首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel enzyme activity was found in bovine brain cytosol that transfers the ADP-ribosyl moiety of NAD to proteins with Mr values of 22,000 and 25,000. The substrates were the same GTP-binding proteins serving as the substrate of an ADP-ribosyltransferase C3 which was produced by a type C strain of Clostridium botulinum. The brain enzyme was partially purified from the cytosol and had a molecular mass of approximately 20,000 on a gel filtration column. The brain endogenous enzyme displayed unique properties similar to those observed with botulinum C3 enzyme. The enzyme activity was markedly stimulated by a protein factor that had been initially found in the cytosol as an activator for botulinum C3-catalyzed ADP-ribosylation (Ohtsuka, T., Nagata, K., Iiri, T., Nozawa, Y., Ueno, K., Ui, M., and Katada, T. (1989) J. Biol. Chem. 264, 15000-15005). The activity of the brain enzyme was also affected by certain types of detergents or phospholipids. The substrate of the brain enzyme was specific for GTP-binding proteins serving as the substrate of botulinum C3 enzyme; the alpha-subunits of trimeric GTP-binding proteins which served as the substrate of cholera or pertussis toxin were not ADP-ribosylated by the endogenous enzyme. Thus, this is the first report showing an endogenous enzyme in mammalian cells that catalyzes ADP-ribosylation of small molecular weight GTP-binding proteins.  相似文献   

2.
ADP-ribosylation of platelet actin by botulinum C2 toxin   总被引:10,自引:0,他引:10  
Botulinum C2 toxin is a microbial toxin which possesses ADP-ribosyltransferase activity. In human platelet cytosol a 43-kDa protein was ADP-ribosylated by botulinum C2 toxin. Labelling of the 43-kDa protein using [32P]NAD as substrate was reduced by unlabelled NAD and nicotinamide. The label was removed by treatment with snake venom phosphodiesterase. Half-maximal and maximal ADP-ribosylation occurred at 0.1 microgram/ml and 3 micrograms/ml botulinum C2 toxin, respectively. The Km value of the ADP-ribosylation reaction for NAD was about 1 microM. The peptide map of the ADP-ribosylated 43-kDa protein was almost identical with platelet actin. The ADP-ribosylated 43-kDa substrate protein bound to and was eluted from immobilized DNase I in a manner similar to G-actin. Trypsin treatment of platelet cytosol decreased subsequent ADP-ribosylation of the 43-kDa protein without occurrence of smaller labelled polypeptides. Purified platelet actin was also ADP-ribosylated by botulinum C2 toxin with similar characteristics found with actin in platelet cytosol. Phalloidin decreased the ADP-ribosylation of actin in platelet cytosol and of isolated platelet actin. Half-maximal and maximal, about 90%, reduction of actin ADP-ribosylation was observed at 0.4 microM and 10 microM phalloidin, respectively. ADP-ribosylation of purified actin, induced by botulinum C2I toxin, abolished the formation of the typical microfilament network. The data indicate that platelet G-actin but not F-actin is a substrate of botulinum C2 toxin and that this covalent modification largely affects the functional properties of actin.  相似文献   

3.
GTP-binding proteins with Mr values of 22,000 and 25,000 in bovine brain cytosol were ADP-ribosylated by an exoenzyme (termed C3) purified from Clostridium botulinum type C. The rate of C3-catalyzed ADP-ribosylation of the partially purified substrates was extremely low by itself, but was increased enormously when a protein factor(s) obtained from the cytosol was simultaneously added. The rate of the C3-catalyzed reaction was also stimulated by the addition of certain types of detergents or phospholipids even in the absence of the protein factors. The ADP-ribosylation appeared to be enhanced to an extent more than the additive effect of either the protein factors or the detergents (and phospholipids). Thus, ADP-ribosylation catalyzed by botulinum C3 enzyme was affected not only by cytoplasmic protein factors but also by detergents or phospholipids in manners different from each other.  相似文献   

4.
In the pig heart sarcolemma, a 65 kDa protein is found to be ADP-ribosylated by Clostridium botulinum ADP-ribosyltransferase (exoenzyme C3). ADP-ribosylation of this protein is regulated by guanyl nucleotides and cytosol factor in a fashion similar to that for other C3 substrates. The new exoenzyme C3 substrate was partially purified. This protein is supposed to be a GTP-binding one.  相似文献   

5.
A substrate protein for botulinum C3 ADP-ribosyltransferase (C3 exoenzyme) in human platelets was purified to apparent homogeneity from the cytosol by ammonium sulfate fractionation and successive chromatography on columns of DEAE-Sepharose, hydroxylapatite, phenyl-Sepharose, and TSK phenyl-5PW. The purified protein yielded an amino acid sequence identical to that of rhoA protein. When platelet cytosol and membranes were incubated with C3 exoenzyme and [32P]NAD and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, they gave only one [32P]ADP-ribosylated band on each electrophoresis that showed an M(r) of 22,000 and a pI of 6.0. The radioactive bands from the two fractions co-migrated with each other and with the [32P]ADP-ribosylated purified protein. When these radioactive products were partially digested with either alpha-chymotrypsin or trypsin and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the same digestion pattern was found in the three samples. These results suggest that the ADP-ribosylation substrate for C3 exoenzyme in the platelet cytosol and membrane is rhoA protein and that it is the sole substrate detectable in human platelets.  相似文献   

6.
The substrate for ADP-ribosyltransferase from Clostridium botulinum was purified from the cytosol of bovine adrenal gland. Purification procedures consisted of ammonium sulfate fractionation, chromatographies on columns of DEAE-Sepharose and phenyl-Sepharose, gel filtration on a TSK-gel G3000SW column, and Mono Q fast protein liquid chromatography. On DEAE-Sepharose chromatography, the substrate activity was eluted in two separate peaks, and electrophoretic analyses revealed that the substrates in the two peaks are of similar molecular weight but different isoelectric points. The major peak of the substrate was further purified. It was purified about 1,800-fold with a recovery of 2.2% by the above procedures. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the final preparation showed a single protein band at Mr 22,000. The purified protein served as a substrate for botulinum ADP-ribosyltransferase and was maximally ADP-ribosylated to the extent of about 0.7 mol of ADP-ribose/mol of protein. A guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding activity was co-purified with the ADP-ribosylation substrate, and the purified protein maximally bound about 0.5 mol of GTP gamma S/mol. GTP gamma S binding was effectively competed by GTP and GDP but not by GMP, ATP, and ADP. Thus, the ADP-ribosylation substrate is a GTP-binding protein. This protein, designated Gb (b for botulinum), is widely distributed in various tissues. It was rich in brain, pituitary, and adrenal glands, and poor in heart, smooth, and skeletal muscles.  相似文献   

7.
The exoenzyme C3 produced byClostridium botulinum catalyzes ADP-ribosylation ofrho gene products which belong to a family of small molecular-weight GTP-binding proteins. The C3 enzyme-catalyzed ADP-ribosylation ofrho proteins partially purified from bovine brain was markedly activated by certain types of detergents or phospholipids and by endogenous factors present in the brain cytosol.Rho A protein that had been expressed inE. coli and subsequential purified was readily ADP-ribosylated by the C3 enzyme even in the absence of the activating factors. These results suggest that partially purifiedrho proteins contain an inhibitor, probablyrho GDI (GDP-dissociation inhibitor forrho p21), of C3-catalyzed ADP-ribosylation. The activity of an endogenous enzyme, having the same substrate as botulinum C3 enzyme, was also found in brain cytosol. The enzyme activity was partially purified and characterized. The enzyme appeared to have a molecular mass of appreximately 20,000 on a gel filtration and displayed unique properties similar to those observed with the botulinum C3 enzyme. The -subunits of -trimeric G proteins which served as the substrates of cholera or pertussis toxin were not ADP-ribosylated by the brain enzyme.  相似文献   

8.
The enzymatically active component ia of Clostridium perfringens iota toxin ADP-ribosylated actin in human platelet cytosol and purified platelet beta/gamma-actin, in a similar way to that been reported for component I of botulinum C2 toxin. ADP-ribosylation of cytosolic and purified actin by either toxin was inhibited by 0.1 mM phalloidin indicating that monomeric G-actin but not polymerized F-actin was the toxin substrate. Perfringens iota toxin and botulinum C2 toxin were not additive in ADP-ribosylation of platelet actin. Treatment of intact chicken embryo cells with botulinum C2 toxin decreased subsequent ADP-ribosylation of actin in cell lysates by perfringens iota or botulinum C2 toxin. In contrast to botulinum C2 toxin, perfringens iota toxin ADP-ribosylated skeletal muscle alpha-actin with a potency and efficiency similar to non-muscle actin. ADP-ribosylation of purified skeletal muscle and non-muscle actin by perfringens iota toxin led to a dose-dependent impairment of the ability of actin to polymerize.  相似文献   

9.
The 22 kDa protein substrate of botulinum ADP-ribosyltransferase C3 was purified from porcine brain cytosol by acetone precipitation, CM-Sephadex, octyl-Sepharose and TSK phenyl-5PW HPLC chromatography to apparent homogeneity. ADP-ribosylation of the protein was increased by guanine nucleotides (GTP, GDP, GTP gamma S, each 100 microM) but not by GMP, ATP or ATP gamma S. The purified 22 kDa protein bound maximally 0.9 mol [35S]GTP gamma S and hydrolyzed GTP with the rate 0.007 mol per mol protein. Amino acid sequences were obtained from two tryptic peptides, selected from an in situ digestion of Immobilon electrotransferred, gel purified ADP-ribosylated substrate. The two sequences obtained, cover 23 residues from the corresponding sequences in human rho.  相似文献   

10.
A 23 kDa GTP-binding protein was purified from pig heart sarcolemma. This protein was not ADP-ribosylated by cholera, pertussis and botulinum C3 toxins. In pig heart sarcolemma pertussis toxin ADP-ribosylated 40 kDa subunit of Gi-protein, cholera toxin--45 kDa subunit of Gs-protein, botulinum C3 toxin ADP-ribosylated a group of proteins with Mr 22, 26 and 29 kDa. Antiserum generated against the peptide common for all alpha-subunits of G-proteins did not react with purified 23 kDa protein. Trypsin cleaved the 23 kDa protein in the presence of guanyl nucleotides into a 22 kDa fragment. Proteolysis of the 39 kDa alpha 0-subunit from bovine brain plasma membranes and ADP-ribosylated 40 kDa alpha i-subunit from pig heart sarcolemma in the presence of GTP gamma S yielded the 37 and 38 kDa fragments, respectively. In the presence of GTP and GDP the proteolysis of alpha 0 yielded the 24 and 15 kDa fragments, while the proteolysis of ADP-ribosylated alpha i-subunit yielded a labelled 16 kDa peptide. Irrespective of nucleotides trypsin cleaved the ADP-ribosylated 26 kDa substrate of botulinum C3 toxin into two labelled peptides with Mr 24 and 17 kDa. The data obtained indicate the existence in pig heart sarcolemma of a new 23 kDa GTP-binding protein with partial homology to the alpha-subunits of "classical" G-proteins.  相似文献   

11.
A 40-kDa protein, in addition to the alpha-subunits of Gs (a GTP-binding protein involved in adenylate cyclase stimulation), was [32P]ADP-ribosylated by cholera toxin (CT) in the membranes of neutrophil-like HL-60 cells, only if formyl Met-Leu-Phe (fMLP) was added to the ADP-ribosylation mixture. The 40-kDa protein proved to be the alpha-subunit of Gi serving as the substrate of pertussis toxin, islet-activating protein (IAP). No radioactivity was incorporated into this protein in membranes isolated from HL-60 cells that had been exposed to IAP. Gi-alpha purified from bovine brain and reconstituted into IAP-treated cell membranes was ADP-ribosylated by CT plus fMLP. Gi-alpha was ADP-ribosylated by IAP, but not by CT plus fMLP, in membranes from cells that had been pretreated with CT plus fMLP. When membrane Gi-alpha [32P]ADP-ribosylated by CT plus fMLP or IAP was digested with trypsin, the radiolabeled fragments arising from the two proteins were different from each other. These results suggest that CT ADP-ribosylates Gi-alpha in intact cells when coupled fMLP receptors are stimulated and that the sites modified by two toxins are not identical. CT-induced and fMLP-supported ADP-ribosylation of Gi-alpha was favored by Mg2+ and allow concentrations of GTP or its analogues but suppressed by GDP. The ADP-ribosylation did not occur at all, even in the presence of ADP-ribosylation factor that supported CT-induced modification of Gs, in phospholipid vesicles containing crude membrane extract in which Gi was functionally coupled to stimulated fMLP receptors. Thus, Gi activated via coupled receptors is the real substrate of CT-catalyzed ADP-ribosylation. This reaction may depend on additional factor(s) that are too labile to survive the process of membrane extraction.  相似文献   

12.
Recombinant Aplysia rho and a GTP-binding protein purified from human neutrophil membranes (G22K) were ADP-ribosylated by botulinum toxin C3 with stoichiometries of 0.8 and 0.6, respectively. Rho and G22K appeared to be different proteins since (i) rho migrated faster on polyacrylamide gels, (ii) unlike G22K, rho did not require the presence of cytosol to be ADP-ribosylated, (iii) G22K was not recognized by an anti-rho antiserum, and (iv) antibody 142-24E05 recognized G22K effectively but only poorly cross reacted with rho. ADP-ribosylation had no effect on the ability of rho to bind or hydrolyse GTP. Therefore, it appears that there are multiple botulinum toxin C3 substrates and that the toxin exerts its effects on cell function by a mechanism other than modulating the GTPase activity of rho.  相似文献   

13.
Botulinum C3 ADP-ribosyltransferase modifies a approximately 24 kDa membrane protein believed to bind guanine nucleotides. Cholera toxin ADP-ribosylation factors are approximately 19 kDa GTP-binding proteins that directly activate the toxin. To evaluate a possible relationship between C3 ADP-ribosyltransferase substrate and ADP-ribosylation factor, they were partially purified from bovine brain. ADP-ribosylation factor, but not C3 ADP-ribosyltransferase substrate, stimulated auto-ADP-ribosylation of the choleragen A1 subunit whereas C3 ADP-ribosyltransferase substrate, but not ADP-ribosylation factor, was ADP-ribosylated by C3 ADP-ribosyltransferase. Thus, although both may be GTP-binding proteins, no functional similarity between ADP-ribosylation factor and C3 ADP-ribosyltransferase substrate was found.  相似文献   

14.
The alpha-subunit of Gi-2, in addition to that of Gs (GTP-binding proteins involved in adenylate cyclase inhibition and stimulation, respectively) was ADP-ribosylated by cholera toxin in HL-60 cell membranes when a chemotactic receptor was stimulated by formyl-Met-Leu-Phe (fMLP), and the sites modified by cholera and pertussis toxins on the alpha-subunit of Gi-2 were different (Iiri, T., Tohkin, M., Morishima, N., Ohoka, Y., Ui, M., and Katada, T. (1989) J. Biol. Chem. 264, 21394-21400). In order to investigate how the functions of Gi-2 were modified by cholera toxin, the ADP-ribosylated and unmodified proteins were purified from HL-60 cell membranes that had been incubated in the presence and absence of cholera toxin, respectively. The modified Gi-2 displayed unique properties as follows. 1) The ADP-ribosylated alpha-subunit had a more acidic pI than the unmodified one, leading to a partial resolution of the modified Gir2 trimer from the unmodified protein by an anion column chromatography. 2) When the purified proteins were incubated with [gamma-32P]GTP, the radioactivity was more greatly retained in the modified Gi-2 than in the unmodified protein. 3) The actual catalytic rate (kcat) of GTP hydrolysis was, indeed, markedly inhibited by cholera toxin-induced modification. 4) There was an increase in the apparent affinity of Gi-2 for GDP by cholera toxin-induced modification. 5) The modified Gi-2 exhibited a low substrate activity for pertussis toxin-catalyzed ADP-ribosylation. 6) A high-affinity fMLP binding to HL-60 cell membranes was more effectively reconstituted with the ADP-ribosylated Gi-2 than with the unmodified protein. These results suggested that the agonist-fMLP receptor complex was effectively coupled with the ADP-ribosylated Gi-2, resulting in the GTP-bound form, and that the hydrolysis of GTP on the modified alpha-subunit was selectively attenuated. Thus, cholera toxin ADP-ribosylated Gi-2 appeared to be not only a less sensitive pertussis toxin substrate but also an efficient signal transducer between receptors and effectors.  相似文献   

15.
ADP-ribosylation of a protein in human fibroblasts treated with partially purified Clostridium difficile toxin B was previously reported. Here we show that the same protein was ADP-ribosylated also in human fibroblasts exposed to supernatant from a C. difficile strain producing neither toxin A nor toxin B. Furthermore, in Chinese hamster ovary and in Vero cells, showing toxin B-induced cytopathogenic effect, the protein was not significantly ADP-ribosylated. The results indicate that the ADP-ribosylation is unrelated to the cytopathogenic effect of toxin B. It appears to be caused by another unidentified factor from C. difficile, and the substrate may correspond to a protein modified endogenously in cells exposed to stressful situations. Cellular actin was not ADP-ribosylated by toxin B.  相似文献   

16.
ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1   总被引:10,自引:0,他引:10  
We have separated at least six GTP-binding proteins (G proteins) with Mr values between 20,000 and 25,000 from bovine brain crude membranes (Kikuchi, A., Yamashita, T., Kawata, M., Yamamoto, K., Ideda, K., Tanimoto, T., and Takai, Y. (1988) J. Biol. Chem. 263, 2897-2904). Three of these G proteins were copurified with the proteins ADP-ribosylated by botulinum toxin type C1. One G protein ADP-ribosylated by this toxin was identified to be the bovine brain rho protein (rho p20) which was purified to near homogeneity (Yamamoto, K., Kondo, J., Hishida, T., Teranishi, Y., and Takai, Y. (1988) J. Biol. Chem. 263, 9926-9932). rho p20 was ADP-ribosylated by botulinum toxin type C1 in time- and dose-dependent manners. About 0.4 mol of ADP-ribose was maximally incorporated into 1 mol of rho p20. The ADP-ribosylation of rho p20 was dependent on the presence of Mg2+. GTP enhanced the ADP-ribosylation in the presence of a low concentration (50 nM) of Mg2+ but not in the presence of a high concentration (0.5 mM) of Mg2+. The high concentration of Mg2+ fully stimulated the ADP-ribosylation even in the absence of GTP. The ADP-ribosylation of rho p20 did not affect its GTP gamma S-binding and GTPase activities. These results indicate that there are at least three G proteins ADP-ribosylated by botulinum toxin type C1 in bovine brain crude membranes and that one of them is rho p20. Two other G proteins have not yet been identified, but neither the c-ras protein, ADP-ribosylation factor for Gs, nor a G protein with a Mr of 24,000 was ADP-ribosylated by this toxin.  相似文献   

17.
Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) is a good substrate for cholera toxin in comparison with the angiotensin peptides. Because kemptide contains two potential ADP-ribosylation sites and, is also a good substrate for cAMP-dependent protein kinase, it was possible to gain some insight into factors influencing the specificity of cholera toxin and to study the relationship between phosphorylation and ADP-ribosylation. The ADP-ribosylated products of kemptide were purified by high-performance liquid chromatography and characterized by peptide sequence analysis, trypsin digestion, and fast-atom bombardment mass spectrometry. The major product is mono(ADP-ribosyl)ated preferentially on the first arginyl residue and some mono(ADP-ribosyl)ation was observed to occur on the second arginine. The minor product is di(ADP-ribosyl)ated. The Km and Vmax for mono(ADP-ribosyl)ation of kemptide are approximately 4.3 +/- 1.2 mM and 38.1 +/- 5.5 nmol min-1 mg-1, respectively. Phosphorylated seryl residue of kemptide suppresses ADP-ribosylation of the arginyl residues by cholera toxin. Mono(ADP-ribosyl)ated kemptide is a poor substrate for the cAMP-dependent protein kinase in comparison with kemptide. Di(ADP-ribosyl)ated kemptide is not phosphorylated at all. These results suggest that a mere exposure of an arginyl residue in peptides is not a sufficient condition for effective ADP-ribosylation and that a relationship exists between ADP-ribosylation and phosphorylation.  相似文献   

18.
The substrate of the C3 exoenzyme from botulinum toxin is a protein which is particularly abundant in the cytosol of neutrophils [Stasia, M. J., Jouan, A., Bourmeyster, N., Boquet, P., & Vignais, P. V. (1991) Biochem. Biophys. Res. Commun. 180, 615-622]. Optimal conditions for the ADP-ribosylation of the C3 substrate have been established in order to follow the course of its purification from bovine neutrophil cytosol. In particular, phosphoinositides at micromolar concentrations were found to enhance the ADP-ribosylation capacity of the C3 substrate in crude neutrophil cytosol and partially purified fractions. A [32P]ADP-ribosylatable protein, migrating on SDS-PAGE with a mass of 24 kDa, was copurified with a 29-kDa protein by a series of chromatographic steps on DEAE-Sephacel, Biogel P60, and Mono Q. In the case of the C3 substrate, isoelectric focusing revealed two major labeled bands with pI values of 6.2 and 5.6; the pI of the 29-kDa protein was 4.8-5.0. On the basis of the amino acid sequence of peptides resolved after proteolytic digestion, the 24-kDa protein and the 29-kDa protein were identified respectively as rho and the GDP dissociation inhibitor (GDI), suggesting that rho and GDI copurify from bovine neutrophil cytosol in the form of a complex. The presence of a number of amino acid residues specific of rho A in the enzymatic digest originating from rho indicates that, among the rho proteins, at least rho A belongs to the GDI-rho complex.  相似文献   

19.
ADP-ribosylation of a Mr 21,000 membrane protein by type D botulinum toxin   总被引:5,自引:0,他引:5  
When crude membrane fraction from bovine adrenal gland was incubated with type D botulinum toxin in the presence of NAD, a membrane protein with a molecular weight of 21,000 was specifically ADP-ribosylated. This ADP-ribosylation occurred dependent on the dose of the toxin and was abolished by prior boiling ADP-ribose transfer to the membrane protein was significantly suppressed when agmatine and L-arginine methyl ester were included in the reaction mixture. Dithiothreitol stimulated this ADP-ribosylation about 3-fold. Incubation of membrane fractions from mouse brain and pancreas with this toxin also resulted in ADP-ribosylation of a protein of the same molecular weight. These results suggested that type D botulinum toxin catalyzed transfer of an ADP-ribose moiety of NAD to the specific membrane protein common to secretory cells.  相似文献   

20.
The fungal toxin brefeldin A (BFA) dissociates coat proteins from Golgi membranes, causes the rapid disassembly of the Golgi complex and potently stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa. These proteins have been identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a novel guanine nucleotide binding protein (BARS-50), respectively. The role of ADP-ribosylation in mediating the effects of BFA on the structure and function of the Golgi complex was analyzed by several approaches including the use of selective pharmacological blockers of the reaction and the use of ADP-ribosylated cytosol and/or enriched preparations of the BFA-induced ADP-ribosylation substrates, GAPDH and BARS-50.A series of blockers of the BFA-dependent ADP-ribosylation reaction identified in our laboratory inhibited the effects of BFA on Golgi morphology and, with similar potency, the ADP-ribosylation of BARS-50 and GAPDH. In permeabilized RBL cells, the BFA-dependent disassembly of the Golgi complex required NAD+ and cytosol. Cytosol that had been previously ADP-ribosylated (namely, it contained ADP-ribosylated GAPDH and BARS-50), was instead sufficient to sustain the Golgi disassembly induced by BFA.Taken together, these results indicate that an ADP-ribosylation reaction is part of the mechanism of action of BFA and it might intervene in the control of the structure and function of the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号