首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Synthesis and biological evaluation of a carbocyclic azanoraristeromycin siderophore conjugate 22 is reported. Coupling of previously prepared L-alanyl-4′-azanoraristeromycin 19 with protected tripeptide trihydroxamate 20, followed by hydrogenolytic removal of all protecting groups, provided the first carbocylic azanoraristeromycin siderophore conjugate (22, 8 with iron). Compounds 19 and 22 showed inhibitory activity against tumor cells, and conjugate 22, in particular, displayed significant activity against those viruses (i.e. reo, parainfluenza, vaccinia, cytomegalo) that are known to be inhibited by S-adenosylhomocysteine hydrolase inhibitors.  相似文献   

2.
A siderophore conjugate was designed as a potential PSMA inhibitor and diagnostic agent for prostate cancer. A semi-rigid spacer was incorporated to avoid competitive participation of iron binding by the enzyme inhibitor relative to the siderophore component. Biological test results showed that, even with the extended scaffold, this compound is a potent PSMA inhibitor with an IC50 of 4 nM. This siderophore conjugate may be useful for detection of prostate-derived cancer cells by magnetic resonance imaging (MRI).  相似文献   

3.
The production of a catechol type of siderophore by an iron-depleted culture of cowpeaRhizobium decreased with the increase in the concentration of molybdenum in the growth medium above 1 mM. In vitro addition of molybdenum at pH 5 and 7 changed the absorbance maxima of siderophore, indicating the interaction of molybdenum with siderophore. Tungsten, which is a competitive inhibitor of molybdenum, was unable to dissociate the molybdenum-siderophore conjugate. In the presence of iron, siderophore increased the uptake of molybdenum. Under these conditions, the addition of 2,3-dihydroxybenzoic acid did not show an increase in the uptake. This suggests that an entire siderophore molecule is involved in the transport of molybdenum.  相似文献   

4.
As a strategy to increase the penetration of antibiotic drugs through the outer membrane of gram-negative pathogens, facilitated transport through siderophore receptors has been frequently exploited. Hydroxamic acids, catechols, or very close isosteres of catechols, which are mimics of naturally occurring siderophores, have been used successfully as covalently linked escorting moieties, but a much wider diversity of iron binding motifs exists. This observation, coupled to the relative lack of specificity of siderophore receptors, prompted us to initiate a program to identify novel, noncatechol siderophoric structures. We screened over 300 compounds for their ability to (1) support growth in low iron medium of a Pseudomonas aeruginosa siderophore biosynthesis deletion mutant, or (2) compete with a bactericidal siderophore-antibiotic conjugate for siderophore receptor access. From these assays we identified a set of small molecules that fulfilled one or both of these criteria. We then synthesized these compounds with functional groups suitable for attachment to both monobactam and cephalosporin core structures. Siderophore-beta-lactam conjugates then were tested against a panel of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus strains. Although several of the resultant chimeric compounds had antimicrobial activity approaching that of ceftazidime, and most compounds demonstrated very potent activity against their cellular targets, only a single compound was obtained that had enhanced, siderophore-mediated antibacterial activity. Results with tonB mutants frequently showed increased rather than decreased susceptibilities. suggesting that multiple factors influenced the intracellular concentration of the drugs.  相似文献   

5.
Pseudomonas stutzeri RC 7 grown under iron-deficient conditions produced catecholtype siderophore, which was identified to be arginine conjugate of 2,3-dihydroxy-benzoic acid. Hydroxamic acids were not detected. The concentration of siderophore in the culture supernatant was maximal after 24 h of growth. Addition of iron to the medium increased bacterial growth but repressed the production of siderophore.  相似文献   

6.
Abstract Rhizobium leguminosarum IARI 102 produced 2,3-dihydroxy benzoic acid, a type of phenolate siderophore, under iron-starved conditions. Hydroxamic acids were not detected. Maximum production of siderophore was found at 26 h of growth in a chemically defined medium at 28°C with shaking. Threonine was detected as the amino acid conjugate of the siderophore. Addition of Fe3+ to the culture medium increased the growth yield significantly, but depressed the production of the iron chelating compound.  相似文献   

7.
Two desferrioxamine B-ciprofloxacin conjugates with 'trimethyl-lock' based linkers that are designed to release the antibiotic after esterase or phosphatase-mediated hydrolysis were synthesized. The potential esterase-sensitive conjugate 13 displayed moderate to good antibacterial activities against selected ferrioxamine-utilizing bacteria, although the activities were lower than the parent drug ciprofloxacin. However, the potential phophatase-sensitive conjugate 23 was inactive against the same panel of organisms tested. These properties appeared to be related to the activating efficiency of the linker by the enzyme and to the outer membrane protein recognition of the chemically modified siderophore used in the conjugate.  相似文献   

8.
The nematode Heterorhabditis bacteriophora transmits a monoculture of Photorhabdus luminescens bacteria to insect hosts, where it requires the bacteria for efficient insect pathogenicity and as a substrate for growth and reproduction. Siderophore production was implicated as being involved in the symbiosis because an ngrA mutant inadequate for supporting nematode growth and reproduction was also deficient in producing siderophore activity and ngrA is homologous to a siderophore biosynthetic gene, entD. The role of the siderophore in the symbiosis with the nematode was determined by isolating and characterizing a mini-Tn5-induced mutant, NS414, producing no detectable siderophore activity. This mutant, being defective for growth in iron-depleted medium, was normal in supporting nematode growth and reproduction, in transmission by the dauer juvenile nematode, and in insect pathogenicity. The mini-Tn5 transposon was inserted into phbH; whose protein product is a putative peptidyl carrier protein homologous to the nonribosomal peptide synthetase VibF of Vibrio cholerae. Other putative siderophore biosynthetic and transport genes flanking phbH were characterized. The catecholate siderophore was purified, its structure was determined to be 2-(2,3-dihydroxyphenyl)-5-methyl-4,5-dihydro-oxazole-4-carboxylic acid [4-(2,3-dihydroxybenzoylamino)-butyl]-amide, and it was given the generic name photobactin. Antibiotic activity was detected with purified photobactin, indicating that the siderophore may contribute to antibiosis of the insect cadaver. These results eliminate the lack of siderophore activity as the cause for the inadequacy of the ngrA mutant in supporting nematode growth and reproduction.  相似文献   

9.
In the present study, 22 different bacteria were isolated from open ocean water from the Gulf of Mannar, India. Of the 22 isolates, 4 were identified as Vibrio spp. (VM1, VM2, VM3 and VM4) and found to produce siderophores (iron-binding chelators) under iron-limited conditions. Different media were found to have an influence on siderophore production. Maximum siderophore production was observed with VM1 isolate in MM9 salts medium at 48 h of incubation. The isolate was confirmed as Vibrio harveyi based on 16S rRNA gene sequencing and phylogenetic analysis. Fourier-transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectra revealed the hydroxamate nature of the siderophore produced. Further characterization of the siderophore revealed it to be of dihydroxamate nature, forming hexadentate ligands with Fe(III) ions. A narrow shift in ultraviolet (UV)–Vis spectrum was observed on photolysis due to ligand oxidation. Growth-promotion bioassay with Aeromonas hydrophila, Staphylococcus aureus and E. coli confirmed the iron-scavenging property of the siderophore produced by Vibrio harveyi.  相似文献   

10.
11.
Hemin (Fe(3+)) was adsorbed onto synthetic smectite (clay mineral) intercalated with a quaternary alkenylammonium compound, dioleyldimethylammonium chloride (DOA), to form a hemin-smectite-DOA conjugate. The hemin-smectite-DOA conjugate was soluble in organic solvents such as benzene and toluene to form a transparent colloidal solution with a light yellow color. Its absorption spectrum in benzene showed two bands, 600 and 568 nm, in the visible region and a sharp Soret band at 400 nm with the molar extinction coefficient of 7.5 x 10(4) M(-1) cm(-1). The formation of the conjugate of smectite and DOA was confirmed by X-ray diffraction analysis: the basal spacing, d(001), of hemin-smectite-DOA conjugate was 19 A which is an expansion of the interlayer space by 5 A based upon the basal spacing of smectite of 14 A. Hemin-smectite-DOA conjugate catalyzed the peroxidase-like reaction in organic solvents using benzoyl peroxide as the hydrogen acceptor and leucocrystal violet as the hydrogen donor. The temperature-dependent peroxidase-like activity of the conjugate was compared with peroxidase activity of horseradish peroxidase. The hemin-smectite-DOA conjugate exhibited higher activity as the temperature was increased from 30 to 70 degrees C, while horseradish peroxidase activity was reduced as the temperature was increased.  相似文献   

12.
Tumor-targeting DNA complexes which can readily be generated by the mixing of stable components and freeze-thawed would be very advantageous for their subsequent application as medical products. Complexes were generated by the mixing of plasmid DNA, linear polyethylenimine (PEI22, 22 kDa) as the main DNA condensing agent, PEG-PEI (poly(ethylene glycol)-conjugated PEI) for surface shielding, and Tf-PEG-PEI (transferrin-PEG-PEI) to provide a ligand for receptor-mediated cell uptake. Within the shielding conjugates, PEG chains of varying size (5, 20, or 40 kDa) were conjugated with either linear PEI22 (22 kDa) or branched PEI25 (25 kDa). The three polymer components were mixed together at various ratios with DNA; particle size, surface charge, in vitro transfection activity, and systemic gene delivery to tumors was investigated. In general, increasing the proportion of shielding conjugate in the complex reduced surface charge, particle size, and in vitro transfection efficiency in transferrin receptor-rich K562 cells. The particle size or surface charge of the complexes containing the PEG-PEI conjugate did not significantly change after freeze-thawing, while complexes without the shielding conjugate aggregated. Complexes containing PEG-PEI conjugate efficiently transfected K562 cells after freeze-thawing. Furthermore the systemic application of freeze-thawed complexes exhibited in vivo tumor targeted expression. For complexes containing the luciferase reporter gene the highest expression was found in tumor tissue of mice. An optimum formulation for in vivo application, PEI22/Tf-PEG-PEI/PEI22-PEG5, containing plasmid DNA encoding for the tumor necrosis factor (TNF-alpha), inhibited tumor growth in three different murine tumor models. These new DNA complexes offer simplicity and convenience, with tumor targeting activity in vivo after freeze-thawing.  相似文献   

13.
14.
烟草根际铁载体产生菌G-229-21T的筛选、鉴定及拮抗机理   总被引:5,自引:0,他引:5  
[目的]从烟草根际筛选烟草疫霉[Phytophthora parasitica var.nicotianae(Breda de Hann)Tucker]拮抗菌,探索其拮抗机理.[方法]限铁(2.0 μmol/L FeCl3)蔗糖-天冬酰胺平板对峙法筛选烟草疫霉拮抗菌;刃天青(CAS)法检测其铁载体的产生及其对铁离子的亲和能力.结合形态、生理生化、16s rRNA序列同源性和系统发育分析及种特异性分子法对其进行鉴定.XAD-2吸附层析法提取其铁载体,分光光度法检测其铁载体类型.不同铁离子浓度下,比较其铁载体对烟草疫霉的抑制作用.[结果]我们筛选到一株限铁条件下烟草疫霉拮抗菌G-229-21T,该菌产生高亲和力铁载体,被初步鉴定为Pseudomonas mediterranea.该菌产生的羧酸型铁载体,在低铁条件下(0.16μmol/L~10μmol/L,FeCl3)对烟草疫霉的抑制率达92.3%以上,而在富铁条件下(100 μmol/L FeCl3)抑制率仅为2.0%.[结论]首次报道P. mediterranea G-229-21T产生高亲和力羧酸型铁载体,该铁载体在低铁条件下对烟草疫霉有显著的抑制作用.  相似文献   

15.
16.
The nematode Heterorhabditis bacteriophora transmits a monoculture of Photorhabdus luminescens bacteria to insect hosts, where it requires the bacteria for efficient insect pathogenicity and as a substrate for growth and reproduction. Siderophore production was implicated as being involved in the symbiosis because an ngrA mutant inadequate for supporting nematode growth and reproduction was also deficient in producing siderophore activity and ngrA is homologous to a siderophore biosynthetic gene, entD. The role of the siderophore in the symbiosis with the nematode was determined by isolating and characterizing a mini-Tn5-induced mutant, NS414, producing no detectable siderophore activity. This mutant, being defective for growth in iron-depleted medium, was normal in supporting nematode growth and reproduction, in transmission by the dauer juvenile nematode, and in insect pathogenicity. The mini-Tn5 transposon was inserted into phbH; whose protein product is a putative peptidyl carrier protein homologous to the nonribosomal peptide synthetase VibF of Vibrio cholerae. Other putative siderophore biosynthetic and transport genes flanking phbH were characterized. The catecholate siderophore was purified, its structure was determined to be 2-(2,3-dihydroxyphenyl)-5-methyl-4,5-dihydro-oxazole-4-carboxylic acid [4-(2,3-dihydroxybenzoylamino)-butyl]-amide, and it was given the generic name photobactin. Antibiotic activity was detected with purified photobactin, indicating that the siderophore may contribute to antibiosis of the insect cadaver. These results eliminate the lack of siderophore activity as the cause for the inadequacy of the ngrA mutant in supporting nematode growth and reproduction.  相似文献   

17.

Background

Bifidobacteria is one of the major gut commensal groups found in infants. Their colonization is commonly associated with beneficial effects to the host through mechanisms like niche occupation and nutrient competition against pathogenic bacteria. Iron is an essential element necessary for most microorganisms, including bifidobacteria and efficient competition for this micronutrient is linked to proliferation and persistence. For this research we hypothesized that bifidobacteria in the gut of iron deficient infants can efficiently sequester iron. The aim of the present study was to isolate bifidobacteria in fecal samples of iron deficient Kenyan infants and to characterize siderophore production and iron internalization capacity.

Results

Fifty-six bifidobacterial strains were isolated by streaking twenty-eight stool samples from Kenyan infants, in enrichment media. To target strains with high iron sequestration mechanisms, a strong iron chelator 2,2-dipyridyl was supplemented to the agar media. Bifidobacterial isolates were first identified to species level by 16S rRNA sequencing, yielding B. bifidum (19 isolates), B. longum (15), B. breve (11), B. kashiwanohense (7), B. pseudolongum (3) and B. pseudocatenulatum (1). While most isolated bifidobacterial species are commonly encountered in the infantile gut, B. kashiwanohense was not frequently reported in infant feces. Thirty strains from culture collections and 56 isolates were characterized for their siderophore production, tested by the CAS assay. Siderophore activity ranged from 3 to 89% siderophore units, with 35 strains (41%) exhibiting high siderophore activity, and 31 (36%) and 20 (23%) showing intermediate or low activity. The amount of internalized iron of 60 bifidobacteria strains selected for their siderophore activity, was in a broad range from 8 to118 μM Fe. Four strains, B. pseudolongum PV8-2, B. kashiwanohense PV20-2, B. bifidum PV28-2a and B. longum PV5-1 isolated from infant stool samples were selected for both high siderophore activity and iron internalization.

Conclusions

A broad diversity of bifidobacteria were isolated in infant stools using iron limited conditions, with some strains exhibiting high iron sequestration properties. The ability of bifidobacteria to efficiently utilize iron sequestration mechanism such as siderophore production and iron internalization may confer an ecological advantage and be the basis for enhanced competition against enteropathogens.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-014-0334-z) contains supplementary material, which is available to authorized users.  相似文献   

18.
We report evidence that a monoclonal antibody raised by immunization with a vasoactive intestinal peptide (VIP)-carrier protein conjugate selectively hydrolyzes VIP and a fluorescence quenched decapeptide (FQ14-22D), representing the region of VIP most susceptible to autoantibody-mediated cleavage (residues 14-22). A high affinity of the antibody for VIP and a lower affinity for FQ14-22D were revealed by kinetic studies and further substantiated by potent inhibition of FQ14-22D cleaving activity by full-length VIP. Sequencing of FQ14-22D hydrolysis products indicated selective cleavage at one peptide bond. These observations suggest that antibodies induced against naturally occurring polypeptide antigens can express peptidolytic activity targeted for specific sequences in the recognition epitope.  相似文献   

19.
Na+/H+ exchange activity was solubilized from Halobacterium halobium with octyl-beta-D-glucoside (OG) and was reconstituted into the bacterio-rhodopsin incorporated liposomes (BR-liposomes) by the detergent-dialysis method. Light illumination stimulated uphill 22Na+ uptake into the reconstituted conjugate proteoliposomes. The 22Na+ uptake was FCCP-sensitive and was dependent on the amounts of OG-extract applied. On the other hand, the proteoliposomes reconstituted with the membrane fraction pretreated with N,N'-dicyclohexylcarbodiimide (DCCD) did not exhibit the light-dependent 22Na+ uptake, thus, DCCD-sensitive. When the reconstituted proteoliposome was incubated with [14C]DCCD, radio-labels appeared slightly on 50K but mainly on 11K-Dalton component, which are the same components labeled in the intact membrane vesicles. It is concluded that halobacterial DCCD-sensitive Na+/H(+)-antiporter was solubilized and reconstituted in the conjugate BR-liposomes with preserved functional unit.  相似文献   

20.
The hydroxamate siderophore receptor FhuA is a TonB-dependent outer membrane protein of Escherichia coli composed of a C-terminal 22-stranded beta-barrel occluded by an N-terminal globular cork domain. During siderophore transport into the periplasm, the FhuA cork domain has been proposed to undergo conformational changes that allow transport through the barrel lumen; alternatively, the cork may be completely displaced from the barrel. To probe such changes, site-directed cysteine mutants in the cork domain (L109C and Q112C) and in the barrel domain (S356C and M383C) were created within the putative siderophore transport pathway. Molecular modeling predicted that the double cysteine mutants L109C/S356C and Q112C/M383C would form disulfide bonds, thereby tethering the cork and barrel domains. The double cysteine FhuA mutants were denatured under nonreducing conditions and fluorescently labeled with thiol-specific Oregon Green maleimide. Subsequent SDS-PAGE analysis revealed two distinct species: FhuA containing a disulfide bond and FhuA with free sulfhydryl groups. To address the role of the putative siderophore transport pathway and to evaluate possible rearrangements of the cork domain during ferricrocin transport, disulfide bond formation was enhanced by an oxidative catalyst. Cells containing double cysteine FhuA mutants that were subjected to oxidation during ferricrocin transport exhibited disulfide bond formation to near completion. After disulfide tethering of the cork to the barrel, ferricrocin transport was equivalent to transport by untreated cells. These results demonstrate that blocking the putative siderophore transport pathway does not abrogate ferricrocin uptake. We propose that, during siderophore transport through FhuA, the cork domain remains within the barrel rather than being displaced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号