首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO2 percentages, glucose metabolism remained anaerobic under greater oxygen contents.  相似文献   

2.
The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO(2) percentages, glucose metabolism remained anaerobic under greater oxygen contents.  相似文献   

3.
O3浓度升高对植物活性氧代谢系统影响的研究进展   总被引:1,自引:0,他引:1  
为了揭示臭氧(O3)浓度升高对植物活性氧代谢系统的影响机理,从代谢生理角度,总结了近年来国内外关于臭氧浓度升高对植物活性氧自由基代谢速率、细胞膜脂过氧化程度、抗氧化系统及生物量和产量影响的研究进展,同时,就臭氧浓度升高与二氧化碳浓度升高的复合作用对植物活性氧代谢系统的影响,及阐明二者相互作用对植物抗氧化系统影响机理的研究进行了综述。在此基础上指出在未来研究中,要在分子水平上进一步深入研究植物活性氧代谢系统对高浓度臭氧、二氧化碳复合作用的响应机理,并应加强高浓度二氧化碳对臭氧胁迫下植物抗氧化系统影响的研究,为解决如何减轻臭氧浓度升高对植物造成的氧化伤害提供基础理论依据。  相似文献   

4.
The Challenges of Living in Hypoxic and Hypercapnic Aquatic Environments   总被引:2,自引:0,他引:2  
Organisms living in coastal waters, and especially estuaries,have long been known to have behavioral or physiological mechanismsthat enable them toexist in water containing low amounts ofoxygen. However, the respiratory consumption of oxygen thatgenerates hypoxia is also responsible for producing significantamounts of carbon dioxide. An elevation of carbon dioxide pressurein water will cause a significant acidosis in most aquatic organisms.Thus, the combination of low oxygen and elevated carbon dioxidethat occurs in estuaries represents a significant environmentalchallenge to organisms living in this habitat. Organisms maymaintain oxygen uptake in declining oxygen conditions by usinga respiratory pigment and/or by making adjustments in the convectiveflow of water and blood past respiratory surfaces (i.e., increasecardiac output and ventilation rate). Severe hypoxia may resultin an organism switching partially or completely to anaerobicbiochemical pathways to sustain metabolic rate. There is alsoevidence to suggest that organisms lower their metabolism duringhypoxic stress. Elevated water CO2 (hypercapnia) produces anacidosis in the tissues of organisms that breathe it. This acidosismay be wholly or partially compensated (i.e., mechanisms returnpH to pre-exposure levels), or may be uncompensated. Some studieshave examined the effects on organisms of exposure simultaneouslyto hypoxia and hypercapnia. This article reviews some of thespecific adaptations and responses of organisms to low oxygen,to high carbon dioxide, and to the cooccurrence of low oxygenand high carbon dioxide  相似文献   

5.
M Chvapil 《Life sciences》1975,17(5):762-766
Young adult rats were continuously exposed for 44 and 84 days to environments containing 9–11%, 20%, and 80% oxygen. Low and high oxygen atmospheres were achieved by using boxes laminated with silicone rubber membranes which have a differing permeability for oxygen on one side and for carbon dioxide and nitrogen on the other. Animals exposed to both extreme concentrations significantly slowed body growth, and the weight of the lungs was proportionally less. The pattern of LDH isoenzymes in the lung showed the presence of all five characteristically changing isoenzymes in relation to oxygen concentration. A marked increase of M subunits in the LDH in lungs of rats exposed to low oxygen indicated a higher tissue concentration of lactate. Thus, the percentage of M subunits was significantly higher in low oxygen and significantly lower in lungs of rats exposed to high oxygen as compared to controls. Under the same experimental conditions there were no changes in the liver LDH isoenzyme pattern. Total LDH activity in the lungs of rats exposed to either extreme oxygen atmosphere was significantly elevated as compared to controls kept at an ambient atmosphere. It is concluded that chronic exposure of rats to low as well as to high oxygen was injurious to the lung tissue, as evidenced by total LDH activity. Thus, LDH isoenzyme pattern in the lung reflected the actual gas exposure (pO2), rather than local tissue metabolism.  相似文献   

6.
Abstract. The metabolic rates, as expressed by oxygen (O2) consumption, carbon dioxide (CO2) production, and losses in wet and dry weights, were examined for adults of three strains of the red flour beetle Tribolium castaneum (Herbst), during exposure to two modified atmospheres (MAs). Exposure of a strain selected for resistance over twenty-one generations to an atmosphere of 65% CO2, 20% O2 and the balance nitrogen (N2), termed a high carbon dioxide concentration atmosphere (HCC) and exposure of an unselected strain to HCC, showed considerable levels of aerobic metabolism during exposure. For the unselected strain water loss and mobilization of energy reserves were rapid and mortality was followed by rapid desiccation. For the HCC-resistant strain water balance was maintained and energy reserves were utilized more slowly over a prolonged period. Exposure of a strain selected for resistance over twenty-one generations to a low oxygen concentration atmosphere (LOC) of 0.5% O2 in N2, and an unselected strain to LOC, revealed that even at 0.5% O2, metabolism was largely aerobic in both strains. Maintenance of water balance was not a major factor causing mortality of either strain during exposure to LOC. In air, metabolic rates of both the resistant strains were lower than that of the unselected strain.  相似文献   

7.
SYNOPSIS. The Discontinuous Gas-exchange Cycle or DGC is generallythought to have evolved primarily as a means of reducing respiratorywater loss rates in tracheate arthropods. However, several linesof evidence suggest that this supposition is oversimplified.I suggest that the DGC originated as an adaptation to the hypoxicand hypercapnic environments characteristic of underground burrows,rather than primarily as an adaptation to reduce respiratorywater loss rates. This suggestion is based on a considerationof trans-spiracular oxygen and carbon dioxide partial pressuregradients in such environments, and the concomitant importanceof decoupling oxygen and carbon dioxide exchange. The occurrenceand/ or absence of the DGC in sundry arthropod taxa is discussed,and diverse phylogenetic and other arguments are advanced forthe inferred distribution thereof.  相似文献   

8.
The effect of different gaseous atmospheres on the development of the bacterial flora on lamb chops stored at –1°C was examined. The atmospheres were air, nitrogen, hydrogen, and mixtures of air + carbon dioxide, oxygen + nitrogen, oxygen + carbon dioxide, nitrogen + carbon dioxide and hydrogen + carbon dioxide (gas ratio = 80:20, v/v). Storage life of chops ranged from two weeks in air to eight weeks in oxygen-free atmospheres. At the end of storage life Microbacterium thermosphactum was present as a major constituent of the bacterial flora in all atmospheres. In oxygen + carbon dioxide it was the predominant organism. In all other oxygen containing atmospheres, Pseudomonas spp. made up a large proportion of the flora. Strains of Enterobacteriaceae occurred in low-oxygen and oxygen-free atmospheres, and Lactobacillus spp. occurred in oxygen-free atmospheres.  相似文献   

9.
Summary We conducted a field study to test the hypothesis that creosotebush (Larrea tridentata) shrubs growing in naturally nutrient-rich sites had better quality foliage and supported greater populations of foliage arthropods than shrubs growing in nutrient-poor sites. Nutrient-rich sites had significantly higher concentrations of soil nitrogen than nutrient-poor sites. Multivariate analysis of variance revealed significant differences between high nutrient and low nutrient shrubs based on a number of structural and chemical characteristics measured. High nutrient shrubs were larger, had denser foliage, greater foliage production, higher concentrations of foliar nitrogen and water, and lower concentrations of foliar resin than low nutrient shurbs. Numbers of foliage arthropods, particularly herbivores and predators, were significantly higher on high nutrient shrubs. Shrub characteristics and foliage arthropod abundances varied considerably from shrub to shrub. Shrub characteristics representing shrub size, foliage density, foliage growth, and foliar nitrogen and water concentrations were positively correlated with arthropod abundances. Foliar resin concentrations were negatively correlated with foliage arthropod abundances. The positive relationship between creosotebush productivity and foliage arthropods is contradictory to the tenet that physiologically stressed plants provide better quality foliage to insect herbivores.  相似文献   

10.
During the oxygen limiting growth of Klebsiella oxytoca, the xylose metabolism may be considered as consisting of three components: conversion to 2,3-butanediol by "fermentation," oxidation to carbon dioxide by respiration, and assimilation to cell mass. The amount of energy required for the assimilation of cell mass is assumed to determine the extent to which the two energy producing reactions occur. The activity of each energy producing pathway is also determined by the availability of oxygen and by the energy yield of each pathway. These relationships can be quantified by equating the ATP required for growth and maintenance to the ATP produced by the energy producing reactions. The resulting equation for butanediol production appears similar to the Luedeking and Piret model where the parameters alpha and beta are related to the maximum cell yield from ATP and the maintenance energy requirement. These parameters were estimated from 14 batch fermentations, and the resulting simulation was used to describe the effects of the oxygen transfer rate and the initial xylose concentration on the yields and rates of the 2,3-butanediol fermentation.  相似文献   

11.
Metabolic responses of mammalian cells toward declining oxygen concentration are generally thought to occur when oxygen limits mitochondrial ATP production. However, at oxygen concentrations markedly above those limiting to mitochondria, several mammalian cell types display reduced rates of oxygen consumption without energy stress or compensatory increases in glycolytic ATP production. We used mammalian Jurkat T cells as a model system to identify mechanisms responsible for these changes in metabolic rate. Oxygen consumption was 31% greater at high oxygen (150–200 μM) compared to low oxygen (5–10 μM). Hydrogen peroxide was implicated in the response as catalase prevented the increase in oxygen consumption normally associated with high oxygen. Cell-derived hydrogen peroxide, predominately from the mitochondria, was elevated with high oxygen. Oxygen consumption related to intracellular calcium turnover was shown, through EDTA chelation and dantrolene antagonism of the ryanodine receptor, to account for 70% of the response. Oligomycin inhibition of oxygen consumption indicated that mitochondrial proton leak was also sensitive to changes in oxygen concentration. Our results point toward a mechanism in which changes in oxygen concentration influence the rate of hydrogen peroxide production by mitochondria, which, in turn, alters cellular ATP use associated with intracellular calcium turnover and energy wastage through mitochondrial proton leak.  相似文献   

12.
Van Bael SA  Brawn JD 《Oecologia》2005,143(1):106-116
A goal among community ecologists is to predict when and where trophic cascades occur. For example, several studies have shown that forest birds can limit arthropod abundances on trees, but indirect effects of bird predation (i.e. decreased arthropod damage to trees) are not always observed and their context is not well understood. Because productivity is one factor that is expected to influence trophic cascades, we compared the extent to which birds indirectly limit herbivore damage to trees in two lowland Neotropical forests that differed in seasonality of leaf production and rainfall. We compared the effects of bird predation on local arthropod densities and on damage to foliage through a controlled experiment using bird exclosures in the canopy and understory of two forests. We found that birds decreased local arthropod densities and leaf damage in the canopy of the drier site during periods of high leaf production, but not in the wetter forest where leaf production was low and sporadic throughout the year. Birds had no effect on arthropod abundances and leaf damage in the understory where leaf production and turnover rates were low. In support of these experimental interpretations, although we observed that arthropod densities were similar at the two sites, bird densities and the rate at which birds captured arthropods were greater at the drier, seasonally productive site. The influence of top-down predation by birds in limiting herbivorous insects appears to be conditional and most important when the production and turnover of leaves are comparatively high.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
It appears that glutamine and lactate are the principal substrates for the kidney in dogs with chronic metabolic acidosis. Accordingly, the purpose of this study was to determine if a higher or lower rate of renal lactate extraction would influence the rate of glutamine extraction at a constant rate of renal ATP turnover. The blood lactate concentration was 0.9 +/- 0.01 mM in 15 acidotic dogs. However, eight dogs with chronic metabolic acidosis had a spontaneous blood lactate concentration of 0.5 mM or lower. The kidneys of these dogs extracted considerably less lactate from the arterial blood (19 vs. 62 mumol/100 mL glomerular filtration rate (GFR]. Nevertheless, glutamine, alanine, citrate, and ammonium metabolism were not significantly different in these two groups of dogs. Renal ATP balance in acidotic dogs with a low blood lactate could only be achieved if a substrate other than additional glutamine were oxidized in that segment of the nephron which normally oxidized lactate; presumably a fat-derived substrate and (or) lactate derived from glucose was now the metabolic fuel at these more distal sites. When the blood lactate concentration was greater than 1.9 mM, lactate extraction rose to 219 mumol/100 mL GFR. Glutamine, alanine, citrate, and ammonium metabolism were again unchanged; in this case, ATP balance required substrate flux to products other than carbon dioxide, presumably, gluconeogenesis. It appears that renal ammoniagenesis is a proximal event and is independent of the rate of renal lactate extraction.  相似文献   

14.
BACKGROUND: There is no general consensus about the specific oxygen and carbon dioxide requirements of the human pathogen Helicobacter pylori. This bacterium is considered a microaerophile and consequently, it is grown under atmospheres at oxygen tensions 5-19% and carbon dioxide tensions 5-10%, both for clinical and basic and applied research purposes. The current study compared the growth of H. pylori in vitro, under various gas atmospheres, and determined some specific changes in the physiology of bacteria grown under different oxygen partial pressures. METHODS: Measurements of bacterial growth under various conditions were carried out employing classical solid and liquid culture techniques. Enzymatic activities were measured using spectrophotometric assays. RESULTS: H. pylori and all the other Helicobacter spp. tested had an absolute requirement for elevated carbon dioxide concentrations in the growth atmosphere. In contrast with other Helicobacter spp., H. pylori can tolerate elevated oxygen tensions when grown at high bacterial concentrations. Under 5% CO(2), the bacterium showed similar growth in liquid cultures under oxygen tensions from microaerobic (< 5%) to fully aerobic (21%) at cell densities higher than 5 x 10(5) cfu/ml for media supplemented with horse serum and 5 x 10(7) cfu/ml for media supplemented with beta-cyclodextrin. Evidence that changes occurred in the physiology of H. pylori was obtained by comparing the activities of ferredoxin:NADH (nicotinamide adenine dinucleotide) oxidoreductases of bacteria grown under microaerobic and aerobic atmospheres. CONCLUSIONS: H. pylori is a capnophile able to grow equally well in vitro under microaerobic or aerobic conditions at high bacterial concentrations, and behaved like oxygen-sensitive microaerophiles at low cell densities. Some characteristics of H. pylori cells grown in vitro under microaerobic conditions appeared to mimic better the physiology of organisms grown in their natural niche in the human stomach.  相似文献   

15.
The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops—miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon–nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod‐mediated litter decomposition and nutrient release.  相似文献   

16.
Respiratory metabolism and gene expression during seed germination   总被引:1,自引:0,他引:1  
Oxygen uptake and carbon dioxide release rapidly increase in seeds during imbibition. The oxygen uptake is associated with oxidative phosphorylation through cytochrome oxidase. During the early stage of germination substrate level phosphorylation may also contribute to ATP production. All indications suggest that this route of ATP production is insignificant during aerobic germination. However, during oxygen stress, substrate level phosphorylation does significantly contribute to ATP production in some species. Carbohydrate oxidation plays a significant role in the germination process. Up to two thirds of the carbon from carbohydrate breakdown enters the tricarboxylic acid cycle through the phosphoenolpyruvate carboxylase reaction. This anapleurotic input into the Krebs cycle most probably reflects the high demand on intermediates from the cycle for biosynthesis. The extent to which other substrates are utilized for respiration is uncertain. Information regarding the levels of key metabolites and enzymes, as well as their cellular distribution is limited. The involvement of gene expression in the regulation of respiratory metabolism is poorly characterised. Several genes which have been cloned are only expressed during germination. With the exception of the early methionine labeled polypeptide, little is known about the function of these genes.  相似文献   

17.
本文根据碳的氧化数概念,将其应用到碳水化合物氧化代谢和能量计算的过程中。碳水化合物彻底氧化最终会生成二氧化碳和水,反应前后氢氧元素的氧化数没有发生改变,因此可以将碳的氧化数状态的变化同电子转移的量联系起来,从而根据物质初态和终态碳的氧化数的变化,推导出物质代谢中电子的转移和氧化脱氢过程,进而根据脱氢的次数来整体估算ATP的生成。  相似文献   

18.
Several metabolic fluxes were analyzed during gradual transitions from aerobic to oxygen-limited conditions in chemostat cultures of Pseudomonas mendocina growing in synthetic medium at a dilution rate of 0.25 h-1. P. mendocina growth was glucose limited at high oxygen partial pressures (70 and 20% pO2) and exhibited an oxidative type of metabolism characterized by respiratory quotient (RQ) values of 1.0. A similar RQ value was obtained at low pO2 (2%), and detectable levels of acetic, formic, and lactic acids were determined in the extracellular medium. RQs of 0.9 +/- 0.12 were found at 70% pO2 for growth rates ranging from 0.025 to 0.5 h-1. At high pO2, the control coefficients of oxygen on catabolic fluxes were 0.19 and 0.22 for O2 uptake and CO2 production, respectively. At low pO2 (2%), the catabolic and anabolic fluxes were highly controlled by oxygen. P. mendocina showed a mixed-type fermentative metabolism when nitrogen was flushed into chemostat cultures. Ethanol and acetic, lactic, and formic acids were excreted and represented 7.5% of the total carbon recovered. Approximately 50% of the carbon was found as uronic acids in the extracellular medium. Physiological studies were performed under microaerophilic conditions (nitrogen flushing) in continuous cultures for a wide range of growth rates (0.03 to 0.5 h-1). A cell population, able to exhibit a near-maximum theoretical yield of ATP (YmaxATP = 25 g/mol) with a number of ATP molecules formed during the transfer of an electron towards oxygen along the respiration chain (P/O ratio) of 3, appears to have adapted to microaerophilic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Several metabolic fluxes were analyzed during gradual transitions from aerobic to oxygen-limited conditions in chemostat cultures of Pseudomonas mendocina growing in synthetic medium at a dilution rate of 0.25 h-1. P. mendocina growth was glucose limited at high oxygen partial pressures (70 and 20% pO2) and exhibited an oxidative type of metabolism characterized by respiratory quotient (RQ) values of 1.0. A similar RQ value was obtained at low pO2 (2%), and detectable levels of acetic, formic, and lactic acids were determined in the extracellular medium. RQs of 0.9 +/- 0.12 were found at 70% pO2 for growth rates ranging from 0.025 to 0.5 h-1. At high pO2, the control coefficients of oxygen on catabolic fluxes were 0.19 and 0.22 for O2 uptake and CO2 production, respectively. At low pO2 (2%), the catabolic and anabolic fluxes were highly controlled by oxygen. P. mendocina showed a mixed-type fermentative metabolism when nitrogen was flushed into chemostat cultures. Ethanol and acetic, lactic, and formic acids were excreted and represented 7.5% of the total carbon recovered. Approximately 50% of the carbon was found as uronic acids in the extracellular medium. Physiological studies were performed under microaerophilic conditions (nitrogen flushing) in continuous cultures for a wide range of growth rates (0.03 to 0.5 h-1). A cell population, able to exhibit a near-maximum theoretical yield of ATP (YmaxATP = 25 g/mol) with a number of ATP molecules formed during the transfer of an electron towards oxygen along the respiration chain (P/O ratio) of 3, appears to have adapted to microaerophilic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Van Bael SA  Brawn JD 《Oecologia》2005,145(4):658-668
A goal among community ecologists is to predict when and where trophic cascades occur. For example, several studies have shown that forest birds can limit arthropod abundances on trees, but indirect effects of bird predation (i.e. decreased arthropod damage to trees) are not always observed and their context is not well understood. Because productivity is one factor that is expected to influence trophic cascades, we compared the extent to which birds indirectly limit herbivore damage to trees in two lowland Neotropical forests that differed in seasonality of leaf production and rainfall. We compared the effects of bird predation on local arthropod densities and on damage to foliage through a controlled experiment using bird exclosures in the canopy and understory of two forests. We found that birds decreased local arthropod densities and leaf damage in the canopy of the drier site during periods of high leaf production, but not in the wetter forest where leaf production was low and sporadic throughout the year. Birds had no effect on arthropod abundances and leaf damage in the understory where leaf production and turnover rates were low. In support of these experimental interpretations, although we observed that arthropod densities were similar at the two sites, bird densities and the rate at which birds captured arthropods were greater at the drier, seasonally productive site. The influence of top-down predation by birds in limiting herbivorous insects appears to be conditional and most important when the production and turnover of leaves are comparatively high. Figure legends were missing in the original article published under Plant Animal Interactions, Oecologia (2005) 143: 106–166. The complete article is repeated here. The online version of the original article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号