首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Adenosine 3′-,5′-cyclic monophosphate phosphodiesterase (EC 3.1.4.17) has been investigated in rat liver as to its insulin sensitivity. Hormone action has been assayed in vitro on a liver hemogenate purified by DEAE-cellulose column chromatography, on isolated hepatocytes, on isolaetd plasma membranes. The DEAE-cellulose chromatography purified homogenate showed no sensitivity to insulin, whereas isolated hepatocytes incubated in presence of insulin showed increased phosphodiesterase activity in a plasma membrane-containing fraction. The plasma membrane-bound enzyme, which shows both high and low affinity components, was significantly stimulated after hormonal treatment; this effect being dependent on a V increase of the low Km form.  相似文献   

2.
Adenosine 3′,5′-monophosphate (cAMP) is a chemoattractant in Dictyostelium discoideum; it also induces phosphodiesterase activity. Recently it was shown (M. H. Juliani, J. Brusca, and C. Klein, (1981)Develop. Biol.83, 114–121) that N6-(aminohexyl)adenosine 3′,5′-monophosphate (hexyl-cAMP) effectively induced phosphodiesterase activity, while this compound was chemotactically inactive and did not effectively bind to the cell surface receptor for cAMP. It was suggested that hexyl-cAMP and cAMP induce phosphodiesterase activity via a chemoreceptor-independent mechanism. In another recent report (P. J. M. Van Haastert, R. C. Van der Meer, and T. M. Konijn (1981)J. Bacteriol.147, 170–175) investigation of induction of phosphodiesterase by several cAMP derivatives revealed that phosphodiesterase induction and chemotaxis had similar cyclic nucleotide specificity. Based on this result it was suggested that cAMP induces phosphodiesterase activity via activation of the chemotactic receptor. In this report we show that hexyl-cAMP transiently inhibits extracellular and cell surface phosphodiesterase. This transient inhibition of the inactivating enzyme and the permanent release of small amounts of cAMP by the cells leads to a transient increase of extracellular cAMP levels. Hexyl-cAMP does not inhibit beef heart phosphodiesterase, and is not degraded by this enzyme. Addition of hexyl-cAMP to a cell suspension containing beef heart phosphodiesterase does not result in an accumulation of extracellular cAMP, and phosphodiesterase induction is absent. We conclude that hexyl-cAMP inhibits phosphodiesterase activity which leads to the accumulation of cAMP; consequently cAMP binds to the chemotactic cAMP receptor resulting in the induction of phosphodiesterase activity.  相似文献   

3.
Plasma membranes from Candida tropicalis grown on glucose or hexadecane were isolated using a method based on the difference in surface charge of mitochondria and plasma membranes.After mechanical disruption of the cells, a fraction consisting of mitochondrial and plasma membrane vesicles was obtained by differential centrifugation.Subsequently the mitochondria were separated from the plasma membrane vesicles by aggregation of the mitochondria at a pH corresponding to their isoelectric point. Additional purification of the isolated plasma membrane vesicles was achieved by osmolysis. Surface charge densities of mitochondria and plasma membranes were determined and showed substrate-dependent differences.The isolated plasma membranes were morphologically characterized by electron microscopy and, as a marker enzyme, the activity of Mg2+-dependant ATPase was determined.By checking for three mitochondrial marker enzymes the plasma membrane fractions were estimated to be 94% pure with regard to mitochondrial contamination.  相似文献   

4.
Plasma membranes were isolated from calf thyroid microsomes and further resolved into two subfractions by sucrose density gradient centrifugations. The lighter and major membrane fraction was obtained in a yield of 10 mg/100 g of thyroid and was enriched 38-fold with respect to 5′-nucleotidase activity compared to the homogenate. It differed from the denser plasma membrane fraction in containing greater amounts of phospholipid and cholesterol but had a similar total carbohydrate content (16 mg/100 mg protein) and monosaccharide composition. The membranes were found to retain most (80%) of their carbohydrate after delipidation. The major protein-bound sugars present in the lighter membrane fraction expressed as micromoles per 100 mg of peptide were: galactose 24, mannose 17, fucose 3, glucosamine 23, galactosamine 4, and sialic acid 9. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of the lipid-free membranes revealed at least 18 protein bands and 3 periodic acid-Schiffreactive glycoprotein components. Incubation of the delipidated membranes with Pronase resulted in the solubilization of 95% of the saccharide portion which upon filtration through Bio-Gel P-6 and P-10 columns yielded several glycopeptide fractions. While some of the carbohydrate was found in glycopeptides which appeared to contain the well-known complex and polymannose asparagine-bound oligosaccharides, as well as small O-glycosidically linked units, approximately half was recovered in high molecular weight components which contained galactose and glucosamine as their principal sugar constituents, and which were similar in composition to glycopeptides recently isolated (T. Krusius, J. Finne, and H. Rauvala, 1978, Eur. J. Biochem.92, 289–300) from human erythrocyte membranes.  相似文献   

5.
Functionally inverted plasma membrane vesieles isolated from the eukaryotic microorganism Neurospora crassa generate and maintain a transmembrane electrical potential via ATP hydrolysis catalyzed by a plasma membrane ATPase (G. A. Scarborough, 1976, Proc. Nat. Acad. Sci. USA73, 1485–1488). In order to facilitate investigation of the molecular mechanism of the electrogenic ATPase, and other transport systems, we have developed a method for the large scale isolation and storage of Neurospora plasma membranes in a stable form. Large quantities of open plasma membrane sheets (ghosts) are isolated by a scaled-up modification of the original method (G. A. Scarborough, 1975, J. Biol. Chem.250, 1106–1111) and stored at ?26°C in 60% glycerol (vv). As needed, the ghosts are washed free of glycerol and then converted to closed vesicles by a modification of the original method. With this technique, plasma membrane vesicles with normal electrogenic pump activity can be prepared daily in approximately 2.5 h.  相似文献   

6.
A difference in the organization of adenylate cyclase and 3′5′-cyclic phosphodiesterase in isolated plasma membranes was observed. Observation of this difference was made possible by the development of a new technique for the lysis of Dictyostelium discoideum using the polyene antibiotic amphotericin B. A particulate fraction prepared from the cell lysate contains adenylate cyclase, 3′5′-cyclic phosphodiesterase and 5′-nucleotidase. The yield of adenylate cyclase is 40% higher than in paniculate fractions prepared from cells lysed by sonication or with Triton X-100. Purification of the particulate fraction on discontinuous sucrose gradient completely separates membranes from mitochondria and other cellular material as shown by electron microscopic analysis of different fractions. Biochemical characterization of the purified membrane fraction shows it contains adenylate cyclase, 3′5′-cyclic phosphodiesterase and 5′-nucleotidase activities while electron microscopic analysis shows a vesicular morphology. Additional studies on the purified membranes used Triton X-100, trypsin and phospholipase C to probe the relationship between membrane structural elements and enzymatic activities. The results of these studies show distinct differences in the organization of each enzyme molecule within the membrane.  相似文献   

7.
Cytochemical localizations of adenylate cyclase and 3′,5′-nucleotide phosphodiesterase were performed on aggregating Dictytostelium discoideum myxamoebae. The adenylate cyclase reaction product was localized on the inner surface of the plasma membrane. The phosphodiesterase reaction product was localized on the outer surface of the plasma membrane. Differences in enzyme activity were noted according to the state of cell (isolated or aggregated) and according to the cell position in larger aggregates. Heavy precipitation indicative of adenylate cyclase activity was not observed in isolated amoebae, but was often observed in streams and in some cells of aggregates. The precipitation indicative of phosphodiesterase activity could be found in isolated amoebae and in peripheral cells of aggregates.  相似文献   

8.
9.
10.
The distribution of cyclic-AMP phosphodiesterase was investigated in subcellular fractions prepared from homogenates of rat liver or isolated hepatocytes. When measured at 1 mM or 1 μM substrate concentration, approx. 35% or 50%, respectively, of enzyme activity was particulate. The soluble activity appeared to be predominantly a ‘high Km’ form, whereas the particulate activity had both ‘high Km’ and ‘low Km’ components. The recovery of cyclic-AMP phosphodiesterase was measured using 1 μM substrate concentration, in plasma membrane-containing fractions prepared either by centrifugation or by the use of specific immunoadsorbents. The recovery of phosphodiesterase was lower than that of marker enzymes for plasma membrane, and comparable with the recovery of markers for intracellular membranes. It was concluded that regulation of both ‘high Km’ and ‘low Km’ phosphodiesterase could potentially make a significant contribution to the control of cyclic AMP concentration, even at μM levels, in the liver. The ‘low Km’ enzyme, for which activation by hormones has been previously described, appears to be located predominantly in intracellylar membranes in hepatocytes.The immunological procedure for membrane isolation allowed the rapid preparation of plasma membranes in high yield. Liver cells were incubated with rabbit anti-(rat erythrocyte) serum and homogenized. The antibody-coated membrane fragments were then extracted onto an immunoadsorbent consisiting of sheep anti-(rabbit IgG) immunoglobulin covalently bound to aminocellulose. Plasma membrane was obtained in approx. 40% yield within 50 min of homogenizing cells.  相似文献   

11.
Plasma membrane vesicles were isolated from murine leukemic lymphoblasts L5178Y. The isolation procedure selected involved a method of mechanical disruption in a hypoosmotic-buffered solution and the separation of plasma membrane vesicles by an adaptation of the fractionation method described by D. W. McKeel and L. Jarett for fat cells (J. Cell Biol., 44, 417, 1970). In order to select the homogenization method we took into account several parameters: the extent of cell and nuclear disruption, the integrity of the nuclear membrane, the 5′-nucleotidase activity recovered at the first step of fractionation and the mitochondrial rupture. The homogenization method finally used yielded 89% of cellular rupture with only 9% of nuclear damage. The isolation procedure showed an overall yield of 70–90%. A plasma membrane fraction was isolated with an enrichment in 5′-nucleotidase and ouabain-sensitive (Na+K+)-ATPase specific activities of 15- and 13-fold, respectively, and essentially free of mitochondrial, lysosomal, and endoplasmic reticulum contamination. The electron microscopy demonstrated that the plasma membrane fraction essentially consisted of smooth vesicles of several sizes.  相似文献   

12.
13.
Plasma membranes from hamster liver were prepared by differential and continuous sucrose gradient centrifugation. The membranes contained a low Km cyclic AMP phosphodiesterase (EC 3.5. lc) and calmodulin. The activity of the membrane phospho-diesterase was reduced with EGTA and LaCl3. The membrane low Km cyclic AMP phosphodiesterase was solubilized with Triton X-100 and then chromatographed on DEAE-cellulose to remove calmodulin. After elution, phosphodiesterase was stimulated with exogenous calmodulin; this activation was blocked with EGTA. Thus a low Km cyclic AMP phosphodiesterase has been shown to be dependent on calmodulin for “maximal” activity.  相似文献   

14.
Some characteristics of the cyclic 3′,5′-nucleotide phosphodiesterase (phosphodiesterase) activity associated with the synaptosomal plasma membrane (synaptic membrane) and the synaptic junction fractions of rat brain are reported. Kinetic analysis revealed that only one type of phosphodiesterase activity, with a Km of 2 · 10?4 M for cyclic AMP, is associated with both fractions. The specific activities of the phosphodiesterase in synaptic membranes and synaptic junctions have been estimated at 23.4 nmol/min per mg protein and 22.5 nmol/min per mg protein, respectively. The synaptic junction-associated activity undergoes a 30% stimulation by Ca2+ while no Ca2+ sensitivity of the synaptic membrane-associated activity could be detected. Cytochemical studies performed on the synaptic membrane fraction demonstrated a predominant localization of phosphodiesterase activity over postsynaptic densities, while dense deposits were sometimes observed over the synaptic cleft region.  相似文献   

15.
We have examined iodothyronine deiodination in subcellular fractions of cerebral cortex obtained from hypothyroid rats. Enzymatic activities were measured at 37°C in the presence of 20 mM dithiothreitol with 125I-labeled T4 and 125I-labeled rT3 as substrate for 5′-deiodination and 131I-labeled T3 as the substrate for the 5-deiodinase. Reaction products were separated by descending paper and/or ion-exchange chromatography. Cerebral cortex subcellular fractions were also characterized by marker enzyme analysis and electron microscopy. Under optimal reaction conditions more than 80% of the 5′-deiodinase was recovered after fractionation. Both 5′-deiodinase and (Na+ +K+-ATPase showed similar subcellular distributions and were enriched approx. 3-fold in the easily sedimenting membrane fraction and nerve terminal plasma membranes. Crude microsomal membranes (6·106g·min pellet) also showed 2-fold enrichment of these enzymes. Nuclei and isolated mitochondria were devoid of deiodinating activity. T4 and T3 5-deiodinating activity was absent in the easily sedimenting membranes and present but not enriched in particulate fractions containing microsomal membranes. These data suggest that iodothyronine 5′-deiodinase is associated with plasma membrane fractions in the cerebral cortex.  相似文献   

16.
17.
Highly purified nuclei isolated from bovine corpora lutea showed marked enrichment of NAD pyrophosphorylase, a marker for this organelle. Rough endoplasmic reticulum and lysosomal markers were undetectable, whereas plasma membrane and Golgi markers were detectable but not enriched in nuclei. These highly purified nuclei exhibited specific binding with 125I-labeled human choriogonadotropin, [3H]prostaglandin E1 and [3H]prostaglandin F. However, these bindings were only 15.4% (human choriogonadotropin), 7.9% (prostaglandin E1) and 8.9% (prostaglandin F) of the plasma membrane binding observed under the same conditions. Washing of nuclei and plasma membranes twice with buffer containing 0.1% Triton X-100 resulted in gonadotropin and prostaglandin F binding site and 5′-nucleotidase (EC 3.1.3.5) losses from nuclei that were different from those observed for plasma membranes. More importantly, the washed nuclei exhibited 44% (human choriogonadotropin), 21–26% (prostaglandins) of original specific binding despite virtual disappearance of 5′-nucleotidase activity. The nuclear membranes isolated from nuclei, specifically bound 125I-labeled human choriogonadotropin and [3H]prostaglandin F to the same extent or significantly more ([3H]prostaglandin E1, P < 0.05) than nuclei themselves, despite the marked losses of chromatin. In summary, our data suggest that gonadotropin and prostaglandins bind to nuclei and that this binding was intrinsic and was primarily associated with the nuclear membrane.  相似文献   

18.
Suspension cultured oat (Avena sativa L. cv. Garry) cells, which secrete polysaccharides into the medium, were used as starting material for analyses of Golgi-derived vesicle membranes and plasma membranes isolated during cell fractionation. Vesicles collected by a procedure employing ultrafiltration followed by ultracentrifugation into a sucrose step gradient exhibited an equilibrium density of 1.27 g cm?3 when run on continuous sucrose gradients, a feature which is most likely attributable to the high concentration of enclosed polysaccharides. Brief sonication lowered the density of these vesicles to about 1.15 g cm?3, as judged from the coincidence of the protein peak and the marker enzymes for Golgi [Triton-stimulated UDPase, cold-storage IDPase (EC 3.6.1.6)] and plasma membrane [vanadate-inhibited K+, Mg2+-ATPase (EC 3.6.1.3)]. Sonication of these vesicles also greatly diminished the amount of detectable polysaccharide observed in a colorimetric assay for sugars. Fractionation of a plasma membrane-enriched preparation from these cells on continuous sucrose gradients showed the major protein peak and the peak activity for the plasma membrane marker at 1.17 g cm?3, however, there was also significant overlap with a mitochondrial [cytochrome c oxidase (EC 1.9.3.1)] peak at 1.18 g cm?3, Smaller peaks of the Golgi markers were seen at 1.14 g cm?3. Analyses of marker enzymes for ER and mitochondria (EC 1.6.99.3) showed little contamination of the membranes of presumptive secretory vesicles from these sources, and the lack of significant vanadate-insensitive ATPase activity in the density range from 1.13–1.18 g cm?3 in either fractionation scheme suggests that these membranes do not include material from the tonoplast. The coincidence of markers for Golgi and plasma membrane with from the tonoplast. The coincidence of markers for Golgi and plasma membrane with the membranes of sonicated, dense vesicles, at a density slightly lower than that of plasma membranes prepared from the same cells, supports the possibility that membranes en route to the plasma membrane are incompletely differentiated.  相似文献   

19.
Summary Plasma membranes isolated from Yoshida ascites hepatoma AH-130 by a modification of the method of T. K. Ray (Biochim. Biophys. Acta 196: 1, 1970), were subfractionated into three fractions having densities (d) 1.12, 1.14 and 1.16 by discontinuous sucrose density-gradient. Membrane subfractions were characterized by electron-microscopy, by assay of marker enzymes and by lipid composition. All subfractions appeared to be essentially free from whole mitochondria, lysosomes and nuclei. Subfraction d 1.16 had, the highest 5-nucleotidase, Mg++-ATPase and (Na++K+)-ATPase activities; cytochromec oxidase was undetectable in any fraction and glucose-6-phosphatase was measurable only in fraction d 1.14. Adenylate cyclase had the highest activity in fractions d 1.14 and 1.16. Cyclic AMP phosphodiesterase was nearly equally distributed in the fractions. Adenylate, cyclase, 5-nucleotidase and Mg++-ATPase activities of tumor membrane were lower with respect to liver plasma membrane, while cyclic AMP phosphodiesterase and (Na++K+)-ATPase were found to have similar activities in the two membrane preparations. With respect to liver membrane, hepatoma membrane contained a higher amount of glycolipids and a higher amount of phospholipids accounted for mainly, by sphingomyelin, phosphatidylserine and phosphatidic acid. The possible significance of the decrease of adenylate activity in the hepatoma membrane is briefly discussed.  相似文献   

20.
One new tetraoxygenated xanthone, merguensinone (1), along with one known xanthone, 1,5,6-trihydroxy-2-prenyl-6′,6′-dimethyl-2H-pyrano(2′,3′:3,4)xanthone (2) and five known biflavanoids, (?)-GB-1a (3), (?)-GB-2a (4), (+)-morelloflavone (5), (+)-volkensiflavone (6), and amentoflavone (7) were isolated from the methanol extract from the twigs of Garcinia merguensis. Their antibacterial activity against the standard Staphylococcus aureus ATCC 25923 and methicillin-resistant S. aureus and antioxidation activity with DPPH assay were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号