共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of periphytes in the shift between macrophyte and phytoplankton dominated systems in a shallow, eutrophic lake (Lake Taihu, China) 总被引:1,自引:0,他引:1
Based on experiments of periphyte response to different trophic levels and their impact on macrophyte production, it was found
that the periphyte biomass increased with the nutrient concentrations. Increased trophic level and periphyte biomass resulted
in decreased macrophyte photosynthesis. It was suggested that the periphytes could cause resilience and hysteresis in the
system shifts between macrophyte and phytoplankton domination. Other factors, such as fish farming, storm induced waves and
mechanical destruction, and high water levels could be the perturbations during the system shifts, but these are not the key
factors. Instead, the nutrient loading and periphyte abundance could determine the shift in lake ecosystem between macrophyte
and phytoplankton domination. This finding could theoretically elucidate the mechanism of ecosystem shifts between macrophyte
and phytoplankton domination. 相似文献
2.
当前我国湖泊污染及富营养化问题非常严重。湖泊治理的一个有效途径就是恢复水生植物,通过草型湖泊生态系统的培植来达到控制富营养化和净化水质的目的。但是,迄今为止,只有在局部水域或滨岸地区获得成功,恢复的水生植物主要是挺水植物或漂浮植物。鲜有全湖性的水生植物恢复和生态修复成功的例子。原因是对湖泊生态系统退化及其修复的机理了解甚少。实际上,环境条件不同决定了生态系统类型的不同,只有通过环境条件的改变才能实现生态系统的转变。利用草型湖泊生态系统来净化水质,其实质是利用生态系统对环境条件的反馈机制。但是,这种反馈无法从根本上改变其环境条件,因此其作用是有限的,不宜过分夸大。以往许多湖泊生态修复的工作之所以鲜有成功的例子,原因就是过于注重水生植物种植本身,而忽视了水生植物生长所需的环境条件的分析和改善。实施以水生植物恢复为核心的生态修复需要一定的前提条件。就富营养化湖泊生态恢复而言,这些环境条件包括氮磷浓度不能太高,富含有机质的沉积物应该去除,风浪不能太大以免对水生植物造成机械损伤,水深不能太深以免影响水生植物光合作用,鱼类种群结构应以食肉性鱼为主等等。因此,在湖泊污染很重或者氮磷负荷很高的情况下,寻求以沉水植物为核心的湖泊生态恢复来改善水质是不切实际的。为此,提出湖泊治理应该遵循先控源截污、后生态恢复,即先改善基础环境,后实施生态恢复的战略路线。 相似文献
3.
1. While phosphorus (P) is often considered the most important growth limiting factor for plants in lakes, recent studies of shallow lakes indicate that nitrogen (N) may be of greater importance than realized hitherto and that submerged macrophytes may be lost when the N concentration exceeds a certain threshold, as long as the concentration of P is sufficiently high. 2. We studied the effects of different loadings of NH4‐N and NO3‐N on chlorophyll a and on a macrophyte tolerant of eutrophication, Vallisneria spinulosa (Hydrocharitaceae). In outdoor mesocosms we used water from a pond as control and created four levels of NH4‐N and NO3‐N (approximately 2.5, 5, 7.5 and 10 mg L−1) by dosing with NH4Cl and NaNO3, respectively. After the experiment, the plants were transferred back to a holding pond to study their recovery. In contrast to previous research, we used a low background concentration of phosphorus (TP 0.024 ± 0.003 mg L−1) so we could judge whether any effects of N were apparent when P is in short supply. 3. Chlorophyll a increased significantly with N dosing for both forms of N, but the increase was highest in the NH4‐N dosed mesocosms (maximum 58 μg L−1 versus 42 μg L−1 in the NO3‐N mesocosms), probably due to a higher total inorganic N concentration (part of the added ammonia was converted to nitrate during the experiment). 4. Although the number of ramets of V. spinulosa was not affected by the N treatment, the biomass increased up to concentrations of 7.5 mg L−1, while biomass at 10 mg L−1 remained at the control level for both N ions treatments. A similar pattern was apparent for the content of N and soluble sugar of the plant, while there were no differences in the plant P content among treatments. Five months after transplantation back to the pond no difference was found in the number of ramets or in biomass, except that the biomass of plants grown at 10 mg N L−1 during the experiment was greater than that in the control, while the N and P contents of plants were similar to those of the controls. 5. Nitrogen concentration had little influence on the growth of the eutrophication tolerant submerged macrophyte at moderately low concentrations of phosphorus. Moreover, the two N ions showed no toxic effects, suggesting that loss of macrophytes observed in other studies, run at higher phosphorus concentrations, was probably related to enhanced shading by periphyton and/or phytoplankton rather than to any toxic effects of N. 相似文献
4.
Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes 总被引:2,自引:0,他引:2
Takamura Noriko Kadono Yasuro Fukushima Michio Nakagawa Megumi Kim Baik-H. O. 《Ecological Research》2003,18(4):381-395
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP. 相似文献
5.
Data on phytoplankton biomass and on nutrient concentrations from Neusiedler See (mean depth 1.3 m) covering more than two decades are presented. The lake underwent strong eutrophication during this period. The response of annual average phytoplankton biomass and chlorophyll-a to the increase of phosphorus concentration from 10 to > 100 µg l-1 was moderate (7-fold increase). This is caused by light limitation of the system because of the high inorganic turbidity of the lake. Analyses of the spring, summer and autumn seasons at the generic and higher taxonomic levels show significant changes in composition of the phytoplankton community. Diatoms were more important during the pre-eutrophication phase while Chlorophyceae became most prominent during the peak of the eutrophication process. Blue-green algae, including Microcystis, became more apparent after this period. The abundance of some groups or genera, e.g. Euglena, was linked to the decline and re-appearance of submerged macrophytes in the lake. Abiotic and biotic interactions as causes for the observed changes are discussed. 相似文献
6.
7.
Phytoplankton productivity was measured in Byram Lake Reservoir during summer 1977. Depth integrated productivity (0–5 gC m– 2 d–1) increased with station depth, which together with visibility measurements indicated that light did not limit deep station productivity (C1 and S2). Macrophytes at station C5 (shallow) reduced the euphotic zone to 0 in June.On a unit depth basis, C5 was the most productive station. Apparently changes in macrophyte growth, regulated by light and temperature, controlled phytoplankton production. At C1, productivity was related to levels of different nutrients at different depths, the thermocline influencing nutrient availability at mid-depth. At S2, NH3-N controlled mid-depth productivity. Surface and mid-depth productivity appeared influenced by factors not measured in this study. 相似文献
8.
R. Anton Hough Mark D. Fornwall Brian J. Negele Robert L. Thompson David A. Putt 《Hydrobiologia》1989,173(3):199-217
Shoe Lake and East Graham Lake, part of a small chain of lakes in southeastern Michigan, USA, differ in nutrient loading and in the structure and productivity of their aquatic plant communities. A comparative study of species frequency and biomass distributions, nutrient contents, and responses to experimental nutrient enrichment and shading, was conducted to determine the principal factors controlling the macrophyte dynamics. A central objective was to address the question of why rooted macrophyte growth declines with eutrophication, and to test existing models designed to explain this phenomenon. In the more eutrophic Shoe Lake, diversity and productivity of rooted macrophytes were relatively low, restricted primarily by combined shading of phytoplankton, periphyton, and non-rooted macrophytes (principally Ceratophyllum demersum, along with Utricularia vulgaris and Cladophora fracta). In the less eutrophic East Graham Lake, lower nitrogen availability restricted the growth of all of these shading components, resulting in clearer water and higher productivity and diversity of rooted macrophytes. The macrophytes did not allelopathically suppress the phytoplankton in East Graham Lake. The results supported a direct relationship between nutrient loading, increasing growth of phytoplankton, periphyton and non-rooted macrophytes, and decline of rooted macrophytes. 相似文献
9.
P. L. Osborne 《International Review of Hydrobiology》1981,66(2):171-202
Barton, Sutton and Stalham Broads are shallow, man-made lakes formed in mediaeval times when peat excavations were flooded. Recently, a once diverse submerged macrophyte flora has, in most broads, been replaced by large phytoplankton populations. This change has been attributed to increased nutrient loadings. The seasonal cycles of chlorophyll α, nitrogen and phosphorus in the three broads are described and the inputs of nitrogen and phosphorus to Barton Broad are budgeted. A reduction in the phosphorus loading is recommended as the best method of restricting phytoplankton populations in these broads. An equation relating phosphorus loading, flushing rate, mean depth and retention coefficient to mean standing phosphorus concentration is used to predict the reduction in phosphorus loading required to limit phytoplankton populations and permit the re-establishment of submerged macrophytes. 相似文献
10.
Lake Naivasha, a shallow tropical lake in Kenya's Rift Valley, has an unstable water column and is moderately eutrophic. Nutrient (bottom-up) control of primary production is more important than grazing (top-down) control. Experimental nutrient enrichment was used to investigate bottom-up control in more detail. Minor nutrients were not found to be limiting, whilst nitrogen was more limiting than phosphorus with an algal preference for ammonium over nitrate. Sediments form a phosphorus sink but there is hypolimnetic release from the one area showing regular temporary stratification. This indicates that the rate of primary production in the water column could double if conditions change to allow lake-wide nutrient release from sediments. Both external and recycled nutrient regeneration are important. 相似文献
11.
浅水湖泊生态系统正遭受广泛而强烈的人为干扰,但是对收割水生植物干扰的研究甚少。于2019年8月对芡实过度生长的陈瑶湖进行通道式分区收割工程,分析了收割芡实(Euryale ferox)前后不同处理组浮游植物群落的变化。研究期间共鉴定出浮游植物6门47属72种,其中收割前63种,收割后71种。收割后浮游植物的细胞密度和生物量均高于收割前,分别增加了39.78%和5.09%。收割芡实导致陈瑶湖浮游植物群落为由蓝藻-绿藻-硅藻-隐藻群落转变为蓝藻-绿藻-硅藻群落。其中蓝藻细胞密度和生物量显著高于收割前(P<0.05),归因于有害蓝藻(铜绿微囊藻Microcystis aeruginosa、水华束丝藻Aphanizomenon flos-aquae、小颤藻Oscillatoria tenuis、卷曲鱼腥藻Dolicospermum circinale、小席藻Phormidium tenu)的增加。收割还导致了硅藻群落由附生型向浮游型硅藻的转变,表现为尖针杆藻(Ulnaria acus)减少,而颗粒直链藻极狭变种(Aulacoseira granulata var.angustissima)、梅尼小环藻(Cyclotella meneghiniana)增加。在芡实收割过程中,未收割组和河道的浮游植物群落结构在时空分布上无显著性差异(P>0.05),但收割组在收割后的不同阶段内差异较为明显,其细胞密度和生物量随着收割实验的结束逐渐降低。浮游植物与环境因子的相关性分析表明,水生植被覆盖度、总磷、总氮、溶解氧和叶绿素a浓度是影响浮游植物细胞密度和生物量变化的主要环境因子。综合陈瑶湖水质状态,本研究认为收割芡实并不能缓解浅水湖泊富营养化状况,研究结果为浅水湖泊水生植被的管理提供理论依据。 相似文献
12.
Aida G. Infante 《International Review of Hydrobiology》1997,82(4):469-477
Lake Valencia is heavily polluted by waste water of domestic, agricultural and industrial origin. The high organic load may have produced important changes in the limnological properties. Cyanobacteria dominated in numbers and biomass (over 90% throughout the year). Chlorophyll-a content averaged 37.7 + 15 μg · 1−1. Maximum concentrations of 50–80 μg · 1−1 were found near the inflows affected by organically polluted affluents. There has been a 50% reduction in the euphotic zone in only 13 years. The maximum rate of gross photosynthesis per hour at light saturation was determined within the uppermost 1-meter layer. The highest value was 16,290 mg O2 · m−3 · h−1. Lake Valencia is among the most productive lakes in the world, with areal net photosynthesis averaging 7.5 g C · m−2 · d−1. 相似文献
13.
Xuhui Dong N. John Anderson Xiangdong Yang Xu chen Ji Shen 《Global Change Biology》2012,18(7):2205-2217
Floodplain lakes may play an important role in the cycling of organic matter at the landscape scale. For those lakes on the middle and lower reaches of the Yangtze (MLY) floodplain which are subjected to intense anthropogenic disturbance, carbon burial rates should, theoretically, be substantial due to the high nutrient input, increased primary production and high sediment accumulation rates. There are more than 600 lakes >1 km2 on the Yangtze floodplain including 18 lakes >100 km2 and most are shallow and eutrophic. 210Pb‐dated cores were combined with total organic carbon (TOC) analyses to determine annual C accumulation rates (C AR; g C m?2 yr?1) and the total C stock (since ~1850). The sediment TOC content is relatively low with an average <2% in most lakes. C AR ranged from ~5 to 373 g C m?2 yr?1, resulting in C standing stocks of 0.60–15.3 kg C m?2 (mean: ~5 kg C m?2) since ~1850. A multicore study of Chaohu lake (770 km2) indicated that spatial variability of C burial was not a significant problem for regional upscaling. The possible effect of changes in lake size and catchment land use on C burial was examined at Taibai lake and indicated that lake shrinkage and declining arable agriculture had limited effects on C AR. The organic C standing stock in individual lakes is, however, significantly dependent on lake size, allowing a simple linear scaling for all the MLY lakes. Total regional C sequestration was ~80 Tg C since ~1850, equivalent to ~11% of C sequestration by soils, but in ~3% of the land area. Shallow lakes from MLY are a substantial regional C sink, although strong mineralization occurs due to their shallow nature and their role as C sinks is threatened due to lake drainage. 相似文献
14.
Seasonal Variation of Virioplankton in a Eutrophic Shallow Lake 总被引:5,自引:0,他引:5
Yan-Ming Liu Qi-Ya Zhang Xiu-Ping Yuan Zheng-Qiu Li Jian-Fang Gui 《Hydrobiologia》2006,560(1):323-334
Lake Donghu is a typical eutrophic freshwater lake in which high abundance of planktonic viruses was recently revealed. In
this study, seasonal variation of planktonic viruses were observed at three different trophic sites, hypertrophic, eutrophic,
and mesotrophic regions, and the correlation between their abundances and other aquatic environmental components, such as
bacterioplankton, chlorophyll a, burst size, pH, dissolved oxygen, and temperature, was analyzed for the period of an year. Virioplankton abundance detected
by transmission electron microscope (TEM) ranged from 5.48 × 108 to 2.04 × 109 ml−1 in all the sites throughout the study, and the high abundances and seasonal variations of planktonic viruses were related
to the trophic status at the sampled sites in Lake Donghu. Their annual mean abundances were, the highest at the hypertrophic
site (1.23×109 ml−1), medium at the eutrophic site (1.19×109 ml−1), and the lowest at the mesotrophic site (1.02×109 ml−1). The VBR (virus-to-bacteria ratio) values were high, ranging from 49 to 56 on average at the three sampled sites. The data
suggested that the high viral abundance and high VBR values might be associated with high density of phytoplankton including
algae and cyanobacteria in this eutrophic shallow lake, and that planktonic viruses are important members of freshwater ecosystems. 相似文献
15.
1. The scale of investigations influences the interpretation of results. Here, we investigate the influence of fish and nutrients on biotic communities in shallow lakes, using studies at two different scales: (i) within‐lake experimental manipulation and (ii) comparative, among‐lake relationships. 2. At both scales, fish predation had an overriding influence on macroinvertebrates; fish reduced macroinvertebrate biomass and altered community composition. Prey selection appeared to be size based. Fish influenced zooplankton abundance and light penetration through the water column also, but there was no indication that fish caused increased resuspension of sediment. 3. There were effects of nutrients at both scales, but these effects differed with the scale of the investigation. Nutrients increased phytoplankton and periphyton at the within‐lake scale, and were associated with increased periphyton at the among‐lake scale. No significant effect of nutrients on macroinvertebrates was observed at the within‐lake scale. However, at the among‐lake scale, nutrients positively influenced the biomass and density of macroinvertebrates, and ameliorated the effect of fish on macroinvertebrates. 4. Increased prey availability at higher nutrient concentrations would be expected to cause changes in the fish community. However, at the among‐lake scale, differences were not apparent in fish biomass among lakes with different nutrient conditions, suggesting that stochastic events influence the fish community in these small and relatively isolated shallow lakes. 5. The intensity of predation by fish significantly influences macroinvertebrate community structure of shallow lakes, but nutrients also play a role. The scale of investigation influences the ability to detect the influence of nutrients on the different components of shallow lake communities, particularly for longer lived organisms such as macroinvertebrates, where the response takes longer to manifest. 相似文献
16.
1. The distribution of zooplankton in shallow lakes is negatively related to macrophyte density. However, the abundance of their food along density gradients of macrophytes is unknown. A common but untested assumption is that food quantity and quality for pelagic zooplankton is poor in the littoral zone owing to the deleterious influence of macrophytes on phytoplankton. 2. We tested this assumption with a combination of a field survey and laboratory experiments. We collected seston samples from the littoral and pelagic zones of four shallow temperate lakes and related food quantity (phytoplankton biovolume) and quality to macrophyte abundance (per cent volume infested). Seston food quality was assessed in three ways: N/C and P/C ratios, polyunsaturated fatty acid content and phytoplankton community composition. In the laboratory, we measured the growth and reproduction of Daphnia pulicaria on diets consisting of seston from the littoral and pelagic zones in one lake. 3. In our four study lakes, food quantity was not significantly influenced by macrophyte abundance, and food quality was generally high. Laboratory experiments showed increased juvenile growth, but no significant change in D. pulicaria reproduction, when feeding on littoral resources compared to pelagic resources. 4. Our results suggest that there is no nutritional cost to pelagic zooplankton inhabiting the littoral zone. Therefore, it is likely that other factors (e.g. predation, abiotic factors) are involved in determining zooplankton habitat use. 相似文献
17.
The introduction of P and N loads exceeding 4-14 and 1-2 times, respectively, the amount of these nutrients stored in the waters of four lakes (dystrophic and eutrophic, stratified and unstratified) resulted in stronger, two-phased changes in Ptot standing stock and in rather insignificant and non-directed changes in Ntot in all lakes. In the waters there was the immediate increase of Ptot followed by a decrease (together with a decrease in the N : P ratio) but the final level was still higher than in the control. In the top layer of off-littoral sediments there was a temporary accumulation of nutrients followed by their release to a level significantly lower than that in the control year. Visible changes in the nutrient content and total biomass of above-ground parts of macrophytes were noted only in the lake which was previously highly dystrophic, after it had been limed. This lake reacted strongest to the P load, and the release of nutrients from its deposits started simultaneously with fertilization. It is hypothesized that the reduction in the N : P ratio in the lake waters was mainly responsible for the lack of assimilation of further doses of P and that the acceleration of denitrification process caused by the higher overall lake productivity was responsible for the stabilization and removal of the N load. The activation of bacterial decomposition in the sediments due to the increase in lake productivity and sedimentation rate was considered as the probable reason for the acceleration of the nutrients release from the top layers of the sediments and their further physical transport to deeper layers. 相似文献
18.
Yuxuan Gao Lei Wang Xiaoqing Hu Zhuolun Zhang Baogui Liu Xinhou Zhang Guoxiang Wang 《Ecology and evolution》2021,11(20):14268
Rosette‐type submerged macrophytes are widely distributed across a range of water depths in shallow lakes and play a key role in maintaining ecosystem structures and functions. However, little is known about the rapid adaptive responses of such macrophytes to variations in water depth, especially at the juvenile stage. Here, we conducted a short‐term in situ mesocosm experiment, in which the juveniles of Vallisneria natans were exposed to a water depth gradient ranging from 20 to 360 cm. Twenty‐two leaf‐related traits were examined after 4 weeks of growth in a shallow lake. Most (18) traits of V. natans generally showed high plasticity in relation to water depth. Specifically, juveniles allocated more biomass to leaves and had higher specific leaf area, leaf length‐to‐width ratio, chlorophyll content, and carotenoids content in deep waters, displaying trait syndrome associated with high resource acquisition. In contrast, V. natans juveniles in shallow waters had higher leaf dry matter content, leaf soluble carbohydrate content, carotenoids per unit chlorophyll, and peroxidase activity, pertaining to resource conservation. Notably, underwater light intensity was found to be the key factor explaining the trait plasticity along the water depth gradient, and 1.30 mol photons m−2 d−1 (at 270 cm) could be the optimal irradiance level based on the total biomass of V. natans juveniles. The present study highlights the significance of leaf trait plasticity for rosette‐type macrophytes in response to variations in water depth and sheds new light on the differences between trade‐offs in deep‐ and shallow‐water areas. 相似文献
19.
A long-term phytoplankton study was carried out in the Albufera of Valencia, a shallow hypertrophic lake (surface area 21 km2, mean depth 1 m, total inorganic nitrogen load 155 g m-2 y-1, total inorganic phosphate load 15 g m-2 y-1) from 1980 to 1988. The lake functions as a reservoir for the surrounding rice cultivation. From 1940's to 1988, its phytoplankton assemblage has been altered from a mesotrophic to a hypertrophic character, as consequence of the increasing pollution. For 1980–88, annual variations in the phytoplankton were less pronounced than seasonal changes. The hypertrophic and morphometric features of the lake favoured the stability of the phytoplankton assemblage and chlorophyll a levels during the study period. Seasonal and horizontal distribution of the total phytoplankton abundance and biomass were highly influenced by the hydrological cycle of the lagoon. Compared with other shallow nutrient rich lakes, the Albufera of Valencia is similar to the shallow hypertrophic lakes of the Netherlands. 相似文献
20.
Nina A. Petrova 《Hydrobiologia》1986,138(1):65-73
The paper discusses the seasonality of Melosira-plankton in Ladoga and Onega Lakes and its comparison with that in other large northern lakes. The periodicity of Melosira in dimictic temperate lakes is mainly connected with periods of turbulence of the lake water in spring and autumn. The role of Melosira in the primary productivity of great northern lakes is important both for the oligotrophic phase and in the case of eutrophication. In very advanced states of eutrophication the spring crop of Melosira-plankton may be the cause of oxygen depletion in the hypolimnion. 相似文献