首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of the fat mutation, which causes obesity in mice, as a defect in carboxypeptidase E (CPE) has raised more questions than answers. CPE is required for the processing of numerous neuroendocrine peptides and a mutation that inactivates CPE was predicted to be lethal. However, Cpe(fat) mutated mice live and become obese. So, why are mice with the Cpe(fat) mutation viable, and why does obesity develop as a consequence of the pleiotropic effects of this mutant allele? Recently, several new members of the carboxypeptidase family have been discovered, of which at least one, CPD, can partially compensate by contributing to neuroendocrine peptide processing. Obesity due to the Cpe(fat) mutation is not caused by increased food consumption but, rather, is a result of defective nutrient partitioning, the exact mechanism of which remains to be elucidated.  相似文献   

2.
We reported previously that mice obese as a result of leptin deficiency (ob/ob) have enhanced ozone (O3)-induced airway hyperresponsiveness (AHR) and inflammation compared with wild-type (C57BL/6) controls. To determine whether this increased response to O3 was independent of the modality of obesity, we examined O3-induced AHR and inflammation in Cpe(fat) mice. These mice are obese as a consequence of a mutation in the gene encoding carboxypeptidase E (Cpe), an enzyme important in processing prohormones and proneuropeptides involved in satiety and energy expenditure. Airway responsiveness to intravenous methacholine, measured by forced oscillation, was increased in Cpe(fat) vs. wild-type mice after air exposure. In addition, compared with air exposure, airway responsiveness was increased 24 h after O3 exposure (2 ppm for 3 h) in Cpe(fat) but not in wild-type mice. Compared with air-exposed controls, O3 exposure increased bronchoalveolar lavage fluid (BALF) protein, IL-6, KC, MIP-2, MCP-1, and soluble TNF receptors (sTNFR1 and sTNFR2) as well as BALF neutrophils. With the exception of sTNFR1 and sTNFR2, all of these outcome indicators were greater in Cpe(fat) vs. wild-type mice. Serum sTNFR1, sTNFR2, MCP-1, leptin, and blood leukocytes were elevated in Cpe(fat) compared with wild-type mice even in the absence of O3 exposure, similar to the chronic systemic inflammation observed in human obesity. These results indicate that increased O3-induced AHR and inflammation are consistent features of obese mice, regardless of the modality of obesity. These results also suggest that chronic systemic inflammation may enhance airway responses to O3 in obese mice.  相似文献   

3.
The biosynthesis of most neuropeptides and peptide hormones requires a carboxypeptidase such as carboxypeptidase E, which is inactive in Cpe(fat/fat) mice due to a naturally occurring point mutation. To assess the role of carboxypeptidase E in the processing of peptides in the prefrontal cortex, we used a quantitative peptidomics approach to examine the relative levels of peptides in Cpe(fat/fat) versus wild-type mice. Peptides representing internal fragments of prohormones and other secretory pathway proteins were decreased two- to 10-fold in the Cpe(fat/fat) mouse prefrontal cortex compared with wild-type tissue. Degradation fragments of cytosolic proteins showed no major differences between Cpe(fat/fat) and wild-type mice. Based on this observation, a search strategy for neuropeptides was performed by screening for peptides that decreased in the Cpe(fat/fat) mouse. Altogether, 32 peptides were identified, of which seven have not been previously reported. The novel peptides include fragments of VGF, procholecystokinin and prohormone convertase 2. Interestingly, several of the peptides do not fit with the consensus sites for prohormone convertase 1 and 2, raising the possibility that another endopeptidase is involved with their biosynthesis. Taken together, these findings support the proposal that carboxypeptidase E is the major, but not the only, peptide-processing carboxypeptidase and also demonstrate the feasibility of searching for novel peptides based on their decrease in Cpe(fat/fat) mice.  相似文献   

4.
Defects in the gene encoding carboxypeptidase E (CPE) in either mouse or human lead to multiple endocrine disorders, including obesity and diabetes. Recent studies on Cpe-/- mice indicated neurological deficits in these animals. As a model system to study the potential role of CPE in neurophysiology, we carried out electroretinography (ERG) and retinal morphological studies on Cpe-/- and Cpe fat/fat mutant mice. Normal retinal morphology was observed by light microscopy in both Cpe-/- and Cpe(fat/fat) mice. However, with increasing age, abnormal retinal function was revealed by ERG. Both Cpe-/- and Cpe fat/fat animals had progressively reduced ERG response sensitivity, decreased b-wave amplitude and delayed implicit time with age, while maintaining a normal a-wave amplitude. Immunohistochemical staining showed specific localization of CPE in photoreceptor synaptic terminals in wild-type (WT) mice, but in both Cpe-/- and Cpe fat/fat mice, CPE was absent in this layer. Bipolar cell morphology and distribution were normal in these mutant mice. Electron microscopy of retinas from Cpe fat/fat mice revealed significantly reduced spherule size, but normal synaptic ribbons and synaptic vesicle density, implicating a reduction in total number of vesicles per synapse in the photoreceptors of these animals. These results suggest that CPE is required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.  相似文献   

5.
Biologically active peptide hormones are synthesized from larger precursor proteins by a variety of post-translational processing reactions. To characterize these processing reactions further we have expressed preprogastrin in two endocrine cell lines and examined the molecular determinants involved in endoproteolysis at dibasic cleavage sites. The Gly93-Arg94-Arg95 carboxyl-terminal processing site of progastrin must be processed sequentially by an endoprotease, a carboxypeptidase, and an amidating enzyme to produce bioactive gastrin. For these studies the dibasic Arg94-Arg95 residues that serve as signals for the initiation of this processing cascade were mutated to Lys94-Arg95, Arg94-Lys95, and Lys94-Lys95. In the GH3 cells the Lys94-Arg95 mutation slightly diminished synthesis of carboxyl-terminally amidated gastrin, whereas in the MTC 6-23 cells this mutation had no effect on amidated gastrin synthesis. In contrast, both Arg94-Lys95 and Lys94-Lys95 mutations resulted in significantly diminished production of amidated gastrin in both cell lines. A specific hierarchy of preferred cleavage signals at this progastrin processing site was demonstrated in both cell lines, indicating that cellular dibasic endoproteases have stringent substrate specificities. Progastrins with the Lys94-Arg95 mutation in GH3 cells also demonstrated diminished processing at the Lys74-Lys75 dibasic site, thus single amino acid changes at one processing site may alter cleavage at distant sites. These studies provide insight into the post-translational processing and biological activation of not only gastrin but other peptide hormones as well.  相似文献   

6.
The relationship between obesity and cholesterol cholelithiasis is not well understood at physiologic or genetic levels. To clarify whether obesity per se leads to increased prevalence of cholelithiasis, we examined cholesterol gallstone susceptibility in three polygenic (KK/H1J, NON/LtJ, NOD/LtJ) and five monogenic [carboxypeptidase E (Cpe (fat)), agouti yellow (A(y)), tubby (tub), leptin (Lep(ob)), leptin receptor (Lepr (db))] murine models of obesity during ingestion of a lithogenic diet containing dairy fat, cholesterol, and cholic acid. At 8 weeks on the diet, one strain of polygenic obese mice was resistant whereas the others revealed low or intermediate prevalence rates of cholelithiasis. Monogenic obese mice showed distinct patterns with either high or low gallstone prevalence rates depending upon the mutation. Dysfunction of the leptin axis, as evidenced by the Lep(ob) and the Lepr (db) mutations, markedly reduced gallstone formation in a genetically susceptible background strain, indicating that in mice with this genetic background, physiologic leptin homeostasis is a requisite for cholesterol cholelithogenesis. In contrast, the Cpe (fat) mutation enhanced the prevalence of cholelithiasis markedly when compared with the background strain. Since CPE converts many prohormones to hormones, a deficiency of biologically active cholecystokinin is a likely contributor to enhanced susceptibility to cholelithiasis through compromising gallbladder contractility and small intestinal motility. Because some murine models of obesity increased, whereas others decreased cholesterol gallstone susceptibility, we establish that cholesterol cholelithiasis in mice is not simply a secondary consequence of obesity per se. Rather, specific genes and distinct pathophysiological pathways are responsible for the shared susceptibility to both of these common diseases.  相似文献   

7.
A spontaneous point mutation in the coding region of the carboxypeptidase E (CPE) gene results in a loss of CPE activity that correlates with the development of late onset obesity (Nagert, J. K., Fricker, L. D., Varlamov, O., Nishina, P. M., Rouille, Y., Steiner, D. F., Carroll, R. J., Paigen, B. J., and Leiter, E. H. (1995) Nat. Genet. 10, 135-142). Examination of the level of neuropeptides in these mice showed a decrease in mature bioactive peptides as a result of a decrease in both carboxypeptidase and prohormone convertase activities. A defect in CPE is not expected to affect endoproteolytic processing. In this report we have addressed the mechanism of this unexpected finding by directly examining the expression of the major precursor processing endoproteases, prohormone convertases PC1 and PC2 in Cpe(fat) mice. We found that the levels of PC1 and PC2 are differentially altered in a number of brain regions and in the pituitary. Since these enzymes have been implicated in the generation of neuroendocrine peptides (dynorphin A-17, beta-endorphin, and alpha- melanocyte-stimulating hormone) involved in the control of feeding behavior and body weight, we compared the levels of these peptides in Cpe(fat) and wild type animals. We found a marked increase in the level of dynorphin A-17, a decrease in the level of alpha-melanocyte-stimulating hormone, and an alteration in the level of C-terminally processed beta-endorphin. These results suggest that the impairment in the level of these and other peptides involved in body weight regulation is mainly due to an alteration in carboxypeptidase and prohormone convertase activities and that this may lead to the development of obesity in these animals.  相似文献   

8.
The octacosapeptide sequence [Tyr18] pro-ocytocin/neurophysin (1-18)NH2 [pro-OT/Np(1-18)NH2] was synthesized and used as substrate to detect endoprotease(s) possibly involved in the processing of this precursor in bovine hypothalamo-neurohypophyseal tract. An endopeptidase (58 Kda) was detected in Lysates made from highly purified neurosecretory granules. This protease which cleaves the peptide bond on the carboxyl side of the Lys-Arg doublet, and no single basic residue, generates both OT-Gly10-Lys11-Arg12+Ala13-Val-Leu-Asp-Leu-Tyr18 (NH2) from the octacosapeptide substrate. In addition, a carboxypeptidase B-like activity converting OT-Gly10-Lys11-Arg12 into OT-Gly10 was detected in the same granule Lysates. It is hypothesized that a combination of these endoprotease and carboxypeptidase B-like activities together with the amidating enzyme of secretory granules might participate in the cleavage and processing of pro-OT/Np in vivo.  相似文献   

9.
10.
ProSAAS is a newly discovered protein with a neuroendocrine distribution generally similar to that of prohormone convertase 1 (PC1), a peptide-processing endopeptidase. Several proSAAS-derived peptides were previously identified in the brain and pituitary of the Cpe(fat)/Cpe(fat) mouse based on the accumulation of C-terminally extended peptides due to the absence of enzymatically active carboxypeptidase E, a peptide-processing exopeptidase. In the present study, antisera against different regions of proSAAS were used to develop radioimmunoassays and examine the processing profile of proSAAS in wild type and Cpe(fat)/Cpe(fat) mouse tissues following gel filtration and reverse phase high performance liquid chromatography. In wild type mouse brain and pituitary, the majority of proSAAS is processed into smaller peptides. These proSAAS-derived peptides elute from the reverse-phase column in the same positions as synthetic peptides that correspond to little SAAS, PEN, and big LEN. Mass spectrometry revealed the presence of peptides with the expected molecular masses of little SAAS and big LEN in the fractions containing immunoreactive peptides. The processing of proSAAS is slightly impaired in Cpe(fat)/Cpe(fat) mice, relative to wild-type mice, leading to the accumulation of partially processed peptides. One of these peptides, the C-terminally extended form of PEN, is known to inhibit PC1 activity and this could account for the reduction in enzymatically active PC1 seen in Cpe(fat)/Cpe(fat) mice. The observation that little SAAS and big LEN are the major forms of these peptides produced in mouse brain and pituitary raises the possibility that these peptides function as neurotransmitters or hormones.  相似文献   

11.
The recent finding that Cpe(fat)/Cpe(fat) mice, which lack carboxypeptidase E (CPE) activity because of a point mutation, are still capable of a reduced amount of neuroendocrine peptide processing suggested that additional carboxypeptidases (CPs) participate in this processing reaction. Searches for novel members of the CPE gene family led to the discovery of CPD, CPZ, AEBP1, and CPX-2. In the present report, we describe mouse CPX-1, another novel member of this gene family. Like AEBP1 and CPX-2, CPX-1 contains an N-terminal region of 160 amino acids with sequence similarity to the discoidin domain of a variety of proteins. The 410-residue CP-like domain of CPX-1 has 54% to 62% amino acid sequence identity with AEBP1 and CPX-2 and 33% to 49% amino acid identity with other members of the CPE subfamily. However, several active-site residues that are important for catalytic activity of other CPs are not conserved in CPX-1. Furthermore, CPX-1 expressed in either the baculovirus system or the mouse AtT-20 cell line does not cleave standard CP substrates. Northern blot analysis showed the highest levels of CPX-1 mRNA in testis and spleen and lower levels in salivary gland, brain, heart, lung, and kidney. In situ hybridization of CPX-1 mRNA in embryonic and fetal mouse tissue showed expression throughout the head and thorax, with abundance in primordial cartilage and skeletal structures. In the head, high levels of CPX-1 mRNA were associated with the nasal mesenchyme, primordial cartilage structures in the ear, and the meninges. In the thorax, CPX-1 mRNA was expressed in multiple developing skeletal structures, including chondrocytes and perichondrial cells of the rib, vertebral, and long-bone primordia. Taken together, these findings suggest that it is unlikely that CPX-1 functions in the processing of neuroendocrine peptides. Instead, CPX-1 may have a role in development, possibly mediating cell interactions via its discoidin domain.  相似文献   

12.
Carboxypeptidases may play important role(s) in prohormone processing in normal and neoplastic adenohypophyseal cells of the pituitary. We have recently demonstrated carboxypeptidase E (CPE) and carboxypeptidase Z (CPZ) in the majority of adenohypophyseal cells with carboxypeptidase D (CPD) immunoreactivity largely confined to adrenocorticotrophs. This study evaluated the expression patterns of CPE, CPD, and CPZ immunoreactivity in 48 pituitary adenomas. Our immunohistochemistry demonstrated extensive intracytoplasmic immunoreactivity for CPE, CPD, and CPZ in adrenocorticotrophic hormone (ACTH)-producing adrenocorticotroph cells, prolactin-producing lactotroph cells, and growth hormone (GH)-producing somatotroph cell adenomas, all of which require carboxypeptide processing of prohormones to produce active endocrine hormones. In contrast to the restricted expression in the normal adenohypophysis, CPD appeared to be widespread in the majority of adenomas, suggesting that CPD levels are increased in adenomas. In luteinizing hormone/follicle-stimulating hormone (LH/FSH)-producing gonadotroph adenomas, which do not require carboxypeptidases to produce gonadotropins, only CPZ immunostaining was demonstrated. In null-cell adenomas, CPE immunoreactivity was detected in the majority of tumors, but CPD and CPZ were identified only in a minority of cases. CPE in these cells may process other peptides critical for pituitary cell function, such as chromogranin A or B. These findings suggest that CPs participate in the functioning of pituitary adenomas.  相似文献   

13.
Rat thyrotropin-releasing hormone prohormone (pro-TRH) contains five separate copies of the TRH progenitor sequence: Gln-His-Pro-Gly. Each of the five sequences is flanked by pairs of basic residues and linked together by one of several predicted connecting sequences. Two of the pro-TRH-connecting peptides, prepro-TRH-(160-169) and prepro-TRH-(178-199), were detected in extracts of rat neural tissues by radioimmunoassay using antibodies directed against the corresponding synthetic probes. Endogenous prepro-TRH-(160-169) and prepro-TRH-(178-199) were purified by gel exclusion chromatography, reverse-phase high pressure liquid chromatography, and ion-exchange chromatography. Structural identification of each peptide was achieved by chromatographic comparison with synthetic standards, immunological analysis, and tryptic mapping. Equimolar amounts of these connecting fragments were observed in hypothalamus and spinal cord. Quantification of TRH in spinal cord and hypothalamus extracts revealed the presence of 4.9-6.3 mol of TRH/mol of prepro-TRH-(178-199) and 4.4-6 mol of TRH/mol of prepro-TRH-(160-169), respectively. By using the indirect immunofluorescence technique, prepro-TRH-(178-199) immunoreactive cell bodies were found in the paraventricular nucleus of the hypothalamus, and a dense plexus of immunopositive nerve terminals was observed in the external zone of the median eminence, in a distribution similar to that described for TRH. These studies demonstrate that prepro-TRH-(160-169) and prepro-TRH-(178-199) are, together with TRH, predominant storage forms of the TRH precursor in hypothalamus and spinal cord, being present in molar ratios corresponding to those expected for a nearly complete processing of the prohormone molecule. The presence of pro-TRH-connecting peptides in various brain regions, including the median eminence, suggests that these peptides might act as neuromodulators in the central nervous system and/or neuroendocrine signals at the pituitary level. In the olfactory lobes, prepro-TRH is processed differently since a C-terminally extended form of TRH, prepro-TRH-(172-199), is found as a major end product along with lower but significant amounts of prepro-TRH-(178-199) and prepro-TRH-(160-169). The striking difference in pro-TRH processing patterns among the various tissues examined suggests differential regulating mechanisms for TRH and/or TRH-related activities.  相似文献   

14.
Carboxypeptidase E is a major enzyme in the biosynthesis of numerous neuroendocrine peptides. Previously, we developed a technique for the isolation of neuropeptide-processing intermediates from mice that lack carboxypeptidase E activity (Cpe fat/fat mice) due to a naturally occurring point mutation. In the present study, we used a differential labeling procedure with stable isotopic tags and mass spectrometry to quantitate the relative changes in a number of hypothalamic peptides in Cpe fat/fat mice in two different paradigms that each cause an approximately 10% decrease in body mass. One paradigm involved a 2-day fast under normal sedentary conditions (i.e. standard mouse cages); the other involved giving mice access to an exercise wheel for 4 weeks with free access to food. Approximately 50 peptides were detected in both studies, and over 80 peptides were detected in at least one of the two studies. Twenty-eight peptides were increased >50% by food deprivation, and some of these were increased by 2- to 3-fold. In contrast, only three peptides were increased >50% in the group with exercise wheels, and many peptides showed a slight 15-30% decrease upon exercise. Approximately one-half of the peptides detected in both studies were identified by tandem mass spectrometry. Peptides found to be elevated by food deprivation but not exercise included a number of fragments of proenkephalin, prothyrotropin-releasing hormone, secretogranin II, chromogranin B, and pro-SAAS. Taken together, the differential regulation of these peptides in the two paradigms suggests that the regulation is not due to the lower body weight but to the manner in which the paradigms achieved this lower body weight.  相似文献   

15.
Quantitative peptidomics was used to compare levels of peptides in wild type (WT) and Cpefat/fat mice, which lack carboxypeptidase E (CPE) activity because of a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in WT mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpefat/fat mouse brain, relative to WT mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpefat/fat mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpefat/fat mouse brain at levels similar to those in WT mouse brain. Many peptides were greatly elevated in the Cpefat/fat mice; these peptide processing intermediates with C‐terminal Lys and/or Arg were generally not detectable in WT mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides.  相似文献   

16.
The melanocortin receptors are involved in several important physiological functions. The potent and enzymatically stable analogues MT-II (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH(2)) and SHU9119 (Ac-Nle-c[Asp-His-DNal(2')-Arg-Trp-Lys]-NH(2)) are important ligands of these receptors but are relatively nonselective. To differentiate between the physiological functions of these receptors, agonists, and antagonists with improved receptor selectivities are needed. We report here analogues of the well-characterized antagonist SHU9119 in which we replaced His(6) with conformationally constrained amino acids. By this structure-activity study we discovered two important compounds, PG-901 (Ac-Nle(4)-c[Asp(5)-Pro(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)) and PG-911 (Ac-Nle(4)-c[Asp(5)-Hyp(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)), characterized to be full agonists at the hMC5R (EC(50) = 0.072 nM and 0.031 nM, respectively), but full antagonists at the hMC3R and the hMC4R. We also demonstrated that the relative stereochemistry of the amino acid at the 6-position is critical for activity, and could play an important role in potency as well as in selectivity for the melanocortin receptors.  相似文献   

17.
The distribution of thyrotrophin-releasing hormone (TRH), substance P, and the indoleamines [5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA)] has been examined in selected regions of the thoracic and lumbar spinal cord of the rabbit using sensitive radioimmunoassays for the first two and HPLC with electrochemical detection for the indoleamines. The levels of TRH- and substance P-like immunoreactivity (TRH-I and SP-I, respectively) were greatest in the ventral and dorsal grey matter, respectively. The level of TRH-I in most thoracic regions was greater than that in equivalent lumbar regions, but the only segmental difference in SP-I was in the ventral grey matter, where the lumbar segment contained more immunoreactivity. 5-HT and 5-HIAA were more evenly distributed than either peptide and showed no segmental variation in levels in equivalent regions, but the ventral grey matter contained significantly higher levels of 5-HT and had a greater 5-HT/5-HIAA ratio than all other regions. The absolute levels and the overall distribution of SP-I, TRH-I, and indoleamines in the thoracolumbar cord of the rabbit was very similar to that previously reported in both rats and humans, and the possible functional role of the peptides and indoleamines in spinal neurones is discussed.  相似文献   

18.
1. Bradykinin (Bk; Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg8) inactivation by bulk isolated neurons from rat brain is described. 2. Bk is rapidly inactivated by neuronal perikarya (4.2 +/- 0.6 fmol/min/cell body). 3. Sites of inactivating cleavages, determined by a kininase bioassay combined with a time-course Bk-product analysis, were the Phe5-Ser6, Pro7-Phe8, Gly4-Phe5, and Pro3-Gly4 peptide bonds. The cleavage of the Phe5-Ser6 bond inactivated Bk at least five fold faster than the other observed cleavages. 4. Inactivating peptidases were identified by the effect of inhibitors on Bk-product formation. The Phe5-Ser6 bond cleavage is attributed mainly to a calcium-activated thiol-endopeptidase, a predominantly soluble enzyme which did not behave as a metalloenzyme upon dialysis and was strongly inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate and endo-oligopeptidase A antiserum. Thus, neuronal perikarya thiol-endopeptidase seems to differ from endo-oligopeptidase A and endopeptidase 24.15. 5. Endopeptidase 24.11 cleaves Bk at the Gly4-Phe5 and, to a larger extent, at the Pro7-Phe8 bond. The latter bond is also cleaved by angiotensin-converting enzyme (ACE) and prolyl endopeptidase (PE). PE also hydrolyzes Bk at the Pro3-Gly4 bond. 6. Secondary processing of Bk inactivation products occurs by (1) a rapid cleavage of Ser6-Pro7-Phe8-Arg8 at the Pro7-Phe8 bond by endopeptidase 24.11, 3820ACE, and PE; (2) a bestatin-sensitive breakdown of Phe8-Arg9; and (3) conversion of Arg1-Pro7 to Arg1-Phe5, of Gly4-Arg9 to both Gly4-Pro7 and Ser6-Arg9, and of Phe5-Arg9 to Ser6-Arg9, Phe8-Arg9, and Ser6-Pro7, by unidentified peptidases. 7. A model for the enzymatic inactivation of bradykinin by rat brain neuronal perikarya is proposed.  相似文献   

19.
Thyrotropin-releasing hormone (TRH) and epidermal growth factor both enhance prolactin synthesis and substrate adhesion (a morphological change called stretching) of GH4 rat pituitary cells. We have examined TRH- and EGF-induced cell stretching using genetic and pharmacologic approaches. We selected and isolated a series of GH4 cell variants nonresponsive to TRH-induced cell stretching (str-). This selection yielded several variants that were nonresponsive to both TRH- and EGF-induced stretching but were still responsive to stretching induced by several other agents (tetradecanoylphorbol acetate [TPA], butyrate, and Neplanocin A). One of the str- variants (a14) was examined in detail. TRH, EGF, and TPA each enhanced prolactin synthesis in a14 cells, indicating that the a14 variant contained functional receptor binding sites for all 3 ligands as well as the capacity to generate those intracellular signals required for enhanced prolactin synthesis. Because the str- variants were isolated without selective pressure for EGF-induced stretching and because the possibility of more than one selectable mutation in all the variants is unlikely, we suggest that TRH and EGF share a common mechanism to induce cell stretching. We next examined whether the str- variants had a defect in a signaling pathway or in the biochemical endpoint for TRH- and EGF-induced cell stretching. A pharmacologic approach was utilized to investigate the biochemical basis for induced cell stretching. A synthetic Arg-Gly-Asp-Ser tetrapeptide (RGDS), specific for fibronectin and vitronectin adhesion receptors, inhibited TRH-, EGF-, and TPA-induced GH4 cell stretching and attachment to fibronectin- and vitronectin-coated dishes. These results suggest that the interaction between fibronectin and/or vitronectin and their receptor(s) may be a biochemical endpoint by which several agonists induced stretching of GH4 cells. Because the str- variant has RGDS-specific binding sites for fibronectin and vitronectin and responds to some agents that induce cell stretching via an RGDS receptor, we conclude that the a14 str- variant has a defect in an intracellular signaling pathway, shared by TRH and EGF, which induces cell stretching.  相似文献   

20.
TRH administration induces arousal, improves cognition, and modulates glutamatergic and cholinergic transmission in hippocampal neurons. To study the possible involvement of TRH neurons in learning and memory processes, gene expression of TRH, its receptors, and pyroglutamyl peptidase (PPII), were measured in limbic regions of water-maze trained rats. Hypothalamus and amygdala showed changes related to the task but not specific to spatial learning while in hippocampus, pro-TRH and TRH-R1 mRNA levels were specifically increased in those animals trained to find a hidden platform. Variation of TRH content and mRNA levels of pro-TRH, TRH-R1, TRH-R2 and PPII are observed in conditions known to activate TRH hypophysiotropic neurons. Changes in some of these parameters could indicate the activation of TRHergic neurons and their possible involvement in some memory related process. Male Wistar rats were immersed (10 times) for 1, 3 or 5 days in a Morris water-maze containing, or not (yoked control) a platform and sacrificed 5, 30 and 60 min after last trial. TRH content and TSH serum levels were determined by radioimmunoassay; mRNA levels of pro-TRH, TRH-R1, TRH-R2, and PPII, by RT-PCR. Exclusive changes due to spatial training were observed in posterior hippocampus of rats trained for 5 days sacrificed after 60min: decreased TRH content and increased mRNA levels of pro-TRH and TRH-R1, particularly in CA3 region (measured by in situ hybridization). The hypothalamus-pituitary axis responded in both yoked and trained animals (increasing serum TSH levels and pro-TRH expression, due to swim-stress); in the amygdala of both groups, pro-TRH expression increased while diminished that of both receptors and PPII. Differential expression of these parameters suggests involvement of TRH hippocampal neurons in memory formation processes while changes in amygdala could relate to TRH anxiolytic role. The differential modulation in anterior and posterior portions of the hippocampus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号