首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most details of the processing of the hepatitis A virus (HAV) polyprotein are known. Unique among members of the family Picornaviridae, the primary cleavage of the HAV polyprotein is mediated by 3Cpro, the only proteinase known to be encoded by the virus, at the 2A/2B junction. All other cleavages of the polyprotein have been considered to be due to 3Cpro, although the precise location and mechanism responsible for the VP1/2A cleavage have been controversial. Here we present data that argue strongly against the involvement of the HAV 3Cpro proteinase in the maturation of VP1 from its VP1-2A precursor. Using a heterologous expression system based on recombinant vaccinia viruses directing the expression of full-length or truncated capsid protein precursors, we show that the C terminus of the mature VP1 capsid protein is located near residue 764 of the polyprotein. However, a proteolytically active HAV 3Cpro that was capable of directing both VP0/VP3 and VP3/VP1 cleavages in vaccinia virus-infected cells failed to process the VP1-2A precursor. Using site-directed mutagenesis of an infectious molecular clone of HAV, we modified potential VP1/2A cleavage sites that fit known 3Cpro recognition criteria and found that a substitution that ablates the presumed 3Cpro dipeptide recognition sequence at Glu764-Ser765 abolished neither infectivity nor normal VP1 maturation. Altered electrophoretic mobility of VP1 from a viable mutant virus with an Arg764 substitution indicated that this residue is present in VP1 and that the VP1/2A cleavage occurs downstream of this residue. These data indicate that maturation of the HAV VP1 capsid protein is not dependent on 3Cpro processing and may thus be uniquely dependent on a cellular proteinase.  相似文献   

2.
Hepatitis A virus (HAV) 3C proteinase expressed in Escherichia coli was purified to homogeneity, and its cleavage specificity towards various parts of the viral polyprotein was analyzed. Intermolecular cleavage of the P2-P3 domain of the HAV polyprotein gave rise to proteins 2A, 2B, 2C, 3ABC, and 3D, suggesting that in addition to the primary cleavage site, all secondary sites within P2 as well as the 3C/3D junction are cleaved by 3C. 3C-mediated processing of the P1-P2 precursor liberated 2A and 2BC, in addition to the structural proteins VP0, VP3, and VP1-2A and the respective intermediate products. A clear dependence on proteinase concentration was found for most cleavage sites, possibly reflecting the cleavage site preference of 3C. The most efficient cleavage occurred at the 2A/2B and 2C/3A junctions. The electrophoretic mobility of processing product 2B, as well as cleavage of the synthetic peptide KGLFSQ*AKISLFYT, suggests that the 2A/2B junction is located at amino acid position 836/837 of the HAV polyprotein. Furthermore, using suitable substrates we obtained evidence that sites VP3/VP1 and VP1/2A are alternatively processed by 3C, leading to either VP1-2A or to P1 and 2A. The results with regard to intermolecular cleavage by purified 3C were confirmed by the product pattern derived from cell-free expression and intramolecular processing of the entire polyprotein. We therefore propose that polyprotein processing of HAV relies on 3C as the single proteinase, possibly assisted by as-yet-undetermined viral or host cell factors and presumably controlled in a concentration-dependent fashion.  相似文献   

3.
Among the picornaviridae, hepatitis A virus (HAV) is unique in that its assembly is driven by domain 2A of P1-2A, the precursor of the structural proteins (Probst, C., Jecht, M., and Gauss-Müller, V. (1999) J. Biol. Chem. 274, 4527-4531). Whereas infected individuals excrete in stool mature HAV capsids with VP1 as the major structural protein, its C-terminal extended form VP1-2A is the main component of immature procapsids produced in HAV-infected cells in culture. Obviously, a postassembly proteolytic step is required to remove the primary assembly signal 2A from VP1-2A of procapsids. Mutants of VP1-2A were expressed in COS7 cells to determine the cleavage site in VP1-2A and to test for the cleavage potential of viral and host proteinases (factor Xa and thrombin). Site-specific in vitro cleavage by factor Xa and thrombin occurred in procapsids that contained VP1-2A with engineered cognate cleavage sites for these proteinases. Interestingly, factor Xa but not thrombin liberated mature VP1 also from native procapsids in an assembly-dependent manner. The data show that domain 2A, which is required for pentamerization of its precursor polypeptides and thus for the primary step of HAV assembly, is removed from the surface of immature procapsid by a host proteinase. Moreover, our data open a novel avenue to produce homogeneous HAV particles from recombinant intermediates by in vitro treatment with exogenously added proteases such as factor Xa or thrombin.  相似文献   

4.
5.
Hepatitis A virus (HAV) encodes a single polyprotein which is posttranslationally processed into the functional structural and nonstructural proteins. Only one protease, viral protease 3C, has been implicated in the nine protein scissions. Processing of the capsid protein precursor region generates a unique intermediate, PX (VP1-2A), which accumulates in infected cells and is assumed to serve as precursor to VP1 found in virions, although the details of this reaction have not been determined. Coexpression in transfected cells of a variety of P1 precursor proteins with viral protease 3C demonstrated efficient production of PX, as well as VP0 and VP3; however, no mature VP1 protein was detected. To identify the C-terminal amino acid residue of HAV VP1, we performed peptide sequence analysis by protease-catalyzed [18O]H2O incorporation followed by liquid chromatography ion-trap microspray tandem mass spectrometry of HAV VP1 isolated from purified virions. Two different cell culture-adapted isolates of HAV, strains HM175pE and HM175p35, were used for these analyses. VP1 preparations from both virus isolates contained heterogeneous C termini. The predominant C-terminal amino acid in both virus preparations was VP1-Ser274, which is located N terminal to a methionine residue in VP1-2A. In addition, the analysis of HM175pE recovered smaller amounts of amino acids VP1-Glu273 and VP1-Thr272. In the case of HM175p35, which contains valine at amino acid position VP1-273, VP1-Thr272 was found in addition to VP1-Ser274. The data suggest that HAV 3C is not the protease responsible for generation of the VP1 C terminus. We propose the involvement of host cell protease(s) in the production of HAV VP1.  相似文献   

6.
Most proteolytic cleavages within the picornavirus polyproteins are carried out by viral protease 3C. For encephalomyocarditis virus, the protease 3C-catalyzed processing occurs between Gln-Gly or Gln-Ser amino acid pairs which are flanked by proline residues, but the sequence-specific constraints on recognition and cleavage by the enzyme are not completely understood. To examine alternative cleavage site sequences, we constructed a cDNA plasmid which expresses the viral L-P1-2A capsid precursor in vitro and introduced site-specific mutations into the Gln-Gly pair at the VP3/VP1 junction. The altered protein substrates were tested for cleavage activity in assays with protease 3C. The encephalomyocarditis virus 3C processed Gln-Ala as efficiently as its natural sites but did not cleave Gln-Val, Gln-Glu, Lys-Gly, Lys-Ala, Lys-Val, Lys-Glu, or Pro-Gly combinations. Displacement of the flanking proline residue by an engineered insertion slowed but did not prevent cleavage at this site. Also, a mutant defective in processing at the VP3/VP1 junction was unable to form 14S pentameric assembly intermediates in vitro.  相似文献   

7.
8.
Active proteinase 3C of hepatitis A virus (HAV) was expressed in bacteria either as a mature enzyme or as a protein fused to the entire polymerase 3D or to a part of it, and their identities were shown by immunoblot analysis. Intermolecular cleavage activity was demonstrated by incubating in vitro-translated and radiolabeled HAV precursor protein P1-P2 with extracts of bacteria transformed with plasmids containing recombinant HAV 3C. Identification of cleavage products P1, VP1, and VPO-VP3 by immunoprecipitation clearly demonstrates that HAV 3C can cleave between P1 and P2 as well as within P1 and thus shows an activity profile similar to that of cardiovirus 3C.  相似文献   

9.
Unlike all other picornaviruses, the primary cleavage of the hepatitis A virus (HAV) polyprotein occurs at the 2A/2B junction and is carried out by the only proteinase encoded by the virus, 3C(pro). The resulting P1-2A capsid protein precursor is subsequently cleaved by 3C(pro) to generate VP0, VP3, and VP1-2A, which associate as pentamers. An unidentified cellular proteinase acting at the VP1/2A junction releases the mature capsid protein VP1 from VP1-2A later in the morphogenesis process. Although these aspects of polyprotein processing are well characterized, the function of 2A is unknown. To study its role in the viral life cycle, we assessed the infectivity of synthetic, genome-length RNAs containing 11 different in-frame deletions in the 2A region. Deletions in the N-terminal 40% of 2A abolished infectivity, whereas deletions in the C-terminal 60% resulted in viruses with a small-focus replication phenotype. C-terminal deletions in 2A had no effect on RNA replication kinetics under one-step growth conditions, nor did they have an effect on capsid protein synthesis and 3C(pro)-mediated processing. However, C-terminal deletions in 2A altered the VP1/2A cleavage, resulting in accumulation of uncleaved VP1-2A precursor in virions and possibly accounting for a delay in the appearance of infectious particles with these mutants, as well as a fourfold decrease in specific infectivity of the virus particles. When the capsid proteins were expressed from recombinant vaccinia viruses, the N-terminal part of 2A was required for efficient cleavage of the P1-2A precursor by 3C(pro) and assembly of structural precursors into pentamers. These data indicate that the N-terminal domain of 2A must be present as a C-terminal extension of P1 for folding of the capsid protein precursor to allow efficient 3C(pro)-mediated cleavages and to promote pentamer assembly, after which cleavage at the VP1/2A junction releases the mature VP1 protein, a process that appears to be necessary to produce highly infectious particles.  相似文献   

10.
肖玮  钱渊 《微生物学报》1998,38(3):197-203
轮状病毒是引起婴幼儿严重腹泻的重要病原,其第四基因编码主要中和抗原VP4,而VP4可裂解为VP8和VP5两个片段。VP8为抗原型特异性片段。克隆并测定了具有代表性的三个轮状病毒北京株VP4编码基因5′端(VPS+VPS一部分)887个核苷酸序列并据此推导出其氨基酸序列。结果表明,相同血清型的地方株和标准株之间具有高度同源性(92%~966%),不同血清型间则变异较大(70.5%~71%)。氨基酸最大变异处位于aa84~172,并对胰酶作用位点在致病性中的可能性进行了讨论。  相似文献   

11.
Proteolytic processing of the picornaviral polyprotein mediated by the differential action of virus-encoded proteinase(s) is pivotal to both RNA genome replication and capsid formation. Possibly to enlarge the array of viral proteins, picornaviral polyprotein processing results in intermediate and mature products which apparently have distinct functions within the viral life cycle. For hepatitis A virus (HAV), we report here on the autoproteolysis of precursor polypeptides comprising the only viral proteinase, 3Cpro, and on their role in viral particle formation. Following transient expression of a nested set of 3Cpro-containing proteins (P3, 3ABC, 3BCD, 3CD, 3BC, and 3C) in eukaryotic cells, the extent of processing was determined by analyzing the cleavage products. The 3C/3D site was more efficiently cleaved than those at the 3A/3B and 3B/3C sites, leading to the accumulation of the intermediate product 3ABC. In the absence of 3A from the precursor, cleavage at the 3B/3C site was further reduced and a switch to an alternative 3C/3D site was observed. Coexpression of various parts of P3 with the precursor of the viral structural proteins P1-2A showed that all 3C-containing intermediates cleaved P1-2A with almost equal efficiency; however, viral particles carrying the neutralizing epitope form much more readily in the presence of the complete P3 domain than with parts of it. These data support the notion that efficient liberation of structural proteins from P1-2A is necessary but not sufficient for productive HAV capsid formation and suggest that the polypeptides flanking 3Cpro promote the assembly of viral particles.  相似文献   

12.
The polyprotein of infectious pancreatic necrosis virus (IPNV), a birnavirus, is processed by the viral protease VP4 (also named NS) to generate three polypeptides: pVP2, VP4, and VP3. Site-directed mutagenesis at 42 positions of the IPNV VP4 protein was performed to determine the active site and the important residues for the protease activity. Two residues (serine 633 and lysine 674) were critical for cleavage activity at both the pVP2-VP4 and the VP4-VP3 junctions. Wild-type activity at the pVP2-VP4 junction and a partial block (with an alteration of the cleavage specificity) at the VP4-VP3 junction were observed when replacement occurred at histidines 547 and 679. A similar observation was made when aspartic acid 693 was replaced by leucine, but wild-type activity and specificity were found when substituted by glutamine or asparagine. Sequence comparison between IPNV and two birnavirus (infectious bursal disease virus and Drosophila X virus) VP4s revealed that serine 633 and lysine 674 are conserved in these viruses, in contrast to histidines 547 and 679. The importance of serine 633 and lysine 674 is reminiscent of the protease active site of bacterial leader peptidases and their mitochondrial homologs and of the bacterial LexA-like proteases. Self-cleavage sites of IPNV VP4 were determined at the pVP2-VP4 and VP4-VP3 junctions by N-terminal sequencing and mutagenesis. Two alternative cleavage sites were also identified in the carboxyl domain of pVP2 by cumulative mutagenesis. The results suggest that VP4 cleaves the (Ser/Thr)-X-Ala / (Ser/Ala)-Gly motif, a target sequence with similarities to bacterial leader peptidases and herpesvirus protease cleavage sites.  相似文献   

13.
W S Blair  X Li    B L Semler 《Journal of virology》1993,67(4):2336-2343
The production of poliovirus capsid proteins from a capsid protein precursor (P1) is mediated by virus-encoded proteinase 3CD and involves a complicated set of proteinase-substrate interactions. In addition to substrate and enzymatic determinants required for this interaction, we describe a cellular cofactor, which facilitates 3CD recognition of the P1 precursor. Cellular cofactor activity is 3CD dependent and salt dependent. Our analysis shows that proteolytic cleavage of the P1 precursor at the VP0/VP3 cleavage site exhibits a greater dependency on the cellular cofactor than cleavage at the VP3/VP1 site. Such a greater dependency on cellular cofactor activity can be relieved (in part) by the substitution of an Ala residue for the Pro residue at the -4 position of the VP0/VP3 cleavage site. However, mutant viruses containing Pro-to-Ala substitutions at the -4 position of the VP0/VP3 site exhibit defects in viral growth.  相似文献   

14.
Hepatitis A virus (HAV) 3C proteinase is a picornaviral cysteine proteinase that is essential for cleavage of the initially synthesized viral polyprotein precursor to mature fragments and is therefore required for viral replication in vivo. Since the enzyme generally recognizes peptide substrates with L-glutamine at the P1 site, four types of analogues having an azaglutamine residue were chemically synthesized: hydrazo-o-nitrophenylsulfenamides A (e.g. 16); frame-shifted hydrazo-o-nitrophenylsulfenamides B (e.g. 25-28); the azaglutamine sulfonamides C (e.g. 7, 8, 11, 12); and haloacetyl azaglutamine analogues 2 and 3. Testing of these compounds for inhibition of the HAV 3C proteinase employed a C24S mutant in which the non-essential surface cysteine was replaced with serine and which displays identical catalytic parameters to the wild-type enzyme. Sulfenamide 16 (type A) showed no significant inhibition. Sulfenamide 27 (type B) had an IC50 of ca 100 microM and gave time-dependent inactivation of the enzyme due to disulfide bond formation with the active site cysteine thiol, as demonstrated by electrospray mass spectrometry. Sulfonamide 8 (type C) was a weak competitive inhibitor with an IC50 of approximately 75 microM. The haloacetyl azaglutamine analogues 2 and 3 were time-dependent irreversible inactivators of HAV 3C proteinase with rate constants k(obs)/[I] of 680 M(-1) s(-1) and 870 M(-1) s(-1), respectively, and were shown to alkylate the active site thiol.  相似文献   

15.
Hepatitis A virus (HAV) is a positive-stranded RNA virus in the genus Hepatovirus in the family Picornaviridae So far, analysis of the genetic variability of HAV has been based on two discrete regions, the VP1/2A junction and the VP1 N terminus. In this report, we determined the nucleotide and deduced amino acid sequences of the complete VP1 gene of 81 strains from France, Kosovo, Mexico, Argentina, Chile, and Uruguay and compared them with the sequences of seven strains of HAV isolated elsewhere. Overall strain variation in the complete VP1 gene was found to be as high as 23.7% at the nucleotide level and 10.5% at the amino acid level. Different phylogenetic methods revealed that HAV sequences form five distinct and well-supported genetic lineages. Within these lineages, HAV sequences clustered by geographical origin only for European strains. The analysis of the complete VP1 gene allowed insight into the mode of evolution of HAV and revealed the emergence of a novel variant with a 15-amino-acid deletion located on the VP1 region where neutralization escape mutations were found. This could be the first antigenic variant of HAV so far identified.  相似文献   

16.
Birnavirus-encoded viral protein 4 (VP4) utilizes a Ser/Lys catalytic dyad mechanism to process polyprotein. Here three phosphorylated amino acid residues Ser538, Tyr611 and Thr674 within the VP4 protein of the infectious bursal disease virus (IBDV), a member of the genus Avibirnavirus of the family Birnaviridae, were identified by mass spectrometry. Anti-VP4 monoclonal antibodies finely mapping to phosphorylated (p)Ser538 and the epitope motif 530PVVDGIL536 were generated and verified. Proteomic analysis showed that in IBDV-infected cells the VP4 was distributed mainly in the cytoskeletal fraction and existed with different isoelectric points and several phosphorylation modifications. Phosphorylation of VP4 did not influence the aggregation of VP4 molecules. The proteolytic activity analysis verified that the pTyr611 and pThr674 sites within VP4 are involved in the cleavage of viral intermediate precursor VP4-VP3. This study demonstrates that IBDV-encoded VP4 protein is a unique phosphoprotein and that phosphorylation of Tyr611 and Thr674 of VP4 affects its serine-protease activity.  相似文献   

17.
A six-amino-acid insertion containing a Q-G amino acid pair was introduced into the carboxy terminus of the capsid protein VP3 (between residues 236 and 237). Transfection of monkey cells with full-length poliovirus cDNA containing the insertion described above yields a mutant virus (Sel-1C-02) in which cleavage occurs almost entirely at the inserted Q-G amino acid pair instead of at the wild-type VP3-VP1 cleavage site. Mutant Sel-1C-02 is delayed in the kinetics of virus production at 39 degrees C and exhibits a defect in VP0 cleavage into VP2 and VP4 at 39 degrees C. Sucrose gradient analysis of HeLa cell extracts prepared from cells infected by Sel-1C-02 at 39 degrees C shows an accumulation of fast-sedimenting replication-packaging complexes and a significant amount of uncleaved VP0 present in fractions containing mature virions. Our data provide in vivo evidence for the importance of determinants other than the conserved amino acid pair (Q-G) for recognition and cleavage of the P1 precursor by proteinase 3CD and show that an alteration in the carboxy terminus of VP3 or the amino terminus of VP1 affects the process of viral maturation.  相似文献   

18.
The morphogenesis of hepatitis A virus (HAV) in BS-C-1 cells was examined by immunoblotting with antisera to capsid proteins and labeling of virus-specific proteins with L-[35S]methionine. Antiserum to VP2 detected two virus-specific proteins with apparent molecular masses of 30.6 and 30 kDa, representing VP0 and VP2, while antiserum to VP1 detected proteins with molecular masses of 33 and 40 kDa, representing VP1 and a virus-specific protein which we designated PX, respectively. Sedimentation of cell lysates revealed the presence of virions, procapsids, and pentamers, but particles analogous to the protomers of other picornaviruses were not detected. Although provirions and virions were not found as discrete species in our gradient system, it was evident that the rate of sedimentation was proportional to the relative amounts of VP0 and VP2 in particles, with slower-sedimenting particles (provirions) containing predominantly VP0 rather than VP2. Procapsids contained VP0 in addition to VP1 and VP3. Pentamers also contained VP0, but PX was present rather than VP1. These results suggest that PX is a precursor to VP1 and is most likely 1D2A. Primary cleavage of the viral polyprotein also occurs at the 2A-2B junction in cardioviruses and aphthoviruses, but assembly of pentamers containing 1D2A has not been reported for those viruses. The absence of detectable levels of protomers suggests a high efficiency of pentamer formation, which may be related to the high efficiency of viral RNA encapsidation for HAV (D.A. Anderson, B.C. Ross, and S.A. Locarnini, J. Virol. 62:4201-4206, 1988). The results of this study reveal further unusual aspects of the HAV replicative cycle which distinguish it from other picornaviruses and may contribute to its restricted replication in cell culture.  相似文献   

19.
Hepatitis A virus (HAV) differs from other members of the family Picornaviridae in that the cleavage of the polyprotein at the 2A/2B junction, commonly considered to be the primary polyprotein cleavage by analogy with other picornaviruses, is mediated by 3C(pro), the only proteinase encoded by the virus. However, it has never been formally demonstrated that the 2A/2B junction is the site of primary cleavage, and the actual function of the 2A sequence, which lacks homology with sequence of other picornaviruses, remains unknown. To determine whether 2A functions in cis as a precursor with the nonstructural proteins, we constructed dicistronic HAV genomes in which a heterologous picornaviral internal ribosome entry site was inserted at the 2A/2B junction. Transfection of permissive FRhK-4 cells with these dicistronic RNAs failed to result in the rescue of infectious virus, indicating a possible cis replication function spanning the 2A/2B junction. However, infectious virus was recovered from recombinant HAV genomes containing exogenous protein-coding sequences inserted in-frame at the 2A/2B junction and flanked by consensus 3C(pro) cleavage sites. The replication of these recombinants was less efficient than that of the parent virus but was variable and not dependent upon the length of the inserted sequence. An HAV recombinant containing a 420-nt insertion encoding the bleomycin resistance protein Zeo was stable for up to five passages in cell culture. Inserted sequences were deleted from replicating viruses, but this did not result from homologous recombination at the flanking 3C(pro) cleavage sites, since the 5' and 3' segments of the inserted sequence were retained in the deletion mutants. These results indicate that the HAV polyprotein can tolerate an insertion at the 2A/2B junction and that the 2A polypeptide does not function in cis as a 2AB precursor. Recombinant HAV genomes containing foreign protein-coding sequences inserted at the 2A/2B junction are novel and potentially useful protein expression vectors.  相似文献   

20.
Abaitua F  O'Hare P 《Journal of virology》2008,82(11):5234-5244
VP1-2 is a large structural protein assembled into the tegument compartment of the virion, conserved across the herpesviridae, and essential for virus replication. In herpes simplex virus (HSV) and pseudorabies virus, VP1-2 is tightly associated with the capsid. Studies of its assembly and function remain incomplete, although recent data indicate that in HSV, VP1-2 is recruited onto capsids in the nucleus, with this being required for subsequent recruitment of additional structural proteins. Here we have developed an antibody to characterize VP1-2 localization, observing the protein in both cytoplasmic and nuclear compartments, frequently in clusters in both locations. Within the nucleus, a subpopulation of VP1-2 colocalized with VP26 and VP5, though VP1-2-positive foci devoid of these components were observed. We note a highly conserved basic motif adjacent to the previously identified N-terminal ubiquitin hydrolase domain (DUB). The DUB domain in isolation exhibited no specific localization, but when extended to include the adjacent motif, it efficiently accumulated in the nucleus. Transfer of the isolated motif to a test protein, beta-galactosidase, conferred specific nuclear localization. Substitution of a single amino acid within the motif abolished the nuclear localization function. Deletion of the motif from intact VP1-2 abrogated its nuclear localization. Moreover, in a functional assay examining the ability of VP1-2 to complement growth of a VP1-2-ve mutant, deletion of the nuclear localization signal abolished complementation. The nuclear localization signal may be involved in transport of VP1-2 early in infection or to late assembly sites within the nucleus or, considering the potential existence of VP1-2 cleavage products, in selective localization of subdomains to different compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号