首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.  相似文献   

5.
An Arabidopsis thaliana mutant, esa1, that shows enhanced susceptibility to the necrotrophic pathogens Alternaria brassicicola, Botrytis cinerea and Plectosphaerella cucumerina, but has wild-type levels of resistance to the biotrophic pathogens Pseudomonas syringae pv. tomato and Peronospora parasitica. The enhanced susceptibility towards necrotrophic pathogens correlated with a delayed induction of phytoalexin accumulation and delayed induction of the plant defensin gene PDF1.2 upon inoculation with pathogens. Two reactive oxygen generating compounds, paraquat and acifluorfen, were found to cause induction of both phytoalexin accumulation and PDF1.2 expression in wild-type plants, but this induction was almost completely abolished in esa1. This finding suggests that esa1 may somehow be involved in transduction of signals generated by reactive oxygen species.  相似文献   

6.
7.
In Arabidopsis, the flagellin-derived peptide flg22 elevates antibacterial resistance [1] and inhibits growth [2] upon perception via the leucine-rich repeat receptor-like kinase Flagellin-Sensitive 2 (FLS2) [3]. DELLA proteins are plant growth repressors whose degradation is promoted by the phytohormone gibberellin [4]. Here, we show that DELLA stabilization contributes to flg22-induced growth inhibition. In addition, we show that DELLAs promote susceptibility to virulent biotrophs and resistance to necrotrophs, partly by altering the relative strength of salicylic acid and jasmonic acid (JA) signaling. A quadruple-DELLA mutant (which lacks four out of the five Arabidopsis DELLA proteins [5]) was partially insensitive to gene induction by Methyl-Jasmonate (MeJA), whereas the constitutively active dominant DELLA mutant gai[6] was sensitized for JA-responsive gene induction, implicating DELLAs in JA-signaling and/or perception. Accordingly, the elevated resistance of gai to the necrotrophic fungus Alternaria brassicicola and susceptibility to the hemibiotroph Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000) was attenuated in the JA-insensitive coi1-16 mutant [7]. These findings suggest an explanation for why the necrotrophic fungus Gibberella fujikuroi, causal agent of the foolish-seedling disease of rice, makes gibberellin.  相似文献   

8.
9.
10.
Many reports point to the existence of a network of regulatory signalling occurring in plants during the interaction with micro-organisms (biotic stress) and abiotic stresses such as wounding. However, the focus is on shared intermediates/components and/or common molecular outputs in differently triggered signalling pathways, and not on the degree and modes of effective influence between abiotic and biotic stresses nor the range of true plant-pathogen interactions open to such influence. We report on local and systemic wound-induced protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles (Botrytis cinerea, Fusarium oxysporum f.sp. lycopersici, Phytophthora capsici and Pseudomonas syringae pv. tomato). The role of ethylene (ET) in the phenomenon and in the induction by wounding of several markers of defense was investigated by using the never-ripe tomato mutant plants impaired in ET perception. We showed that PINIIb, PR1b, PR5, PR7 and peroxidase (POD) are influenced locally and/or systemically by wounding and, with the exception of POD activity, by ET perception. We also demonstrated that ET, although not essential, is positively (B. cinerea, P. capsici) or negatively (F. oxysporum, P. syringae pv. tomato) involved not only in basal but also in wound-induced resistance to each pathogen.  相似文献   

11.
12.
13.
Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced resistance, we examined the level of resistance against different pathogens. Although the necrotrophic fungus Alternaria brassicicola is sensitive to JA-dependent defenses, herbivore-induced resistance was not effective against this pathogen. By contrast, caterpillar feeding significantly reduced disease caused by the bacterial pathogens Pseudomonas syringae pv tomato and Xanthomonas campestris pv armoraciae. However, this effect was apparent only locally in caterpillar-damaged tissue. Arabidopsis mutants jar1, coi1, ein2, sid2, eds5, and npr1 showed wild-type levels of P. rapae-induced protection against P. syringae pv tomato, suggesting that this local, herbivore-induced defense response does not depend exclusively on either JA, ET, or salicylic acid (SA). Resistance against the biotroph Turnip crinkle virus (TCV) requires SA, but not JA and ET. Nevertheless, herbivore feeding strongly affected TCV multiplication and TCV lesion formation, also in systemic tissues. Wounding alone was not effective, but application of P. rapae regurgitate onto the wounds induced a similar level of protection. Analysis of SA-induced PATHOGENESIS RELATED-1 (PR-1) expression revealed that P. rapae grazing primed Arabidopsis leaves for augmented expression of SA-dependent defenses. Pharmacological experiments showed that ET acts synergistically on SA-induced PR-1, suggesting that the increased production of ET upon herbivore feeding sensitizes the tissue to respond faster to SA, thereby contributing to an enhanced defensive capacity toward pathogens, such as TCV, that trigger SA-dependent defenses upon infection.  相似文献   

14.
系统素、茉莉酸在番茄系统伤反应中的作用   总被引:2,自引:0,他引:2  
当植物受到机械损伤或昆虫伤害时,植物体会在受伤部位产生伤信号分子启动防御基因的系统表达,蛋白酶抑制剂基因是防御基因的一典型代表.番茄是研究植物系统伤信号很好的模式植物,目前,三种类型的番茄系统伤信号突变体被鉴定出来,通过对番茄系统伤信号突变体进行功能分析并在它们之间进行相互嫁接实验,研究结果表明系统素和茉莉酸通过同一信号通路来激活防御基因的系统表达.系统素(或它的前体原系统素)在受伤部位激活茉莉酸的合成,使之达到系统反应的水平,应对外来伤害;茉莉酸或其衍生物是重要的系统伤信号分子,它诱导伤防御基因的系统表达.植物的系统伤反应可比做动物的炎症反应,它们之间有许多相似之处.  相似文献   

15.
Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene, inhibitors of ethylene perception, or salicylate; (b) quantitative disease assays with mutants or transgenes affected in the production of or the response to either ethylene or jasmonate; and (c) expression analysis of defense-related genes before and after inoculation of plants with B. cinerea. Plants pretreated with ethylene showed a decreased susceptibility toward B. cinerea, whereas pretreatment with 1-methylcyclopropene, an inhibitor of ethylene perception, resulted in increased susceptibility. Ethylene pretreatment induced expression of several pathogenesis-related protein genes before B. cinerea infection. Proteinase inhibitor I expression was repressed by ethylene and induced by 1-methylcyclopropene. Ethylene also induced resistance in the mutant Never ripe. RNA analysis showed that Never ripe retained some ethylene sensitivity. The mutant Epinastic, constitutively activated in a subset of ethylene responses, and a transgenic line producing negligible ethylene were also tested. The results confirmed that ethylene responses are important for resistance of tomato to B. cinerea. The mutant Defenseless, impaired in jasmonate biosynthesis, showed increased susceptibility to B. cinerea. A transgenic line with reduced prosystemin expression showed similar susceptibility as Defenseless, whereas a prosystemin-overexpressing transgene was highly resistant. Ethylene and wound signaling acted independently on resistance. Salicylate and ethylene acted synergistically on defense gene expression, but antagonistically on resistance.  相似文献   

16.
17.
Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.  相似文献   

18.
Oligogalacturonides (OGs) released from plant cell walls by pathogen polygalacturonases induce a variety of host defense responses. Here we show that in Arabidopsis (Arabidopsis thaliana), OGs increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of jasmonate (JA)-, salicylic acid (SA)-, and ethylene (ET)-mediated signaling. Microarray analysis showed that about 50% of the genes regulated by OGs, including genes encoding enzymes involved in secondary metabolism, show a similar change of expression during B. cinerea infection. In particular, expression of PHYTOALEXIN DEFICIENT3 (PAD3) is strongly up-regulated by both OGs and infection independently of SA, JA, and ET. OG treatments do not enhance resistance to B. cinerea in the pad3 mutant or in underinducer after pathogen and stress1, a mutant with severely impaired PAD3 expression in response to OGs. Similarly to OGs, the bacterial flagellin peptide elicitor flg22 also enhanced resistance to B. cinerea in a PAD3-dependent manner, independently of SA, JA, and ET. This work suggests, therefore, that elicitors released from the cell wall during pathogen infection contribute to basal resistance against fungal pathogens through a signaling pathway also activated by pathogen-associated molecular pattern molecules.  相似文献   

19.
Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant's defense system and to spread within the host.  相似文献   

20.
Salicylic acid (SA) is an important regulator of plant resistance to biotrophic and hemi-biotrophic pathogens. The enhanced pseudomonas susceptibility 1 ( eps1 ) mutant in Arabidopsis thaliana is hypersusceptible to both virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae . Through positional cloning, the EPS1 gene was isolated and found to encode a novel member of the BAHD acyltransferase superfamily. Pathogen-induced accumulation of SA and expression of pathogenesis-related ( PR ) genes were compromised in the eps1 mutant. SA could induce PR1 gene expression and restore disease resistance in the eps1 mutant. These results suggest that EPS1 functions upstream of SA and may be involved directly in synthesis of a precursor or a regulatory molecule for SA biosynthesis. Mutations of EPS1 or other genes important for SA accumulation or signaling conferred enhanced resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola in the Nossen-0 background but had little effect in the Columbia-0 background. These results suggest that there is natural variation among Arabidopsis ecotypes with respect to the antagonistic cross-talk between defense signaling pathways against various types of microbial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号