首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—Three days after superior cervical ganglionectomy of adult Sprague-Dawley rats, the levels of endogenous norepinephrine, the uptake process for [3H]norepinephrine and the activity of tyrosine hydroxylase decreased 99 per cent in the ipsilateral salivary gland. In contrast, the activity of dopamine-β-hydroxylase and DOPA decarboxylase fell to 30 per cent of the activity of the contralateral innervated gland. Examination of the cofactor requirements, the characteristics of activation by cupric ion and the immunologic identity of this residual hydroxylase activity indicated that it was authentic dopamine-β-hydroxylase. The residual dopamine-β-hydroxylase in the denervated gland had the same subcellular distribution as the enzyme in the innervated salivary gland. Procedures that caused atrophy or hypertrophy of the acinar cells did not affect the total content of dopamine-β-hydroxylase in the denervated salivary gland. Chemical sympathectomy with 6-hydroxy-dopamine caused a 40 per cent decrement in the serum levels of dopamine-β-hydroxylase but a 30 per cent increase in its activity in the denervated salivary gland. Although denervation caused a complete loss of endogenous norepinephrine in the salivary gland, it resulted in only a 15 per cent decrement in the levels of endogenous octopamine and β-phenylethanolamine, two other products of dopamine-β-hydroxylase.  相似文献   

2.
SERUM DOPAMINE-β-HYDROXYLASE IN SCHIZOPHRENIC PATIENTS   总被引:2,自引:2,他引:0  
K. Fujita    T. Ito    K. Maruta    R. Teradaira    H. Beppu    Y. Nakacami  Y. Kato    T. Nagatsu  T. Kato 《Journal of neurochemistry》1978,30(6):1569-1572
Abstract— Dopamine-β-hydroxylase (DBH) activity in serum was decreased significantly in schizophrenic patients (16.17 ± 12.60 μmol/min/1 of serum, mean ± S.D., n = 149) when compared with that of normal controls (42.53 ± 30.94 μmol/min/1 of serum, mean ± S.D., n= 153) and neurotic patients. Long duration of disease did not cause any significant changes in serum DBH activity except a tendency for increase in patients of lodger than 18 years duration. We also examined the possibility that the serum DBH deficiency in the schizophrenic group was an artifact of treatment with antipsychotic drugs, especially phenothiazines. No significant difference was observed between the patients treated with the drugs and the patients not receiving the drugs.  相似文献   

3.
—The enzyme dopamine-β-hydroxylase (EC 1.14.17.1) which converts dopamine to noradrenaline was found to be present in substantial amounts in sheep brain hypothalamus and caudate nucleus and was located to the synaptic vesicle fractions in these two brain regions by subcellular fractionation. This dopamine-β-hydroxylase was associated with paniculate matter in these two brain regions since it was resistant to solubilization with butan-1-ol and 0.1% Triton X-100. As highly significant levels of dopamine-β-hydroxylase were present in the caudate nucleus, factors other than a simple lack of this enzyme must operate to maintain the low levels of noradrenaline and high levels of dopamine in the caudate nucleus. Purified adrenal dopamine-β-hydroxylase was substantially inhibited by two factors prepared from sheep brain hypothalamus and caudate nucleus. These were found to be cupric ions and a sulphydryl inhibitor. High levels of the sulphydryl inhibitor of dopamine-β-hydroxylase were found in synaptosomal fractions from sheep brain hypothalamus and caudate nucleus and the levels were comparable in both regions. Upon subfractionation of a synaptosome-containing fraction from the hypothalamus, the inhibitor was located predominantly in the soluble fraction, although there were significant levels in the synaptic vesicle fraction. Therefore, the sulphydryl inhibitor must be considered as a possible regulator of dopamine-β-hydroxylase activity. Free cupric ion concentrations as low as 2·5 μM were found to inhibit purified adrenal dopamine-β-hydroxylase in vitro and the concentration of copper in the soluble tissue component of hypothalamus and caudate nucleus was well above this minimal copper concentration. The percentage content of soluble copper in the caudate nucleus was significantly higher than in the hypothalamus. The importance of the soluble to particulate-bound ratio of copper in brain was shown in studies of the developing rat brain. A rapid increase in the level of copper in brain was found in the first 4 weeks but the level was constant by 2 months of age. The percentage of soluble copper, however, was maximal soon after birth and had declined to a constant figure by 2 months of age. A scheme for the regulation of dopamine-β-hydroxylase activity involving these factors is proposed.  相似文献   

4.
Abstract— Superior cervical ganglionectomy results in a complete noradrenergic neuronal denervation of the rat sublingual-submaxillary salivary gland. Dopamine-β-hydroxylase activity in the serous submaxillary gland falls approximately 90% after noradrenergic denervation; but in the mucinproducing sublingual gland dopamine-β-hydroxylase activity is reduced by only 33%. Dopamine-β-hydroxylase immunofluorescence in the submaxillary gland is distributed with noradrenergic neurons and is eliminated by superior cervical ganglionectomy. In the sublingual gland dopamine-β-hydroxylase immunofluorescence is localized within mucinous acini and small ducts, and the disposition and intensity of staining materials is not affected by noradrenergic denervation for up to 30 days. DBH protein in the sublingual gland had little physiologic activity in vivo. Low levels of authentic dopamine-β-hydroxylase activity were detected in saliva. Thus, dopamine-β-hydroxylase protein is present in the sublingual gland in an extraneuronal location and appears to be a secretory product of the gland.  相似文献   

5.
Axoplasmic transport of dopamine-β-hydroxylase (DBH), a marker enzyme for catecholamine storage vesicles, was studied in sympathetic nerves of the rat. At 24 h after ligation of the sciatic nerve, there was a marked accumulation of DBH activity in the first 3 mm proximal to the ligature. Immediately distal to the ligature, a slight accumulation took place. Accumulation proximal to the ligature was a linear function of time for at least 6 h; the velocity of transport was calculated as 4.6 mm/h. Local application of 1 ·l of 0.1 M colchicine, caused a rapid increase in DBH activity in superior cervical ganglia. This increase remained linear for 22 h and its rate indicated a turnover time of 12 h for DBH in these ganglia. After application of colchicine to the ganglia, there was a decrease in DBH activity in the submaxillary salivary glands. The initial rate of this decrease was less than the rate of increase in the ganglia and probably reflected the normal turnover of the enzyme. Our results indicated that the turnover time for DBH in salivary glands ranged between 3.6 and 6.3 days.  相似文献   

6.
TYROSINE HYDROXYLASE IN RAT BRAIN: DEVELOPMENTAL CHARACTERISTICS   总被引:2,自引:15,他引:2  
Abstract— The development of tyrosine hydroxylase (tyrosine 3-hydroxylase, EC 1.14.3.a) activity has been examined in whole rat brain and in various regions and subcellular fractions thereof. The specific activity of tyrosine hydroxylase increased almost 15-fold from 15 days of gestation to adulthood. With maturation, those regions of the brain that contain only terminals of the catecholaminergic neurons showed the greatest increases in enzyme activity. There was a shift in the subcellular distribution of tyrosine hydroxylase from the soluble fraction in the fetal brain to the synaptosomal fraction in the adult brain. Tyrosine hydroxylase, dopamine hydroxylase (EC 1.14.2.1) and the specific uptake mechanism for norepinephrine appear to develop in a coordinated fashion.  相似文献   

7.
Abstract— Phenylethanolamine and octopamine have been detected in the developing rat brain. Maximum concentration of these amines occurs early in development (16-17 days of gestation). At this developmental stage, the brain concentration of these amines is higher than that of norepinephrine. There is a sharp decline in the phenylethanolamine and octopamine concentrations on day 18 of gestation to approximately those of the adult. This decrease coincides with an increase in-monoamine oxidase activity of fetal brain, with an increase in the activities of tyrosine hydroxylase and dopamine-β-hydroxylase, and with the appearance of a saturable active uptake mechanism for norepinephrine. The administration of iproniazid, a monoamine oxidase inhibitor, to pregnant rats produced an increase in phenylethanolamine, octopamine and norepinephrine concentrations in the fetal rat brain at 16 days of gestation. p -Chlorophenylalanine, an inhibitor of phenylalanine hydroxylase, decreased fetal brain norepinephrine; this drug increased brain levels of phenylethanolamine and octopamine. The combined administration of iproniazid, p -chlorophenylalanine and phenylalanine to pregnant rats resulted in increased concentrations of octopamine and in a several-fold increase of phenylethanolamine levels; norepinephrine concentrations were sharply reduced. The possible significance of these findings in relation to pathological conditions such as phenylketonuria is discussed.  相似文献   

8.
9.
—Exposure of rats to 3°C for up to 30 min leads to a decrease of 30 per cent in the dopamine-β-hydroxylase activity of the vesicular pellet of the heart; this is greater than can be accounted for by loss of soluble DBH from the two populations of noradrenaline storage vesicles known to be present in the heart. Cold exposure in the presence of α-methyltyrosine causes a much smaller reduction in dopamine-β-hydroxylase activity; this suggests that there is a decrease in transmitter release when synthesis is inhibited. The noradrenaline concentration of the vesicular pellet rises briefly during cold exposure and is then maintained at control levels; the early rise is absent in the presence of α-methyltyrosine. The use of the noradrenaline : dopamine-β-hydroxylase ratio as an index of saturation of vesicular storage capacity suggests that during cold exposure an increased synthesis rate leads to increased filling of vesicles.  相似文献   

10.
Abstract— A modification of a specific and sensitive radioassay was used to measure dopamine-β-hydroxylase (DBH) (EC 1.14.2.1) in various regions of the rat CNS. Highest activity was found in the hypothalamus. Relative to activity in the hypothalamus (= 100 per cent), activity in brainstem was 80 per cent, in sensory motor cortex 55 per cent, in caudate nucleus 32 per cent, and in cervical spinal cord 30 per cent. Two to three weeks after a unilateral electrolytic lesion of the lateral hypothalamus, activity of DBH in the ipsilateral cerebral cortex fell to 17 per cent of control values without changes in activity ipsi- or contra-laterally in the brainstem. Thalamic lesions did not affect DBH activity. In cerebral cortex contralateral to the hypothalamic lesion, enzymic activity rose 30 per cent. After intracisternal administration of 6-hydroxy-dopamine (6-OH-DA), cortical DBH activity fell to 20 per cent of control values. Reserpine (3 mg/kg subcutaneously for 3 days) did not increase the activity of DBH in brain regions but did increase the activity of DBH in adrenal gland 200 per cent. Our results suggest that: (a) DBH is widely distributed in neurons in CNS with a regional pattern of activities that appears to parallel the Jevels of norepinephrine; (b) DBH activity in the cerebral cortex depends on the integrity of structures (e.g. medial forebrain bundle) in lateral hypothalamus; (c) DBH in brain areas lacking cell bodies of nore- pinephrine-neurons (e.g. cerebral cortex) is contained in norepinephrine-containing axon terminals and (d) the activity of DBH in brain is not increased by reserpine under conditions that provoke marked increase of DBH activity in the adrenal gland.  相似文献   

11.
Abstract— Three days following a single injection of reserpine (10 mg/kg, i.p.) the activity and amount of dopamine-β-hydroxylase (DBH) are increased nearly 2-fold in the noradrenergic cell bodies of the nucleus locus coeruleus of rat. To determine if this increased accumulation of DBH is due to an increased rate of enzyme synthesis, [3H]amino acids were infused into the IVth ventricle of reserpine-and saline-injected rats. This method was 35 times more effective than intracisternal infusion and 600 times more effective than intravenous infusion. DBH protein was isolated from the locus coeruleus by immunoprecipitation and SDS-electrophoresis. These steps proved crucial for the complete isolation of DBH from other labelled proteins. Indeed, only 10–15% of the immunoprecipitate was finally identified as labelled DBH protein. The rate of incorporation of [3H]leucine into DBH protein of locus coeruleus was increased to 181%, of control following reserpine, whereas that into TCA-precipitable protein was unchanged. A similar result was obtained using [3H]lysine. In contrast, the apparent half-life of the enzyme did not change following reserpine. The relative rate of synthesis of DBH ([3H]DBH/3H-total protein), denoting selectivity of response, was increased in the locus coeruleus of reserpine-treated rats to 154% of control ( P < 0.01). These findings indicate that increased synthesis accounts for the observed increase in DBH protein in the locus coeruleus following reserpine administration.  相似文献   

12.
Bovine adrenal medullary dopamine-β-hydroxylase binds with concanavalin A and forms an enzymically active precipitate. The formation of the insoluble complex is pH-dependent and can be inhibited by α-methyl-D-mannoside, D-mannose and D-glucose. The insoluble complex can be dissociated into two species with α-methyl-D-mannoside. From the results, it appears that the interaction between dopamine-β-hydroxylase and concanavalin A is due to the carbohydrate moiety of dopamine-β-hydroxylase. This property was used to purify the enzyme from a soluble lysate of chromaffin granules. Of all the proteins contained in the soluble lysate, dopamine-β-hydroxylase was the only one to be retained on a column of concanavalin A covalently bound to Sepharose 4B. The preparation of pure dopamine-β-hydroxylase exhibits a very high specific activity of 320 μmol of octopamine formed per 30 min per mg of protein.  相似文献   

13.
—Uridine phosphorylase (uridine: orthophosphate ribosyltransferase; EC 2.4.2.3) from rat brain was purified and its properties were studied. The enzyme resembled preparations made from other mammalian sources. Its pH optimum was between 7·6 and 8·0. An examination of its action on various substrates showed rates of reaction in the order: uridine > deoxyuridine > thymidine > cytidine. The enzyme showed a requirement for phosphate which could also be satisfied by arsenate. The activity of the enzyme was protected from heat inactivation by uridine and by phosphate. In brain and liver the activity of the enzyme increased five- to ten-fold between 10 and 20 days of life. Injections of cortisol or of uridine did not increase the enzymic activity.  相似文献   

14.
—Administration of cycloheximide, 10 mg/kg s.c. led within 4 h to an approx 30% reduction of dopamine-β-hydroxylase (DBH) activity in the abdominal portion of rat sciatic nerves. At least two more hours elapsed before DBH activity in the distal part of these nerves began to fall. This pattern suggests reduced synthesis or delivery of DBH into axons but continued transport of previously delivered enzyme. Coinciding with the time at which DBH activity began to fall in distal segments of sciatic nerve, there was a marked reduction in the accumulation of DBH activity above a ligature in this region. Between 4 and 8 h after administration of cylcoheximide, 10 mg/kg, accumulation above a ligature was 70% less than in untreated nerves (P < 0.001), a reduction significantly greater (P < 0.05) than the accompanying 28% loss of baseline DBH activity. At the same time, the clearance of DBH activity from nerve regions distal to a ligature was greatly reduced. This pattern is consistent with the depletion of a minor but rapidly transported compartment of DBH. Six hours after administration of cylcoheximide, 10 mg/kg, the apparent subcellular distribution of DBH in distal regions of sciatic nerve was altered by a significant 36% loss in sedimentable DBH activity, with non-significant changes in othcr fractions. This suggests that rapidly transported DBH, depleted from the nerve by cycloheximide-induced inhibition of protein synthesis, is more highly associated with intraneuronal particles than is slowly transported or stationary DBH.  相似文献   

15.
DEVELOPMENTAL PROFILES OF GANGLIOSIDES IN HUMAN AND RAT BRAIN   总被引:10,自引:13,他引:10  
Abstract— The developmental profiles of individual gangliosides of human brain were compared with those of rat brain. Interest was focused mainly on the pre- and early postnatal development. Human frontal lobe cortex covering the period from 10 foetal weeks to adult age and the cerebrum of rat from birth to 21 days were analysed. Lipid-NANA and lipid-P were followed; in the rat, also protein and brain weight. A limited number of samples of human cerebral white matter and cerebellar cortex were also studied. The following major results were obtained:
  • 1 The ganglioside concentration increased approximately three-fold within a short period: in rat cerebrum, from birth to the 17th day; in human cerebral cortex, from the 15th foetal week to the age of about 6 months. The largest increase in the rat brain occurred by the 11th to the 13th day; in human brain by term. The relative increase of gangliosides during this period was more rapid than that of phospholipids.
  • 2 A hitherto unknown distinct early period of ganglioside and phospholipid formation in rat occurred by the second to fourth day.
  • 3 The changes in brain ganglioside pattern, characteristic of the developmental stages of the rat, were found to be equally pronounced in the human brain.
  • 4 Regional developmental differences in the ganglioside pattern were demonstrated in human brain. A characteristic white matter pattern, rich in monosialogangliosides, had developed by the age of 1 year. The increase in ganglioside concentration and the formation of the definitive ganglioside pattern of cerebellar cortex occurred later than in cerebral cortex. This cerebellar pattern was characterized by a very large trisialoganglioside fraction.
  • 5 The two periods of rapid ganglioside metabolism in rat brain preceded the two periods of rapid protein biosynthesis.
  相似文献   

16.
Abstract— The distribution of DBH activity between soluble and sedimentable fractions of hypotonic homogenates was examined in rat sympathetic ganglia and nerves after interruption of axonal transport. Local application of colchicine to superior cervical ganglia caused an increase mainly in particulate DBH activity, which was presumably bound to membranes. Likewise, in sciatic nerves, particulate DBH activity accumulated on both sides of a ligature and disappeared from a region well below a ligature much faster than did soluble activity. On the other hand, 18 h after simultaneous application of two ligatures to the nerve, neither total DBH activity nor subcellular distribution of this activity changed in the isolated nerve region. More detailed analysis showed that ligation affected the distribution of DBH activity within a fraction that sedimented at 140,000 g after homogenization of nerves in isotonic sucrose. Just above a ligature, osmotically releasable DBH activity was a smaller proportion of the sedimentable activity than in control nerves. However, as compared to controls, osmotically releasable DBH activity was a larger proportion of the activity in the sedimentable fraction from a region well below a ligature. A model was developed which accounts for some of these results by postulating that DBH is associated with different compartments in sciatic nerve which have different rates of transport and different proportions of soluble and bound enzyme.  相似文献   

17.
—The quantitative subcellular distribution of β-phenylethylamine, p-tyramine and tryptamine in rat brain was investigated using the mass spectrometric integrated ion current technique. More of the total cellular tryptamine was found to be associated with paniculate fractions than was the case for phenyiethylamine and p-tyramine but a significant amount of this tryptamine was found to be labile. Analysis of the particulate fractions indicated that each of the amines was localized predominantly in the crude P2 pellet and that the bulk of this was associated with the synaptosomal (P2B) fraction. Inhibition of monoamine oxidase systems with pargyline caused an increase in the level of all three amines in all fractions, but the increase was greater in the supernatant than in the combined particulate fractions. This treatment produced changes in the distribution of β-phenylethylamine and p-tyramine between the various particulate subcellular fractions but did not markedly alter the distribution of tryptamine between the same fractions.  相似文献   

18.
Abstract— A fraction containing noradrenaline storage vesicles of the sympathetic nerve terminals in the rat heart was obtained by differential centrifugation. In this preparation, 17% of the dopamine β-hydroxylase was present in a soluble form. Cold exposure (3°C) for periods from 5 to 30 min led to an increase in the activity of soluble dopamine β-hydroxylase by about 50%, while the activity of membrane-bound dopamine β-hydroxylase was simultaneously decreased by approx 30%. The nor-adrenaline content of the vesicles rose concomitantly with the increase in the activity of soluble dopamine β-hydroxylase. This rise in noradrenaline content was caused by an enhanced synthesis and not by an alteration in the subcellular distribution. The results are discussed with respect to the fate of dopamine β-hydroxylase during enhanced sympathetic nerve activity.  相似文献   

19.
Abstract— D-β-hydroxybutyrate (β-OHB) was compared to glucose as a precursor for brain amino acids during rat development. In the first study [3-14C]β-OHB or [2-14C]glucose was injected subcu-taneously (01 μCi/g body wt) into suckling rats shortly after birth and at 6. 11, 13, 15 and 21 days of age. Blood and brain tissue were obtained 20 min later after decapitation. The specific activity of the labelled precursor in the blood and in the brain tissue was essentially the same for each respective age suggesting that the labelled precursor had equilibrated between the blood and brain pools before decapitation. [3-14C]β-OHB rapidly labelled brain amino acids at all ages whereas [2-14C]glucose did not prior to 15 days of age. These observations are consistent with a maturational delay in the flux of metabolites through glycolysis and into the tricarboxylic acid cycle. Brain glutamate, glutamine, asparate and GABA were more heavily labelled by [3-14C]β-OHB from birth-15 days of age whereas brain alanine was more heavily labelled by [2-14C]glucose at all ages of development. The relative specific activity of brain glutamine/glutamate was less than one at all ages for both labelled precursors suggesting that β-OHB and glucose are entering the‘large’glutamate compartment throughout development. In a second study, 6 and 15 day old rats were decapitated at 5 min intervals after injection of the labelled precursors to evaluate the flux of the [14C]label into brain metabolites. At 6 days of age, most of the brain acid soluble radioactivity was recovered in the glucose fraction of the [2-,4C]glucose injected rats with 72, 74, 65 and 63% after 5, 10, 15 and 20 min. In contrast, the 6 day old rats injected with [3-14C]β-OHB accumulated much of the brain acid soluble radioactivity in the amino acid fraction with 22, 47, 57 and 54% after 5, 10, 15 and 20 min. At 15 days of age the transfer of the [14C]label from [2-14C]glucose into the brain amino acid fraction was more rapid with 29, 40, 45, 61 and 73% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. There was almost quantitative transfer of [14C]label into the brain amino acids of the 15-day-old [3-14C]β-OHB injected rats with 66, 89, 89, 89 and 90% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. The calculated half life for /?-OHB at 6 days was 19 8 min and at 15 days was 12-2 min. Surprisingly, the relative specific activity of brain GABA/glutamate was lower at 15 days of age in the [3-14C]β-OHB injected rats compared to the [2-14C]glucose injected rats despite a heavier labelling of brain glutamate in the [3-14C]β-OHB injected group. We interpreted these data to mean that β-OHB is a less effective precursor for the brain glutamate ‘subcompartment’ which is involved in the synthesis of GABA.  相似文献   

20.
Abstract— The present experiments were designed to provide direct evidence that the increase in dopamine β-hydroxylase (DBH) activity after treatment with reserpme results from an augmented synthesis of new enzyme protein. After in vivo experiments had shown that DBH could not be labelled to a sufficient extent even after administration of high doses (8.3 mCi/kg) of [3H]leucine we took advantage of earlier observations that neuronally-mediated enzyme induction initiated in vivo progresses in organ cultures of adrenal medullae in a similar manner as in vivo. With that system it was possible to achieve a sufficient labelling of DBH molecules and to provide evidence that the increase in DBH activity produced by reserpine was really due to a specific increase in DBH synthesis. The fact that the half-life of DBH was identical in organ cultures of controls and reserpine-treated animals eliminated the possibility that the increased labelling of DBH after reserpine results from a slower rate of degradation.
Both the experiments in vivo and in organ culture showed very clearly that the immunoprecipitation of labelled molecules has to be followed by additional purification by gel electrophoresis since in spite of the use of monospecific antibodies and careful washing of the immunoprecipitates contaminating coprecipitated labelled molecules accounted for up to 96% of the total precipitated radioactivity in whole adrenals ( in vivo experiments) and up to 80% in adrenal medulla (organ culture experiments). The coprecipitation of contaminants most probably results from the addition of carrier proteins, used in order to make the precipitation of the small amounts of labelled proteins visible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号