutamine per kg body weight every 12?h. Weight gain and intestinal weight of weaning piglets were increased by glutamine supplementation. Levels of serum IgG in piglets supplemented with glutamine were increased compared with Control piglets. The production of IL-1 and IL-8 in the serum and jejunum was decreased by glutamine supplementation, whereas the levels of IL-4 in the serum and the concentrations of IL-4 and IL-10 in the jejunum were increased. The expression of heat shock protein 70 (Hsp70) in the jejunum was increased by glutamine supplementation, but the degradation of inhibitor?κB and the activity of nuclear factor-κB (NF-κB) were decreased. In conclusion, glutamine supplementation enhanced immune response in weaning piglets with IUGR. The effects of glutamine in IUGR are associated with increased Hsp70 expression and suppression of NF-κB activation.  相似文献   

14.
Influence of colostrum intake on piglet survival and immunity   总被引:1,自引:0,他引:1  
Colostrum intake from birth to 24 h after the onset of parturition (T24) was estimated for 526 piglets from 40 litters. Plasma concentrations of immunoglobulin G (IgG), lactate, glucose and cortisol were determined at T24 for six piglets per litter. Plasma IgG concentration was also assayed at weaning (28 days) on the same piglets. Rectal temperature was measured at T24 on all piglets. Mortality was recorded until weaning and comparisons were made between piglets that died before weaning and those that were still alive at weaning. The piglets that died before weaning had lower birth weight, lower colostrum intake, lower weight gain between birth and T24, and had a lower rectal temperature, higher plasma cortisol concentration and lower plasma IgG and glucose concentrations at T24 than piglets still alive at weaning. In addition, a higher proportion of piglets that died before weaning had difficulty taking their first breath after birth and were affected by splayleg. Considering all piglets, colostrum intake was positively related to rectal temperature and plasma glucose concentration and negatively related to plasma cortisol concentration at T24. Plasma IgG concentration at T24 was explained by colostrum intake, IgG concentration in the ingested colostrum, birth weight and birth rank (P<0.0001). Plasma IgG concentration at weaning was related to plasma IgG concentration at T24 (r=0.54; P<0.0001) and to colostrum intake (r=0.32; P<0.0001). Finally, body weight was explained by colostrum intake, birth weight and age until 6 weeks of age (P<0.0001). These results show that colostrum intake is the main determinant of piglet survival through provision of energy and immune protection and has potential long-term effects on piglet growth and immunity.  相似文献   

15.
Genetic selection and better control of the environment of the pigs have resulted in increased production levels concerning both reproduction and growth. Such high performances imply high physiological demands that may deteriorate health and welfare. The aims of this paper are to review the physiological challenges that pigs are facing, to identify possible consequences on health and welfare, to propose ways of detecting and correcting problems whenever possible. At weaning, piglets are submitted to abrupt changes in food supply, housing and social environment. Behavioural changes and efficient adaptations of the digestive tract are critical for their health and welfare. Physiological demands to support these adaptations and risks of failure are inversely related to the age of the pigs. During fattening, modern pigs have high daily weight gain especially of lean tissue as well as elevated feed conversion rate. These high growth performances are suspected to favour stress and disease susceptibility, undesirable behaviours as well as leg weakness, but further experimental data are necessary to validate these effects and find their origin. In reproductive females, high prolificacy generates elevated foetal demands for nutrients and space that are not fully met as shown by an increased number of light piglets having difficulties to adapt successfully to the neonatal life. During lactation, sows with high milk production have high nutrient requirements leading to intense catabolism that may affect their health, welfare and future reproductive abilities.  相似文献   

16.
Under intensive pig husbandry, outdoor systems offer a more complex physical and social environment compared with indoor systems (farrowing sheds). As the rearing environment affects behavioural development, it can, therefore, influence behavioural responses of pigs to stressful environments in later stages of production. We tested how the rearing environment influenced behavioural responses to a novel arena test in piglets on the day that they were weaned and mixed into large groups. We recorded video footage and compared the behavioural responses of 30 outdoor-raised and 30 farrowing shed-raised piglets tested in an experimental arena and sequentially exposed to four challenges (each for 5 min) on the day of weaning. Quantitative and qualitative behavioural measures were recorded using time budgets and scoring demeanour or ‘qualitative behavioural expression’ (using Qualitative Behavioural Assessment (QBA)). When held in isolation (challenge 1), both groups were scored as more ‘scared/worried’, while outdoor-raised piglets spent more time eating and jumping against the arena walls. Both groups interacted with a plastic ball (challenge 2: exposure to a novel object) during which they were scored as more ‘playful/curious’ than other challenges. When a food bowl was introduced (challenge 3), farrowing shed-raised piglets were more interested in playing with the food bowl itself, whereas outdoor-raised piglets spent more time eating the feed. Finally, there were no significant differences in social behaviour (challenge 4: introduction of another piglet) between the two groups in terms of the latency to contact each other, amount of time recorded engaged in aggressive/non-aggressive social interactions or QBA scores. Although piglets spent 30% of their time interacting with the other piglet, and half of this time (47%) was engaged in negative interactions (pushing, biting), the levels of aggression were not different between the two groups. Overall, outdoor-raised piglets ate more and were scored as more ‘calm/passive’, whereas farrowing shed-raised piglets spent more time investigating their environment and were scored as more ‘playful/inquisitive’. In conclusion, we did not find differences in behaviour between outdoor-raised and farrowing shed-raised piglets that would highlight welfare issues. The differences found in this study may reflect conflicting affective states, with responses to confinement, neophobia and motivation for exploration evident.  相似文献   

17.
Social contact during suckling, in an enriched social environment, can reduce the aggressive behaviours of piglets during regrouping at weaning, and improve their production performance and welfare. The aim of this study was to determine the possible impact of suckling social contact on gut microbes. We performed 16S rRNA sequencing to measure the faecal microbial structure and function in piglets experiencing social contact. Eighteen-litter piglets were allocated to two treatments: an early continuous social contact (CSC) group where piglets from adjacent pens shared a mutual pen starting at 14 days postpartum and a control (CON) group where piglets had no contact with individuals from adjacent pens during the suckling period. The piglets were regrouped at 36 days of age. The litter weights at 35 and 63 days of age were measured. Faecal samples were randomly collected at 16, 35, 42, and 63 days of age and faecal DNA was determined. The results showed that the litter weight of piglets in the CSC group was significantly decreased at 63 days compared with the CON group. Continuous social contact also significantly decreased the microbial richness at 16 and 35 days of age (P < 0.05). Firmicutes was the most abundant bacterial phylum in both groups at all detected time-points and the abundance increased with social contact. At the genus level, Lactobacillus was the most abundant bacterium after weaning and the abundance increased in the piglets with social contact. Compared with the faecal microbiota of control piglets, a total of 22 genera at 16 days, 20 genera at 35 days, 12 genera at 42 days, and 27 genera at 63 days in the faeces of CSC piglets were observed to be significantly different in abundance (linear discriminant analysis score > 3, P < 0.05). Furthermore, functional analysis of the microbial composition showed that the changes induced by early CSC mainly altered the relative abundance of metabolic and related pathways. The social contact notably had an effect on the abundance of microbial pathways for amino acid and carbohydrate metabolism. In conclusion, CSC changed the microbial composition in the faeces of piglets, which might have a negative effect on nutrient metabolism for the suckling-growing piglets. Our study provided new insight into the influence of social contact on the suckling-growing piglets.  相似文献   

18.
Early life experiences can affect social behaviour in later life, but opportunities for socio-behavioural development are often overlooked in current husbandry practices. This experiment investigated the effects of rearing piglets in two-stage group lactation (GL) system from 7 or 14 days of age on piglet aggression at weaning. Three lactation housing treatments were applied to a total of 198 piglets from 30 litters of multiparous sows. All dams farrowed in standard farrowing crates (FCs). Group lactation litters were transferred with their dam at 7 (GL7) or 14 days (GL14) postpartum to GL pens (one pen of five sows at 8.4 m2/sow and one pen of seven sows at 8.1 m2/sow, per GL treatment). Farrowing crate litters remained with their dam in a single litter until weaning. At weaning, 10 to 14 piglets from two unfamiliar litters from the same housing treatment were mixed into pens (n=5 pens/treatment) and their behaviour was continuously recorded for 3.5 h. For each pen, the frequency of aggressive bouts (reciprocal and non-reciprocal aggression lasting <5 s), the frequency and duration of fights (reciprocal aggression lasting ⩾5 s) and bullying events (non-reciprocal aggression lasting ⩾5 s) were recorded, along with whether interactions involved familiar or unfamiliar piglets. Aggressive bouts delivered by FC piglets were approximately 1.5 and 3.0 times more frequent than that delivered by GL7 and GL14 piglets, respectively (40.5, 16.7 and 9.9 bouts/pig, respectively; P<0.05). Fighting was more frequent (1.6, 0.3 and 0.4 fights/pig, respectively; P<0.001) and fights were longer (83, 15 and 32 s fight/pig, respectively; P<0.001) between FC piglets than between GL7 or GL14 piglets. Bullying did not differ between housing treatments (P>0.05). GL7 and GL14 piglets engaged in a similar number of fights with unfamiliar as familiar piglets, but FC piglets had almost three times as many fights with unfamiliar than with familiar piglets (P<0.05). This experiment confirms the benefits of GL housing for pig social development. Further investigation is required to determine whether mixing before 14 days postpartum has implications for other indicators of animal welfare and productivity in a two-stage GL housing system.  相似文献   

19.
Music or other background sounds are often played in barns as environmental enrichment for animals on farms or to mask sudden disruptive noises. However, previous studies looking at the effects of this practice on nonhuman animal well-being and productivity have found contradictory results. This study monitored the vocal responses of piglets, as indicators of well-being, to evaluate the effect of various sounds played during 2 simulations of stressful farm procedures: (a) the 5 min the animals were held as if for castration and (b) the first 20 hr after weaning. The sound treatments included pink noise, music, vocalizations made by other piglets during actual castrations or the first hours after weaning, and silence (control). The study presented pink noise and music both with and without a binaural beat in the delta-theta frequency range. In both the handling and weaning situations, none of the sound treatments reduced the piglets' call rate below that heard during the control. Piglets vocalized most during playback of pink noise and least during silence and playback of calls from other pigs. These results suggest that playing music or other sounds provides no improvement in conditions for piglets during handling and weaning.  相似文献   

20.
Probiotics such as lactic acid bacteria directly influence the host's health and have beneficial effects such as decreasing the number of enteric pathogens, regulating intestinal immune responses and preventing diseases. Among domestic animals, probiotics have been expected to be an alternative to antibiotics added in the diet; and fermented liquid diet (FLD) containing probiotics has great potential as a diet for reducing the use of antibiotics. In this study, we evaluated the immunomodulatory effects of FLD, prepared using Lactobacillus plantarum LQ80 (LQ80), on the immune response of weaning pigs. Ten weaning piglets were divided into two groups and were fed the FLD (n = 5) or a non-fermented liquid diet (NFLD) (n = 5) for 28 days. At the end of the experiment, the total immunoglobulin M (IgM) and immunoglobulin G (IgG) levels in the sera of the FLD-fed piglets were significantly higher than those of the NFLD-fed piglets (P < 0.05). In contrast, the total immunoglobulin A (IgA) levels in the feces and saliva were not significantly affected by FLD feeding. However, the mean fecal IgA levels of FLD-fed piglets at day 28 were higher than those at 14 and 21 days (P < 0.05). Blood cells from the FLD-fed piglets showed a low level of interferon-γ secretion and mitogen-induced proliferation compared to that of the NFLD-fed piglets. Furthermore, the levels of interluekin-8 and tumor necrosis factor-α, which are proinflammatory cytokines, in the blood cells of the FLD-fed piglets were lower than those of the NFLD-fed piglets (P < 0.05). In conclusion, the FLD used in this study could alter the immune responses of weaning piglets by stimulation of the systemic or mucosal antibody response, without unnecessary inflammatory reactions. This indicates, that the FLD feed prepared with the use of LQ80 may be a candidate feed, with regard to enhancing immune responses and preventing diseases in weaning piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号