首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hydrogen sulfide: neurochemistry and neurobiology   总被引:1,自引:0,他引:1  
Current evidence suggests that hydrogen sulfide (H2S) plays an important role in brain functions, probably acting as a neuromodulator as well as an intracellular messenger. In the mammalian CNS, H2S is formed from the amino acid cysteine by the action of cystathionine beta-synthase (CBS) with serine (Ser) as the by-product. As CBS is a calcium and calmodulin dependent enzyme, the biosynthesis of H2S should be acutely controlled by the intracellular concentration of calcium. In addition, it is also regulated by S-adenosylmethionine which acts as an allosteric activator of CBS. H2S, as a sulfhydryl compound, has similar reducing properties as glutathione. In neurons, H2S stimulates the production of cAMP probably by direct activation of adenylyl cyclase and thus activate cAMP-dependent processes. In astrocytes, H2S increases intracellular calcium to an extent capable of inducing and propagating a "calcium wave", which is a form of calcium signaling among these cells. Possible physiological functions of H2S include potentiating long-term potentials through activation of the NMDA receptors, regulating the redox status, maintaining the excitatory/inhibitory balance in neurotransmission, and inhibiting oxidative damage through scavenging free radicals and reactive species. H2S is also involved in CNS pathologies such as stroke and Alzheimer's disease. In stroke, H2S appears to act as a mediator of ischemic injuries and thus inhibition of its production has been suggested to be a potential treatment approach in stroke therapy.  相似文献   

4.
The use of methods from contemporary nonlinear dynamics in studying neurobiology has been rather limited.Yet, nonlinear dynamics has become a practical tool for analyzing data and verifying models. This has led to productive coupling of nonlinear dynamics with experiments in neurobiology in which the neural circuits are forced with constant stimuli, with slowly varying stimuli, with periodic stimuli, and with more complex information-bearing stimuli. Analysis of these more complex stimuli of neural circuits goes to the heart of how one is to understand the encoding and transmission of information by nervous systems.  相似文献   

5.
Summary Up to five microelectrodes inserted through short hypodermic needles in the cranial cartilage of Sepia officinalis recorded potentials while the cuttlefish moved freely in a small enclosure. Compound field potentials and unit spikes were seen during ongoing, spontaneous activity and after sensory stimulation.Ongoing activity resembles that reported for octopus, with maximum power usually below 20 Hz. Amplitude varies greatly but has not been seen to shut off or turn on abruptly and globally as in octopus.Evoked potentials, focally large after flashes of light consist of several waves; the first is largest, positive and peaks at ca. 35 ms (called P35), followed by ca. P75, P95, N110 and smaller waves or oscillations lasting more than 0.5 s. The Upper Following Frequency (highest flashing rate the potentials can follow 1:1), without averaging, is >15 flashes/s (20–22 °C); at 20/s the 11 following lasts for 1 or 2 s. The Lower Fusion Frequency of averaged responses is < 30/s. Gentle tapping of the tank wall evokes local, brief, fast potentials. No responses have been found to loud air-borne clicks and tone bursts with principal energy at 300 Hz or to electric fields in the bath at 50–100 V/cm.In a few loci relatively large slow Omitted Stimulus Potentials have been seen following the end of a train of flashes at more than 5/s; these are by definition event related potentials and a special, central form of OFF response.Abbreviations EP evoked potential - ISI interstimulus interval - OSP omitted stimulus potential - VEP visual evoked potential  相似文献   

6.

Adult blue crabs (Callinectes sapidus) live in estuaries and release larvae near the entrances to estuaries. Larvae are then transported offshore to continental shelf areas where they undergo development. Postlarvae, or megalopae, remain near the surface and undergo reverse diel vertical migration. The behaviors underlying this migration pattern are responses to light and a solar day rhythm in activity, in which megalopae are active during the day and inactive at night. Onshore transport probably occurs by wind‐generated surface currents. Once in the vicinity of an estuary, megalopae move up the estuary by selective tidal stream transport, in which they swim in the water column on rising tides at night and are on or near the bottom at all other times. Light inhibits swimming during the day. The ascent into the water column on nocturnal rising tides does not result from a biological rhythm in activity, but rather is cued by the rate of increase in salinity during rising tides. Megalopae have separatebehavioural responses in coastal/shelf areas and in estuaries, which are induced by chemical cues in offshore and estuarine waters.  相似文献   

7.
Reactions of the brain to systemic LPS or IL-1 beta treatment were shown to have different thresholds, be mediated by different neurotransmitter systems, and have different mechanisms of realisation. Changes in behaviour and neurotransmitter systems activity of the hypothalamus induced by a systemic IL-1 beta treatment were shown to be mediated by its receptors in the brain. Expression of mRNA of the tumour necrosis factor was revealed in the rabbit brain following administration of high pyrogenic doses of the LPS. The data obtained corroborate the concept of the cytokines role in maintenance of the defence responses in activation of the immune system, as well as their probable role in normal mechanisms of physiological functions control.  相似文献   

8.
The chromatophores of cephalopods differ fundamentally from those of other animals: they are neuromuscular organs rather than cells and are not controlled hormonally. They constitute a unique motor system that operates upon the environment without applying any force to it. Each chromatophore organ comprises an elastic sacculus containing pigment, to which is attached a set of obliquely striated radial muscles, each with its nerves and glia. When excited the muscles contract, expanding the chromatophore; when they relax, energy stored in the elastic sacculus retracts it. The physiology and pharmacology of the chromatophore nerves and muscles of loliginid squids are discussed in detail. Attention is drawn to the multiple innervation of dorsal mantle chromatophores, of crucial importance in pattern generation. The size and density of the chromatophores varies according to habit and lifestyle. Differently coloured chromatophores are distributed precisely with respect to each other, and to reflecting structures beneath them. Some of the rules for establishing this exact arrangement have been elucidated by ontogenetic studies. The chromatophores are not innervated uniformly: specific nerve fibres innervate groups of chromatophores within the fixed, morphological array, producing 'physiological units' expressed as visible 'chromatomotor fields'. The chromatophores are controlled by a set of lobes in the brain organized hierarchically. At the highest level, the optic lobes, acting largely on visual information, select specific motor programmes (i.e. body patterns); at the lowest level, motoneurons in the chromatophore lobes execute the programmes, their activity or inactivity producing the patterning seen in the skin. In Octopus vulgaris there are over half a million neurons in the chromatophore lobes, and receptors for all the classical neurotransmitters are present, different transmitters being used to activate (or inhibit) the different colour classes of chromatophore motoneurons. A detailed understanding of the way in which the brain controls body patterning still eludes us: the entire system apparently operates without feedback, visual or proprioceptive. The gross appearance of a cephalopod is termed its body pattern. This comprises a number of components, made up of several units, which in turn contains many elements: the chromatophores themselves and also reflecting cells and skin muscles. Neural control of the chromatophores enables a cephalopod to change its appearance almost instantaneously, a key feature in some escape behaviours and during agonistic signalling. Equally important, it also enables them to generate the discrete patterns so essential for camouflage or for signalling. The primary function of the chromatophores is camouflage. They are used to match the brightness of the background and to produce components that help the animal achieve general resemblance to the substrate or break up the body's outline. Because the chromatophores are neurally controlled an individual can, at any moment, select and exhibit one particular body pattern out of many. Such rapid neural polymorphism ('polyphenism') may hinder search-image formation by predators. Another function of the chromatophores is communication. Intraspecific signalling is well documented in several inshore species, and interspecific signalling, using ancient, highly conserved patterns, is also widespread. Neurally controlled chromatophores lend themselves supremely well to communication, allowing rapid, finely graded and bilateral signalling.  相似文献   

9.
Two large interneurons in the crayfish brain which are sensitive to vibrational stimuli were injected with the fluorescent dye Procion Yellow. The dendritic branching profiles reflect the directional sensitivity of their respective mechanoreceptive fields on the cephalic appendages and integument. One interneuron branches exclusively on the contralateral side of the brain and receives monosynaptic input from the contralateral antenna; the second interneuron branches primarily on the ipsilateral side and is more sensitive to input from ipsilateral receptors although its receptive field is bilateral. The data suggest that these cells are primary and secondary sensory interneurons, respectively.  相似文献   

10.
11.
If aesthetics is a human universal, it should have a neurobiological basis. Although use of all the senses is, as Aristotle noted, pleasurable, the distance senses are primarily involved in aesthetics. The aesthetic response emerges from the central processing of sensory input. This occurs very rapidly, beneath the level of consciousness, and only the feeling of pleasure emerges into the conscious mind. This is exemplified by landscape appreciation, where it is suggested that a computation built into the nervous system during Paleolithic hunter-gathering is at work. Another inbuilt computation leading to an aesthetic response is the part-whole relationship. This, it is argued, may be traced to the predator-prey "arms races" of evolutionary history. Mate selection also may be responsible for part of our response to landscape and visual art. Aesthetics lies at the core of human mentality, and its study is consequently of importance not only to philosophers and art critics but also to neurobiologists.  相似文献   

12.
There is a wide range of literature on soft lithography, organic surface science (especially self-assembled monolayers of organic thiols adsorbed on gold) and microfluidics. These areas have developed in the fields of physical and surface chemistry, materials science and condensed matter physics, but they offer broad new capabilities in the development of relevant micro- and nanosystems to users in biology in general, and in cell biology in particular. The ability to integrate these techniques for fabricating materials and for controlling the chemistry of surfaces with electrical and electrochemical measurements should be especially relevant in neurobiology. The major impediment to the development of a field of 'microfabrication and measurement' in neuroscience is the absence of effective collaborative interactions between the communities of fabricators and neurobiologists.  相似文献   

13.
14.
The chasm that formerly separated evolutionary biology from the research of physiologists and developmental biologists has been partially bridged in recent years. An increasing amount of research in the neurosciences makes explicit reference to issues in evolutionary biology. Much of this research is an attempt to understand structures and functions of the brain as adaptations to an animal's physical and social environment. In addition, however, some of this research at the interface of evolutionary biology and neurobiology provides information on internal evolutionary factors and the way they may constrain evolution by natural selection.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号