首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.  相似文献   

2.
Cardiovascular effects of subcutaneous administration of synthetic alpha-lactorphin, a tetrapeptide (Tyr-Gly-Leu-Phe) originally derived from milk alpha-lactalbumin, were studied in conscious spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY) with continuous radiotelemetric monitoring. Alpha-lactorphin dose-dependently lowered blood pressure (BP) without affecting heart rate in SHR and WKY. The lowest dose which reduced BP was 10 microg/kg, and the maximal reductions in systolic and diastolic BP (by 23+/-4 and 17+/-4 mm Hg, respectively) were observed at 100 microg/kg dose in SHR. No further reductions were obtained at a higher dose of 1 mg/kg. There were no significant differences in the BP responses to alpha-lactorphin between SHR and WKY. Naloxone (1 and 3 mg/kg s.c.), a specific opioid receptor antagonist, abolished the alpha-lactorphin-induced reduction in BP and reversed it into a pressor response, which provides evidence for an involvement of opioid receptors in the depressor action of the tetrapeptide.  相似文献   

3.
4.

Uridine 5′-triphosphate (UTP) has an important role as an extracellular signaling molecule that regulates inflammation, angiogenesis, and vascular tone. While chronic hypertension has been shown to promote alterations in arterial vascular tone regulation, carotid artery responses to UTP under hypertensive conditions have remained unclear. The present study investigated carotid artery responses to UTP in spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY). Accordingly, our results found that although UTP promotes concentration-dependent relaxation in isolated carotid artery segments from both SHR and WKY after pretreatment with phenylephrine, SHR exhibited significantly lower arterial relaxation responses compared with WKY. Moreover, UTP-induced relaxation was substantially reduced by endothelial denudation and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine in both SHR and WKY. The difference in UTP-induced relaxation between both groups was abolished by the selective P2Y2 receptor antagonist AR-C118925XX and the cyclooxygenase (COX) inhibitor indomethacin but not by the thromboxane-prostanoid receptor antagonist SQ29548. Furthermore, we detected the release of PGE2, PGF, and PGI2 in the carotid arteries of SHR and WKY, both at baseline and in response to UTP. UTP administration also increased TXA2 levels in WKY but not SHR. Overall, our results suggest that UTP-induced relaxation in carotid arteries is impaired in SHR perhaps due to impaired P2Y2 receptor signaling, reductions in endothelial NO, and increases in the levels of COX-derived vasoconstrictor prostanoids.

  相似文献   

5.
The incidence of hypertension increases during the late stages of aging; however, the vascular mechanisms involved are unclear. We investigated whether the late stages of aging are associated with impaired nitric oxide (NO)-mediated vascular relaxation and enhanced vascular contraction and whether oxidative stress plays a role in the age-related vascular changes. Aging (16 mo) male spontaneously hypertensive rats (SHR) nontreated or treated for 8 mo with the antioxidant tempol (1 mM in drinking water) or vitamin E (E; 5,000 IU/kg chow) and vitamin C (C; 100 mg. kg-1. day-1 in drinking water) and adult (12 wk) male SHR were used. After the arterial pressure was measured, aortic strips were isolated from the rats for measurement of isometric contraction. The arterial pressure and phenylephrine (Phe)-induced vascular contraction were enhanced, and the ACh-induced vascular relaxation and nitrite/nitrate production were reduced in aging compared with adult rats. In aging rats, the arterial pressure was nontreated (188 +/- 4), tempol-treated (161 +/- 6), and E + C-treated (187 +/- 1 mmHg). Phe (10-5 M) caused an increase in active stress in nontreated aging rats (14.3 +/- 1.0) that was significantly (P < 0.05) reduced in tempol-treated (9.0 +/- 0.7) and E + C-treated rats (9.8 +/- 0.6 x 104 N/m2). ACh produced a small relaxation of Phe contraction in nontreated aging rats that was enhanced (P < 0.05) in tempol- and E + C-treated rats. l-NAME (10-4 M), inhibitor of NO synthase, or ODQ (10-5 M), inhibitor of cGMP production in smooth muscle, inhibited ACh relaxation and enhanced Phe contraction in tempol- and E + C-treated but not the nontreated aging rats. ACh-induced vascular nitrite/nitrate production was not different in nontreated, tempol- and E + C-treated aging rats. Relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was smaller in aging than adult rats but was not different between nontreated, tempol- and E + C-treated aging rats. Thus, during the late stages of aging in SHR rats, an age-related inhibition of a vascular relaxation pathway involving not only NO production by endothelial cells but also the bioavailability of NO and the smooth muscle response to NO is partially reversed during chronic treatment with the antioxidants tempol and vitamins E and C. The data suggest a role for oxidative stress in the reduction of vascular relaxation and thereby the promotion of vascular contraction and hypertension during the late stages of aging.  相似文献   

6.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

7.
The effect of high flaxseed diet (HFD) on blood pressure (BP) and mesenteric arterial bed (MAB) reactivity was studied in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. HFD did not affect BP in either SHR (control, 157 +/- 3; HFD, 153 +/- 3 mmHg) or WKY (control, 114 +/- 2; HFD, 117 +/- 2 mmHg) rats. Increases in perfusion pressure of the endothelium-intact MAB to phenylephrine and norepinephrine were higher (p < 0.05) in SHR than in WKY rats and the HFD failed to alter these responses. Vasorelaxant responses to acetylcholine (ACh) and bradykinin (BK) were greater (p < 0.05) in SHR maintained on HFD compared to SHR on control diet. While HFD also enhanced ACh responses in WKY, the effect was less than in SHR. Responses to sodium nitroprusside (SNP), were similar in all groups. Since ACh and BK-induced responses of the MAB were augmented in SHR on HFD, with no changes in BP, it is suggested that HFD improves endothelial vasorelaxant function through a pressure-independent mechanism.  相似文献   

8.
The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.  相似文献   

9.
我们以往的工作证实成年自发高血压大鼠(SHR与SHRsp)肠系膜动脉由乙酰胆碱引起的内皮依赖性舒张(EDR)减弱。为进一步探讨EDR减弱的机制,本文观察了一氧化氮(NO)合成酶抑制剂左旋硝基精氨酸(L-NNA)及EDRF灭活剂还原型血红蛋白(RHb)对卒中易感型自发高血压大鼠(SHRsp)与常压对照(WKY)大鼠肠系膜动脉ACh内皮依赖性舒张(EDR)的影响。发现L-NNA(10(-3)mol/L)可使SHRsp弱于WKY的AChEDR(10(-8)-10(-5)mol/L)的差异消失,RHb(10(-5)mol/L)则仅在10(-7)-10(-8)mol/LACh时使SHR(sp)肠系膜动脉EDR弱于WKY的差异消失。将WKY在加入L-NNA后的与加入RHb后的ACh(10(-8)-10(-5)mol/L)EDR进行比较,无显著差异。而将SHRsp在L-NNA后的与RHb后的ACh(10(-8)-10(-6)mol/L)EDR进行比较,则有显著差异。并且,SHRsp的有内皮肠系膜动脉条对RHb的敏感性与WKY接近,对L-NNA的敏感性则低于WKY。表明高血压时肠系膜动脉内皮依赖性舒张减弱中,EDRF机制与  相似文献   

10.
To clarify the mechanism underlying the antioxidant properties of l-carnitine (LC) and propionyl-l-carnitine (PLC) on spontaneously hypertensive (SHR) and normotensive WKY, animals were treated with either PLC or LC (200 mg kg(- 1)). Aorta was dissected and contraction to (R)-( - )-phenylephrine (Phe) and relaxation to carbachol (CCh) were assessed in the presence or not of the NO synthase (NOS) inhibitor, l-NAME. [image omitted] production was evaluated by lucigenin-enhanced chemiluminescence and its participation on relaxation was observed after incubation with superoxide dismutase (SOD) plus catalase. Protein expressions of eNOS, Cu/Zn-SOD and Mn-SOD were studied by western blot. Both LC and PLC treatments improved endothelial function of SHR through increasing NO participation and decreasing [image omitted] probably involving higher Cu/Zn-SOD expression. PLC treatment augmented eNOS expression in SHR. Surprisingly, LC increased [image omitted] produced by aorta from WKY and thus diminished NO and damaged endothelial function. Conversely, PLC did not affect CCh-induced relaxation in WKY. These results demonstrate that LC and PLC prevent endothelial dysfunction in SHR through an antioxidant effect.  相似文献   

11.
Vascular heme oxygenase (HO) metabolizes heme to form carbon monoxide. Carbon monoxide inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. We reported HO-1-mediated endothelial dysfunction in Dahl salt-sensitive hypertension. Previous studies suggested that salt-sensitive hypertensive rats, but not spontaneously hypertensive rats (SHR), display endothelial dysfunction. This study examines the hypothesis that HO-1-mediated arteriolar endothelial dysfunction develops in deoxycorticosterone acetate (DOCA)-salt hypertensive (DOCA) rats, but not in SHR. Uninephrectomized (isoflurane anesthesia) male Sprague-Dawley rats received DOCA injections and saline drinking solution for 4 wk. Rats subjected to sham surgery received vehicle injections and tap water. Blood pressure was elevated in DOCA rats and SHR compared with sham and Wistar-Kyoto (WKY) groups. Aortic HO-1 expression and blood carboxyhemoglobin levels were elevated in the DOCA group, but not in SHR. In isolated gracilis muscle arterioles, ACh caused concentration-related vasodilation in all groups, with attenuated maximum responses in DOCA, but not in SHR, arterioles. Acute pretreatment with an inhibitor of HO, chromium mesoporphyrin, restored ACh-induced responses in DOCA arterioles to sham levels. ACh responses remained the same in SHR and WKY arterioles after chromium mesoporphyrin treatment. These data show that HO-1 levels and activity are increased and arteriolar responses to ACh are decreased in DOCA rats, but not in SHR. Furthermore, in DOCA arterioles, an inhibitor of HO restores ACh-induced vasodilation to sham levels. These results suggest that elevated HO-1 levels and activity, not resulting from hypertension per se, contribute to endothelial dysfunction in DOCA rats.  相似文献   

12.
The concept of endothelium-derived relaxing factor (EDRF) implies that nitric oxide (NO) produced by NO synthase (NOS) in the endothelium in response to vasorelaxants such as acetylcholine (ACh) acts on the underlying vascular smooth muscle cells (VSMC) inducing vascular relaxation. The EDRF concept was derived from experiments on denuded blood vessel strips and, in frames of this concept, VSMC were regarded as passive recipients of NO from endothelial cells. However, it was later found that VSMC express NOS by themselves, but the principal question remained unanswered, is the NO generation by VSMC physiologically relevant? We hypothesized that the destruction of the vascular wall anatomical integrity by rubbing off the endothelial layer might increase vascular superoxides that, in turn, reduced the NO bioactivity as a relaxing factor. To test our hypothesis, we examined ACh-induced vasorelaxation under protection against oxidative stress and found that superoxide scavengers restored vasodilatory responses to ACh in endothelium-deprived blood vessels. These findings imply that VSMC can release NO in amounts sufficient to account for the vasorelaxatory response and challenge the concept of the obligatory role of endothelial cells in the relaxation of arterial smooth muscle.  相似文献   

13.
《Life sciences》1995,56(21):PL401-PL408
Acetylcholine (ACh)-induced vasodilation is mainly due to endothelium-derived nitric oxide (EDNO) and hyperpolarizing factor (EDHF). To explore the mechanisms underlying attenuated endothelium-dependent vasodilation in hypertensive arteries, we measured the EDNO released from isolated kidneys of spontaneously hypertensive rats (SHR) using a sensitive chemiluminescence assay system of NO. ACh-induced renal vasodilation was significantly smaller in SHR than in the normotensive control, Wistar-Kyoto rats (WKY). However, ACh-induced NO release did not differ between SHR and WKY (10−7 M: SHR +37 ± 2 [SE] vs. WKY +32 ± 4 fmol/min/g kidney). Perfusion with a 20 mEq/L high-K+ buffer, which is reported to inhibit action of EDHF, significantly reduced ACh-induced vasorelaxation in WKY but not in SHR, resulting in identical renal perfusion pressure in SHR and wKY under these conditions. These results indicate that attenuated ACh-induced vasorelaxation in the SHR kidney may be attributed to a decrease in EDHF rather than that in EDNO.  相似文献   

14.
Nitric oxide (NO) and reactive oxygen species (ROS) have fundamentally important roles in the regulation of vascular tone and remodeling. Although arterial disease and endothelial dysfunction alter NO and ROS levels to impact vasodilation and vascular structure, direct measurements of these reactive species under in vivo conditions with flow alterations are unavailable. In this study, in vivo measurements of NO and H2O2 were made on mesenteric arteries to determine whether antioxidant therapies could restore normal NO production in spontaneously hypertensive rats (SHR). Flow was altered from approximately 50-200% of control in anesthetized Wistar-Kyoto rats (WKY) and SHR by selective placement of microvascular clamps on adjacent arteries while NO and H2O2 were directly measured with microelectrodes. Relative to WKY, SHR had significantly increased baseline NO and H2O2 concentrations (2,572 +/- 241 vs. 1,059 +/- 160 nM, P < 0.01; and 26 +/- 7 vs. 7 +/- 1 microM, P < 0.05, respectively). With flow elevation, H2O2 but not NO increased in SHR; NO but not H2O2 was elevated in WKY. Apocynin and polyethylene-glycolated catalase decreased baseline SHR NO and H2O2 to WKY levels and restored flow-mediated NO production. Suppression of NAD(P)H oxidase with gp91ds-tat decreased SHR H2O2 to WKY levels. Addition of topical H2O2 to increase peroxide to the basal concentration measured in SHR elevated WKY NO to levels observed in SHR. The results support the hypothesis that increased vascular peroxide in SHR is primarily derived from NAD(P)H oxidase and increases NO concentration to levels that cannot be further elevated with increased flow. Short-term and even acute administration of antioxidants are able to restore normal flow-mediated NO signaling in young SHR.  相似文献   

15.
Ma X  Li YF  Gao Q  Ye ZG  Lu XJ  Wang HP  Jiang HD  Bruce IC  Xia Q 《Life sciences》2008,83(3-4):110-117
This study was designed (i) to test the hypothesis that the endothelium-derived hyperpolarizing factor (EDHF) component of ACh-induced vasorelaxation and hyperpolarization of smooth muscle cells (SMCs) are impaired following exposure to superoxide anion, and (ii) to further investigate whether luteolin and apigenin induce vasoprotection at the vasoactive concentrations in rat mesenteric artery. Rat mesenteric arterial rings were isolated for isometric force recording and electrophysiological studies. Perfusion pressure of mesenteric arterial bed was measured and visualization of superoxide production was detected with fluorescent dye. 300 microM pyrogallol significantly decreased the relaxation and hyperpolarization to ACh. Luteolin and apigenin both induced vasoprotection against loss of the EDHF component of ACh-induced relaxation and attenuated the impairment of hyperpolarization to ACh. Oxidative fluorescent microtopography showed that either luteolin or apigenin significantly reduced the superoxide levels. The results suggest that superoxide anion impairs ACh-induced relaxation and hyperpolarization of SMC in resistance arteries through the impairment of EDHF mediated responses. Luteolin and apigenin protect resistance arteries from injury, implying that they may be effective in therapy for vascular diseases associated with oxidative stress.  相似文献   

16.
Uridine 5′-diphosphate (UDP) plays an important role in controlling vascular tone; however, UDP-mediated response in metabolic syndromes, including obesity and type 2 diabetes in females, remains unclear. In this study, we investigated UDP-mediated response in the aorta of female obese Otsuka Long–Evans Tokushima Fatty (OLETF) rats and control Long–Evans Tokushima Otsuka (LETO) rats. In OLETF rat aortas precontracted by phenylephrine (PE) (vs. LETO), (1) UDP-induced relaxation was increased, whereas acetylcholine (ACh)-induced relaxation was decreased; (2) no UDP- or ACh-induced relaxations were observed in endothelial denudation, whereas UDP-induced small contraction was observed; and (3) NG-nitro-L-arginine [L-NNA, a nitric oxide (NO) synthase inhibitor] eliminated UDP-induced relaxation and small contraction, whereas caused contrasting responses by ACh, including slight relaxations (LETO) and contractions (OLETF). Indomethacin, a cyclooxygenase inhibitor, eliminated the difference in UDP- and ACh-induced relaxations between the groups by increased UDP-induced relaxation in the LETO group and increased ACh-induced relaxation in the OLETF group. MRS2578, a P2Y6 receptor antagonist, eliminated the difference in UDP-induced relaxations between the groups by decreasing UDP-induced relaxation in the OLETF group. MRS2578 had no effect on UDP-induced contraction in endothelium-denuded aortas. Therefore, these findings demonstrate opposite trends of relaxations by UDP and ACh in OLETF and LETO rat aortas. These differences may be attributed to the imbalance between NO and vasoconstrictor prostanoids upon stimulations. Increased UDP-induced relaxation in OLETF rat aorta may be caused by the activation of endothelial MRS2578-sensitive P2Y6 receptor.  相似文献   

17.
Acetylcholine (ACh) and nitroglycerin (NTG) were used as probes to study endothelium-dependent and endothelium-independent vascular relaxation in isolated perfused transverse paraumbilical human skin flaps. It was observed that ACh (10(-6) M) significantly (p < 0.05) decreased the vascular resistance and increased dermal capillary perfusion (assessed by surface fluorometry) in norepinephrine (NE, 10(-6) M) preconstricted skin flaps, despite the presence of a cyclooxygenase inhibitor (indomethacin, 3 x 10(-5) M) and a beta-adrenergic receptor antagonist (propranolol, 10(-6) M). The ability of ACh to induce vascular relaxation in NE-preconstricted skin flaps was lost after damaging the vascular endothelial lining with saponin perfusion (100 mg.L-1, 5 min). In contrast, NTG (10(-6) M) induced vascular relaxation to a similar extent before and after saponin treatment. In a separate study, ACh was seen to induce vascular relaxation in a concentration-dependent manner in skin flaps preconstricted with NE (10(-6) M). This vascular relaxation effect of ACh over the dose range of 10(-9)-10(-5) M was significantly (p < 0.01) inhibited in the presence of N omega-nitro-L-arginine (10(-5) M), a nitric oxide (NO) synthesis inhibitor. These observations were taken to indicate the presence of endothelium-dependent and endothelium-independent vascular relaxation in human skin flaps and that the ACh-induced endothelium-dependent relaxation is probably mediated by NO. The importance of impairment of endothelium-dependent relaxation in the pathogenesis of skin flap ischemia, and the potential use of topical nitrovasodilators or NO donors for prevention and (or) treatment of skin flap ischemia were also discussed.  相似文献   

18.
The study investigated whether the amelioration of endothelial dysfunction by candesartan (2 mg.kg-1.day-1; 10 wk) in spontaneously hypertensive rats (SHR) was associated with modification of hepatic redox system. Systolic arterial pressure (SAP) was higher (P < 0.05) in SHR than in Wistar-Kyoto rats (WKY) and was reduced (P < 0.05) by candesartan in both strains. Acetylcholine (ACh) relaxations were smaller (P < 0.05) and contractions induced by ACh + NG-nitro-l-arginine methyl ester (l-NAME) were greater (P < 0.05) in SHR than in WKY. Treatment with candesartan enhanced (P < 0.05) ACh relaxations in SHR and reduced (P < 0.05) ACh + l-NAME contractions in both strains. Expression of aortic endothelial nitric oxide synthase (eNOS) mRNA was similar in WKY and SHR, and candesartan increased (P < 0.05) it in both strains. Aortic mRNA expression of the subunit p22phox of NAD(P)H oxidase was higher (P < 0.05) in SHR than in WKY. Treatment with candesartan reduced (P < 0.05) p22phox expression only in SHR. Malonyl dialdehyde (MDA) levels were higher (P < 0.05), and the ratio reduced/oxidized glutathione (GSH/GSSG) as well as glutathione peroxidase activity (GPx) were lower (P < 0.05) in liver homogenates from SHR than from WKY. Candesartan reduced (P < 0.05) MDA and increased (P < 0.05) GSH/GSSG ratio without affecting GPx. Vessel, lumen, and media areas were bigger (P < 0.05) in SHR than in WKY. Candesartan treatment reduced (P < 0.05) media area in SHR without affecting vessel or lumen area. The results suggest that hypertension is not only associated with elevation of vascular superoxide anions but with alterations of the hepatic redox system, where ANG II is clearly involved. The results further support the key role of ANG II via AT1 receptors for the functional and structural vascular alterations produced by hypertension.  相似文献   

19.
Both isometric and isotonic relaxation rates have previously been reported to be decreased in caudal arterial and mesenteric resistance arterial smooth muscle from 16- to 21-week-old spontaneously hypertensive rats (SHR) compared with muscle from age-matched normotensive Wistar-Kyoto rats (WKY). An increased maximum velocity of shortening (Vmax) and an increased shortening ability (delta Lmax) have also been reported for arterial smooth muscle from 16- to 21-week-old SHR. It has been suggested that both increased narrowing and prolonged narrowing of arteries contribute to the development of hypertension. However, SHR Vmax is not different from WKY Vmax when studying arterial muscle from older (28- to 31-week-old) rats. Thus increased arterial narrowing ability cannot be a contributing factor to the maintenance of hypertension. In this study the role of relaxation rate in the maintenance of hypertension was examined by comparing the relaxation rates of isometric and isotonic contractions of caudal arterial strips from 16- to 21-week-old SHR (n = 9) and WKY (n = 8) and from 28- to 31-week-old SHR (n = 7) and WKY (n = 5). While relaxation rates were lower for 16- to 21-week-old SHR compared with age-matched WKY preparations for both isometric and isotonic contractions, only isometric relaxation rates were found to be different in 28- to 31-week-old SHR compared with 28- to 31-week-old caudal arterial muscle (p less than 0.05). Vmax tended to normalize from a once-elevated velocity, while isometric relaxation rate remained decreased in SHR with ageing and (or) with progression of the hypertensive condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We tested the hypothesis that previously demonstrated gender differences in ACh-induced vascular relaxation could involve diverse Na(+)-K(+)-ATPase functions. We determined Na(+)-K(+)-ATPase by measuring arterial ouabain-sensitive 86Rb uptake in response to ACh. We found a significant increase of Na+ pump activity only in aortic rings from female rats (control 206 +/- 11 vs. 367 +/- 29 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.01). Ovariectomy eliminated sex differences in Na(+)-K(+)-ATPase function, and chronic in vivo hormone replacement with 17beta-estradiol restored the ACh effect on Na(+)-K(+)-ATPase. Because ACh acts by enhancing production of NO, we examined whether the NO donor sodium nitroprusside (SNP) mimics the action of ACh on Na(+)-K(+)-ATPase activity. SNP increased ouabain-sensitive 86Rb uptake in denuded female arteries (control 123 +/- 7 vs. 197 +/- 12 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.05). Methylene blue (an inhibitor of guanylate cyclase) and KT-5823 (a cGMP-dependent kinase inhibitor) blocked the stimulatory action of SNP. Exposure of female thoracic aorta to the Na+/K+ pump inhibitor ouabain significantly decreased SNP-induced and ACh-mediated relaxation of aortic rings. At the molecular level, Western blot analysis of arterial tissue revealed significant gender differences in the relative abundance of catalytic isoforms of Na(+)-K(+)-ATPase. Female-derived aortas exhibited a greater proportion of alpha2-isoform (44%) compared with male-derived aortas. Furthermore, estradiol upregulated the expression of alpha2 mRNA in male arterial explants. Our results demonstrate that enhancement of ACh-induced relaxation observed in female rats may be in part explained by 1) NO-dependent increased Na(+)-K(+)-ATPase activity in female vascular tissue and 2) greater abundance of Na(+)-K(+)-ATPase alpha2-isoform in females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号