首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, multiscale monitoring approaches, which combine principal component analysis (PCA) and multi-resolution analysis (MRA), have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical and biochemical processes. In this work, multiscale PCA is proposed for fault detection and diagnosis of batch processes. Using MRA, measurement data are decomposed into approximation and details at different scales. Adaptive multiway PCA (MPCA) models are developed to update the covariance structure at each scale to deal with changing process conditions. Process monitoring by a unifying adaptive multiscale MPCA involves combining only those scales where significant disturbances are detected. This multiscale approach facilitates diagnosis of the detected fault as it hints to the time-scale under which the fault affects the process. The proposed adaptive multiscale method is successfully applied to a pilot-scale sequencing batch reactor for biological wastewater treatment.  相似文献   

2.
Functional Generalized Linear Models with Images as Predictors   总被引:1,自引:0,他引:1  
Summary .  Functional principal component regression (FPCR) is a promising new method for regressing scalar outcomes on functional predictors. In this article, we present a theoretical justification for the use of principal components in functional regression. FPCR is then extended in two directions: from linear to the generalized linear modeling, and from univariate signal predictors to high-resolution image predictors. We show how to implement the method efficiently by adapting generalized additive model technology to the functional regression context. A technique is proposed for estimating simultaneous confidence bands for the coefficient function; in the neuroimaging setting, this yields a novel means to identify brain regions that are associated with a clinical outcome. A new application of likelihood ratio testing is described for assessing the null hypothesis of a constant coefficient function. The performance of the methodology is illustrated via simulations and real data analyses with positron emission tomography images as predictors.  相似文献   

3.
A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults.  相似文献   

4.
Observer-based adaptive fuzzy H(infinity) control is proposed to achieve H(infinity) tracking performance for a class of nonlinear systems, which are subject to model uncertainty and external disturbances and in which only a measurement of the output is available. The key ideas in the design of the proposed controller are (i) to transform the nonlinear control problem into a regulation problem through suitable output feedback, (ii) to design a state observer for the estimation of the non-measurable elements of the system's state vector, (iii) to design neuro-fuzzy approximators that receive as inputs the parameters of the reconstructed state vector and give as output an estimation of the system's unknown dynamics, (iv) to use an H(infinity) control term for the compensation of external disturbances and modelling errors, (v) to use Lyapunov stability analysis in order to find the learning law for the neuro-fuzzy approximators, and a supervisory control term for disturbance and modelling error rejection. The control scheme is tested in the cart-pole balancing problem and in a DC-motor model.  相似文献   

5.
Multiway principal component analysis (MPCA) for the analysis and monitoring of batch processes has recently been proposed. Although MPCA has found wide applications in batch process monitoring, it assumes that future batches behave in the same way as those used for model identification. In this study, a new monitoring algorithm, adaptive multiblock MPCA, is developed. The method overcomes the problem of changing process conditions by updating the covariance structure recursively. A historical set of operational data of a multiphase batch process was divided into local blocks in such a way that the variables from one phase of a batch run could be blocked in the corresponding blocks. This approach has significant benefits because the latent variable structure can change for each phase during the batch operation. The adaptive multiblock model also allows for easier fault detection and isolation by looking at the relationship between blocks and at smaller meaningful block models, and it therefore helps in the diagnosis of the disturbance. The proposed adaptive multiblock monitoring method is successfully applied to a sequencing batch reactor for biological wastewater treatment.  相似文献   

6.
In this study, we propose to use the principal component analysis (PCA) and regression model to incorporate linkage disequilibrium (LD) in genomic association data analysis. To accommodate LD in genomic data and reduce multiple testing, we suggest performing PCA and extracting the PCA score to capture the variation of genomic data, after which regression analysis is used to assess the association of the disease with the principal component score. An empirical analysis result shows that both genotype-basod correlation matrix and haplotype-based LD matrix can produce similar results for PCA. Principal component score seems to be more powerful in detecting genetic association because the principal component score is quantitatively measured and may be able to capture the effect of multiple loci.  相似文献   

7.
The work reported in this paper examines the use of principal component analysis (PCA), a technique of multivariate statistics to facilitate the extraction of meaningful diagnostic information from a data set of chromatographic traces. Two data sets mimicking archived production records were analysed using PCA. In the first a full-factorial experimental design approach was used to generate the data. In the second, the chromatograms were generated by adjusting just one of the process variables at a time. Data base mining was achieved through the generation of both gross and disjoint principal component (PC) models. PCA provided easily interpretable 2-dimensional diagnostic plots revealing clusters of chromatograms obtained under similar operating conditions. PCA methods can be used to detect and diagnose changes in process conditions, however results show that a PCA model may require recalibration if an equipment change is made. We conclude that PCA methods may be useful for the diagnosis of subtle deviations from process specification not readily distinguishable to the operator.  相似文献   

8.
Bioprocesses and biosystems have nonlinear and multiple operation patterns depending on the influent loads, temperatures, the activity of microorganisms, and other factors. In this paper, an integrated framework of nonlinear modeling and process monitoring methods is developed for a complex biological process. The proposed method is based on modeling by fuzzy partial least squares (FPLS) and on process monitoring by a statistical decomposition, which is suitable for predicting and supervising a nonlinear biological process. Case studies in the bio-simulated process and industrial biological plant show that the proposed method can give superior prediction and monitoring performance in complex biological plants compared to other linear and nonlinear methods, since it can effectively capture the nonlinear causal relationship within the biosystem. This gives us the integrated framework that is able to both model and monitor the nonlinear bioprocess simultaneously.  相似文献   

9.
A robust model matching control of immune response is proposed for therapeutic enhancement to match a prescribed immune response under uncertain initial states and environmental disturbances, including continuous intrusion of exogenous pathogens. The worst-case effect of all possible environmental disturbances and uncertain initial states on the matching for a desired immune response is minimized for the enhanced immune system, i.e. a robust control is designed to track a prescribed immune model response from the minimax matching perspective. This minimax matching problem could herein be transformed to an equivalent dynamic game problem. The exogenous pathogens and environmental disturbances are considered as a player to maximize (worsen) the matching error when the therapeutic control agents are considered as another player to minimize the matching error. Since the innate immune system is highly nonlinear, it is not easy to solve the robust model matching control problem by the nonlinear dynamic game method directly. A fuzzy model is proposed to interpolate several linearized immune systems at different operating points to approximate the innate immune system via smooth fuzzy membership functions. With the help of fuzzy approximation method, the minimax matching control problem of immune systems could be easily solved by the proposed fuzzy dynamic game method via the linear matrix inequality (LMI) technique with the help of Robust Control Toolbox in Matlab. Finally, in silico examples are given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed method.  相似文献   

10.
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day''s stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.  相似文献   

11.
An improved method for deconvoluting complex spectral maps from bidimensional fluorescence monitoring is presented, relying on a combination of principal component analysis (PCA) and feedforward artificial neural networks (ANN). With the aim of reducing ANN complexity, spectral maps are first subjected to PCA, and the scores of the retained principal components are subsequently used as ANN input vector. The method is presented using the case study of an extractive membrane biofilm reactor, where fluorescence maps of a membrane-attached biofilm were analysed, which were collected under different reactor operating conditions. During ANN training, the spectral information is associated with process performance indicators. Originally, 231 excitation/emission pairs per fluorescence map were used as ANN input vector. Using PCA, each fluorescence map could be represented by a maximum of six principal components, thereby catching 99.5% of its variance. As a result, the dimension of the ANN input vector and hence the complexity of the artificial neural network was significantly reduced, and ANN training speed was increased. Correlations between principal components and ANN predicted process performance parameters were good with correlation coefficients in the order of 0.7 or higher.  相似文献   

12.
In this paper, a novel efficient learning algorithm towards self-generating fuzzy neural network (SGFNN) is proposed based on ellipsoidal basis function (EBF) and is functionally equivalent to a Takagi-Sugeno-Kang (TSK) fuzzy system. The proposed algorithm is simple and efficient and is able to generate a fuzzy neural network with high accuracy and compact structure. The structure learning algorithm of the proposed SGFNN combines criteria of fuzzy-rule generation with a pruning technology. The Kalman filter (KF) algorithm is used to adjust the consequent parameters of the SGFNN. The SGFNN is employed in a wide range of applications ranging from function approximation and nonlinear system identification to chaotic time-series prediction problem and real-world fuel consumption prediction problem. Simulation results and comparative studies with other algorithms demonstrate that a more compact architecture with high performance can be obtained by the proposed algorithm. In particular, this paper presents an adaptive modeling and control scheme for drug delivery system based on the proposed SGFNN. Simulation study demonstrates the ability of the proposed approach for estimating the drug's effect and regulating blood pressure at a prescribed level.  相似文献   

13.
This work proposes a sequential modelling approach using an artificial neural network (ANN) to develop four independent multivariate models that are able to predict the dynamics of biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solid (SS), and total nitrogen (TN) removal in a wastewater treatment plant (WWTP). Suitable structures of ANN models were automatically and conveniently optimized by a genetic algorithm rather than the conventional trial and error method. The sequential modelling approach, which is composed of two parts, a process disturbance estimator and a process behaviour predictor, was also presented to develop multivariate dynamic models. In particular, the process disturbance estimator was first employed to estimate the influent quality. The process behaviour predictor then sequentially predicted the effluent quality based on the estimated influent quality from the process disturbance estimator with other process variables. The efficiencies of the developed ANN models with a sequential modelling approach were demonstrated with a practical application using a data set collected from a full-scale WWTP during 2 years. The results show that the ANN with the sequential modelling approach successfully developed multivariate dynamic models of BOD, COD, SS, and TN removal with satisfactory estimation and prediction capability. Thus, the proposed method could be used as a powerful tool for the prediction of complex and nonlinear WWTP performance.  相似文献   

14.
《Process Biochemistry》2007,42(8):1200-1210
A novel nonlinear biological batch process monitoring and fault identification approach based on kernel Fisher discriminant analysis (kernel FDA) is proposed. This method has a powerful ability to deal with nonlinear data and does not need to predict the future observations of variables. So it is more sensitive to fault detection. In order to improve the monitoring performance, variable trajectories of the batch processes are separated into several blocks. Then data in the original space is mapped into high-dimensional feature space via nonlinear kernel function and the optimal kernel Fisher feature vector and discriminant vector are extracted to perform process monitoring and fault identification. The key to the proposed approach is to calculate the distance of block data which are projected to the optimal kernel Fisher discriminant vector between new batch and reference batch. Through comparing distance with the predefined threshold, it can be considered whether the batch is normal or abnormal. Similar degree between the present discriminant vector and the optimal discriminant vector of fault in historical data set is used to perform fault diagnosis. The proposed method is applied to the process of fed-batch penicillin fermentation simulator benchmark and shows that it can effectively capture nonlinear relationships among process variables and is more efficient than MPCA approach.  相似文献   

15.
16.
Abstract

To overcome the problem that soft-sensing model cannot be updated with the bioprocess changes, this article proposed a soft-sensing modeling method which combined fuzzy c-means clustering (FCM) algorithm with least squares support vector machine theory (LS-SVM). FCM is used for separating a whole training data set into several clusters with different centers, each subset is trained by LS-SVM and sub-models are developed to fit different hierarchical property of the process. The new sample data that bring new operation information is introduced in the model, and the fuzzy membership function of the sample to each clustering is first calculated by the FCM algorithm. Then, a corresponding LS-SVM sub-model of the clustering with the largest fuzzy membership function is used for performing dynamic learning so that the model can update online. The proposed method is applied to predict the key biological parameters in the marine alkaline protease MP process. The simulation result indicates that the soft-sensing modeling method increases the model’s adaptive abilities in various operation conditions and can improve its generalization ability.  相似文献   

17.
Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussianmulti-scale space for defect detection of industrial products was proposed.By selecting different scale parameters of theGaussian kernel,the multi-scale representation of the original image data could be obtained and used to constitute the multi-variate image,in which each channel could represent a perceptual observation of the original image from different scales.TheMultivariate Image Analysis (MIA) techniques were used to extract defect features information.The MIA combined PrincipalComponent Analysis (PCA) to obtain the principal component scores of the multivariate test image.The Q-statistic image,derived from the residuals after the extraction of the first principal component score and noise,could be used to efficiently revealthe surface defects with an appropriate threshold value decided by training images.Experimental results show that the proposedmethod performs better than the gray histogram-based method.It has less sensitivity to the inhomogeneous of illumination,andhas more robustness and reliability of defect detection with lower pseudo reject rate.  相似文献   

18.
MOTIVATION: Gene set analysis allows formal testing of subtle but coordinated changes in a group of genes, such as those defined by Gene Ontology (GO) or KEGG Pathway databases. We propose a new method for gene set analysis that is based on principal component analysis (PCA) of genes expression values in the gene set. PCA is an effective method for reducing high dimensionality and capture variations in gene expression values. However, one limitation with PCA is that the latent variable identified by the first PC may be unrelated to outcome. RESULTS: In the proposed supervised PCA (SPCA) model for gene set analysis, the PCs are estimated from a selected subset of genes that are associated with outcome. As outcome information is used in the gene selection step, this method is supervised, thus called the Supervised PCA model. Because of the gene selection step, test statistic in SPCA model can no longer be approximated well using t-distribution. We propose a two-component mixture distribution based on Gumbel exteme value distributions to account for the gene selection step. We show the proposed method compares favorably to currently available gene set analysis methods using simulated and real microarray data. SOFTWARE: The R code for the analysis used in this article are available upon request, we are currently working on implementing the proposed method in an R package.  相似文献   

19.
Activation of the formyl peptide chemoattractant receptor (FPCR) of phagocytic cells mobilizes intracellular calcium stores and affects the plasma membrane potential. Affinity crosslinking of FPCR has demonstrated a 60-80 kDa glycoprotein, with core peptide of 32 kDa. It is not known whether functional FPCR is this single peptide or requires multiple subunits. We used Xenopus oocyte expression system to determine the size of mRNA required for synthesis of functional FPCR. Injection of oocytes with poly(A)+ RNA from HL60 cells differentiated to the granulocyte phenotype resulted in acquisition of formyl peptide-specific responses (inward transmembrane current with a reversal potential consistent with a chloride conductance, and calcium efflux). FPCR activity expressed in oocytes had a ligand concentration dependence, ligand structure dependence and pertussis toxin sensitivity similar to those reported in phagocytic cells. When RNA was size fractionated, a single peak of FPCR activity at 2 kilobases was observed after injection of mRNA into oocytes. Our data strongly suggest that FPCR is composed of a single-sized polypeptide.  相似文献   

20.
Dynamic fuzzy model based predictive controller for a biochemical reactor   总被引:3,自引:1,他引:2  
The kinetics of bioreactions often involve some uncertainties and the dynamics of the process vary during the course of fermentation. For such processes, conventional control schemes may not provide satisfactory control performance and demands extra effort to design advanced control schemes. In this study, a dynamic fuzzy model based predictive controller (DFMBPC) is presented for the control of a biochemical reactor. The DFMBPC incorporates an adaptive fuzzy modeling framework into a model based predictive control scheme to derive analytical controller output. The DFMBPC has the flexibility to opt with various types of fuzzy models whose choice also lead to improve the control performance. The performance of DFMBPC is evaluated by comparing with a fuzzy model based predictive controller (FMBPC) with no model adaptation and a conventional PI controller. The results show that DFMBPC provides better performance for tracking setpoint changes and rejecting unmeasured disturbances in the biochemical reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号