首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reliable basal heart rate (HR) measurement in freely moving newborn mice was accomplished for the first time by using a novel noninvasive piezoelectric transducer (PZT) sensor. The basal HR was approximately 320 beats/min at postnatal day (P)0 and increased with age to approximately 690 beats/min at P14. Contribution of autonomic control to HR was then assessed. Sympathetic blockade with metoprolol significantly reduced basal HR at both P6 (-236 +/- 23 beats/min; mean +/- SE) and P12 (-105 +/- 8 beats/min), but atropine was without effect, indicating the predominant tonic adrenergic stimulation and absence of vagal control for basal HR in newborn mice. In contrast to stable basal HR during 5-min recording, HR measured by ECG (ECG-HR) was markedly decreased because of the restraint stress of attaching ECG electrodes, with accompanying freezing behavior. ECG-HR lowered and further decreased gradually during 5 min (slow cardiodeceleration) at P0-P3 and rapidly decreased and gradually recovered within 5 min (transient bradycardia) at P9-P14. The response was not uniform in P4-P8 mice: they showed either of these two patterns or sustained bradycardia (9-29%), and the number of mice that showed transient bradycardia increased with age (30-100%) during the period. Studies with autonomic blockade suggest that the slow cardiodeceleration and transient bradycardia are mediated mainly by withdrawal of adrenergic stimulation and phasic vagal activation, respectively, and the autonomic control of HR response to restraint stress is likely to change from the withdrawal of adrenergic stimulation to the phasic vagal activation at different stages during P4-P8 in individual mice. The PZT sensor may offer excellent opportunities to monitor basal HR of small animals noninvasively.  相似文献   

2.
Melanocyte stimulating hormones (MSH) derived from pro-opiomelanocortin have been demonstrated to participate in the central regulation of cardiovascular functions. The aim of the present study was to elucidate the chronic effects of increased melanocortin activation on blood pressure regulation and autonomic nervous system function. We adapted telemetry to transgenic mice overexpressing alpha- and gamma-MSH and measured blood pressure, heart rate and locomotor activity, and analyzed heart rate variability (HRV) in the frequency-domain as well as baroreflex function by the sequence technique. Transgenic (MSH-OE) mice had increased systolic blood pressure but their heart rate was similar to wild-type (WT) controls. The 24-h mean of systolic blood pressure was 132+/-7mmHg in MSH-OE and 113+/-4mmHg in WT mice. Locomotor activity was decreased in the MSH-OE mice. Furthermore, MSH-OE mice showed slower adaptation to mild environmental stress in terms of blood pressure changes. The low frequency (LF) power of HRV tended to be higher in MSH-OE mice compared to WT mice, without a difference in overall variability. The assessment of baroreflex function indicated enhanced baroreflex effectiveness and more frequent baroreflex operations in MSH-OE mice. Baseline heart rate, increased LF power of HRV and increased baroreflex activity may all reflect maintenance of baroreflex integrity and an increase in cardiac vagal activity to counteract the increased blood pressure. These results provide new evidence that long-term activation of the melanocortin system elevates blood pressure without increasing heart rate.  相似文献   

3.
Healthy teens and adults performed four vagotonic maneuvers. A large series of strabismus surgery patients had deliberately quantified tension on extraocular rectus muscles during general anesthesia. The mean bradycardia was greatest for diving response (apneic facial exposure to cold) and Valsalva maneuver and least for pressure on the globe and carotid sinus massage. Bradycardia occurred for every subject for the non-surgical maneuvers, however, extraocular muscle tension frequently caused no change in heart rate or even tachycardia. The inter-subject variance in percent heart rate change was greatest for surgical oculocardiac reflex. Of the rectus muscles, the inferior caused the most bradycardia while the lateral caused the least. The percent oculocardiac reflex was not age dependent. Occasional patients demonstrated profound bradycardia with strabismus surgery. Of these maneuvers, diving response has theoretical advantage in treating paroxysmal atrial tachycardia. The human cardiac vagal efferent was stimulated by several carefully controlled maneuvers resulting in wide inter-maneuver differences in bradycardia magnitude. The greatest intra-maneuver variability occurred with surgical oculocardiac reflex.  相似文献   

4.
Aim was to elucidate autonomic responses to dynamic and static (isometric) exercise of the lower limbs eliciting the same moderate heart rate (HR) response. Method: 23 males performed two kinds of voluntary exercise in a supine position at similar heart rates: static exercise (SE) of the lower limbs (static leg press) and dynamic exercise (DE) of the lower limbs (cycling). Subjective effort, systolic (SBP) and diastolic blood pressure (DBP), mean arterial pressure (MAP), rate pressure product (RPP) and the time between consecutive heart beats (RR-intervals) were measured. Time-domain (SDNN, RMSSD), frequency-domain (power in the low and high frequency band (LFP, HFP)) and geometric measures (SD1, SD2) as well as non-linear measures of regularity (approximate entropy (ApEn), sample entropy (SampEn) and correlation dimension D2) were calculated. Results: Although HR was similar during both exercise conditions (88±10 bpm), subjective effort, SBP, DBP, MAP and RPP were significantly enhanced during SE. HRV indicators representing overall variability (SDNN, SD 2) and vagal modulated variability (RMSSD, HFP, SD 1) were increased. LFP, thought to be modulated by both autonomic branches, tended to be higher during SE. ApEn and SampEn were decreased whereas D2 was enhanced during SE. It can be concluded that autonomic control processes during SE and DE were qualitatively different despite similar heart rate levels. The differences were reflected by blood pressure and HRV indices. HRV-measures indicated a stronger vagal cardiac activity during SE, while blood pressure response indicated a stronger sympathetic efferent activity to the vessels. The elevated vagal cardiac activity during SE might be a response mechanism, compensating a possible co-activation of sympathetic cardiac efferents, as HR and LF/HF was similar and LFP tended to be higher. However, this conclusion must be drawn cautiously as there is no HRV-marker reflecting “pure” sympathetic cardiac activity.  相似文献   

5.
Heart rate (HR) dynamics were investigated in mice deficient in monoamine oxidase A and B, whose phenotype includes elevated tissue levels of norepinephrine, serotonin, dopamine, and phenylethylamine. In their home cages, spectral analysis of R-R intervals revealed more pronounced fluctuations at all frequencies in the mutants compared with wild-type controls, with a particular enhancement at 1-4 Hz. No significant genotypic differences in HR variability (HRV) or entropies calculated from Poincaré plots of the R-R intervals were noted. During exposure to the stress of a novel environment, HR increased and HRV decreased in both genotypes. However, mutants, unlike controls, demonstrated a rapid return to baseline HR during the 10-min exposure. Such modulation may result from an enhanced vagal tone, as suggested by the observation that mutants responded to cholinergic blockade with a decrease in HRV and a prolonged tachycardia greater than controls. Monoamine oxidase-deficient mice may represent a useful experimental model for studying compensatory mechanisms responsible for changes in HR dynamics in chronic states of high sympathetic tone.  相似文献   

6.
Chronic intermittent hypoxia (CIH) leads to increased sympathetic nerve activity and arterial hypertension. In this study, we tested the hypothesis that CIH impairs baroreflex (BR) control of heart rate (HR) in mice, and that decreased cardiac chronotropic responsiveness to vagal efferent activity contributes to such impairment. C57BL/6J mice were exposed to either room air (RA) or CIH (6-min alternations of 21% O(2) and 5.7% O(2), 12 h/day) for 90 days. After the treatment period, mice were anesthetized (Avertin) and arterial blood pressure (ABP) was measured from the femoral artery. Mean ABP (MABP) was significantly increased in mice exposed to CIH (98.7 +/- 2.5 vs. RA: 78.9 +/- 1.4 mmHg, P < 0.001). CIH increased HR significantly (584.7 +/- 8.9 beats/min; RA: 518.2 +/- 17.9 beats/min, P < 0.05). Sustained infusion of phenylephrine (PE) at different doses (0.1-0.4 microg/min) significantly increased MABP in both CIH and RA mice, but the ABP-mediated decreases in HR were significantly attenuated in mice exposed to CIH (P < 0.001). In contrast, decreases in HR in response to electrical stimulation of the left vagus nerve (30 microA, 2-ms pulses) were significantly enhanced in mice exposed to CIH compared with RA mice at low frequencies. We conclude that CIH elicits a sustained impairment of baroreflex control of HR in mice. The blunted BR-mediated bradycardia occurs despite enhanced cardiac chronotropic responsiveness to vagal efferent stimulation. This suggests that an afferent and/or a central defect is responsible for the baroreflex impairment following CIH.  相似文献   

7.
Reflex changes in the heart frequency, blood pressure and respiratory frequency induced by slow changes of the blood volume are observed in the aesthetized European hamster (Cricetus cricetus L.). Tachycardia, hypertension and hyperpnoe occured during intravenous infusion and bradycardia, hypotension and respiratory inhibition during hemorrhages or local distensions of the junction between the superior vena cava and the right atrium. Various receptor organs of the heart and the great vessels and sympathetic as well as parasympathetic effector mechanisms were involved in the reflex effects. An activation of efferent vagal fibers decreased blood pressure and heart frequency; an excitation of efferent sympathetic fibers increased blood pressure and heart frequency.  相似文献   

8.
Heart output, arterial pressures, and heart rate were measured directly in conscious unrestrained eels (Anguilla australis) and responses to intra-arterial injection of adrenaline monitored. Adrenaline increased systemic vascular resistance, heart output, and cardiac stroke volume in all animals. In some cases small transient decreases in stroke volume and hence heart output were seen at the peak of the pressor response: These probably reflect a passive decrease in systolic emptying due to increased afterload on the heart. In most cases, adrenaline produced tachycardia; but two animals showed consistent and profound reflex bradycardia, which was accompanied by a concomitant increase in stroke volume such that heart output was maintained or increased slightly. The interaction of changes in heart output and systemic vascular resistance produced complex and variable changes in arterial pressure. There was no consistent pattern of changes in branchial vascular resistance. Atropine treatment in vivo revealed vagal cardio-inhibitory tone in some animals and always blocked the reflex bradycardia seen during adrenaline induced hypertension. In some animals, adrenaline injection after atropine pretreatment led to the establishment of cyclic changes in arterial pressure with a period of about 1 min (Mayer waves).  相似文献   

9.
Endurance-trained athletes have increased heart rate variability (HRV), but it is not known whether exercise training improves the HRV and baroreflex sensitivity (BRS) in sedentary persons. We compared the effects of low- and high-intensity endurance training on resting heart rate, HRV, and BRS. The maximal oxygen uptake and endurance time increased significantly in the high-intensity group compared with the control group. Heart rate did not change significantly in the low-intensity group but decreased significantly in the high-intensity group (-6 beats/min, 95% confidence interval; -10 to -1 beats/min, exercise vs. control). No significant changes occurred in either the time or frequency domain measures of HRV or BRS in either of the exercise groups. Exercise training was not able to modify the cardiac vagal outflow in sedentary, middle-aged persons.  相似文献   

10.
The acute effects of capsaicin on the cardiovascular system   总被引:1,自引:0,他引:1  
Arterial blood pressure and heart rate were recorded from male Wistar rats anaesthetized with urethane. Intravenous injection of capsaicin, 1 microgram, produced a reproducible triphasic effect on blood pressure, comprising an initial fall in blood pressure and heart rate, followed by a transient and then a sustained pressor response. The depressor response and bradycardia were abolished by vagal section. The transient pressor response was altered in shape by hexamethonium. Slow intravenous infusion of capsaicin, 50 micrograms over 12 min, produced only a sustained pressor response accompanied by tachycardia, which was resistant to hexamethonium but abolished by morphine and pithing. Responses to both 1 microgram injection and 50 micrograms infusion of capsaicin were unaffected by the SP antagonist, spantide, but were abolished by capsaicin pretreatment of the rats. Capsaicin induces complex effects on the cardiovascular system, the nature of which varies with the dose and speed of administration.  相似文献   

11.
This study examines the acute effect of heart rate variability (HRV) biofeedback on HRV measures during and immediately after biofeedback and during the following laboratory-induced stress. Eighteen healthy males exposed to work-related stress were randomised into an HRV biofeedback group (BIO) or a comparative group (COM). Subjects completed a modified Stroop task before (Stroop 1) and after (Stroop 2) the intervention. Both groups had similar physiological responses to stress in Stroop 1. In Stroop 2, the COM group responded similarly to the way they did to Stroop 1: respiratory frequency (RF) and heart rate (HR) increased, RMSSD and high frequency (HF) power decreased or had a tendency to decrease, while low frequency (LF) power showed no change. The BIO group responded differently in Stroop 2: while RF increased and LF power decreased, HR, RMSSD and HF power showed no change. In the BIO group, RMSSD was higher in Stroop 2 compared to Stroop 1. In conclusion, HRV biofeedback induced a short term carry-over effect during both the following rest period and laboratory-induced stress suggesting maintained HF vagal modulation in the BIO group after the intervention, and maintained LF vagal modulation in the COM group.  相似文献   

12.
We studied changes in the patterns of heart rate variability (HRV) that coincide with the development of diving skills in harbor seal pups, Phoca vitulina . Heart rate measurements were collected remotely. Spectral analysis of HRV revealed power within a mid-frequency band (0.1–0.3 Hz) which was prominent, especially in pups less than 10 d of age. In these younger pups, the heart rate switched cyclically between a low and a high diving heart rate every 3–10 sec. Older pups exhibited a highly controlled diving bradycardia with a lower median and a lower variance when compared to younger individuals. These results provide new insight into the maturation of the bradycardia component of the dive response in harbor seal pups.  相似文献   

13.
目的:观察不同频率迷走神经刺激对蟾蜍离体心脏的心率及心率变异的影响。方法:将蟾蜍心脏和右侧迷走交感干离体后,以不同频率电刺激神经,记录心电图曲线并作心率变异性(HRV)分析。结果:交感神经阻断后,电刺激迷走交感干,心率(HR)显著下降(P0.01),全部正常心动周期的标准差(SDNN)和相邻正常心动周期差值的均方根(RMSSD)显著升高(P0.01),不同频率刺激组之间没有明显差异;与对照组相比,各指标变化较大;给药组0.2Hz时高频(HF)显著升高(P0.01),低频/高频比值(LF/HF)明显降低(P0.05),0.8Hz时HF和LF/HF接近刺激前水平。结论:一定范围内增加刺激频率,迷走神经降低心率的作用增强;没有交感神经调节条件下的迷走神经对心率和心率变异的调节可能存在不同的机制。  相似文献   

14.
兔心迷走神经传出放电有三种类型:1.与后膈神经传出发放同步的节律性放电。这种节律性发放包含两个时相,第一时相大致与膈神经传出放电同时起止,第二时相在膈神经传出发放后期或发放终止时出现。2.持续性放电,出现在上述节律性放电的间歇期。3.偶然出现的高幅高频暴发放电。这种放电出现时,膈神经传出放电即受到明显的压抑。开放预先夹闭的颈总动脉使心迷走神经传出放电增强。窒息、静脉注射肾上腺素使心迷走神经传出放电增强,心率减慢;扩张肺、过度通气、吸入亚硝酸异戊酯使心迷走神经传出放电减少,心率增快。  相似文献   

15.
Neurotensin (NT) infusions into isolated, perfused, spontaneously beating hearts of guinea pigs evoked a concentration-dependent, positive chronotropic effect which was preceded in some hearts by transient bradycardia. The tachycardia caused by NT was not affected by propranolol, cimetidine, indomethacin, a mixture of methysergide and morphine or by atria removal. The incidence and amplitude of bradycardia caused by NT were increased by neostigmine but reduced by atropine. Neostigmine and atropine also tended to decrease and increase respectively, the tachycardia caused by NT. These results suggest that the positive chronotropic effect of NT in guinea pig isolated heart results from a direct effect on the specialized conduction system of the heart while its negative chronotropic effect is likely to reflect the activation by NT of cardiac vagal cholinergic neurons.  相似文献   

16.
Taking advantage of acoustocardiogram (ACG), we measured the heart rate (HR) of chick embryos continuously from day 12 until hatching and then investigated the development of HR irregularities (HRI), HR variability (HRV), and the existence of a circadian rhythm in mean HR (MHR). HRI comprised transient bradycardia and tachycardia, which first developed on day 14 and 16 in most embryos, respectively. Transient bradycardia increased in frequency and magnitude with embryonic development and occurred over periods of up to 30 min in some embryos. MHR was maximal on around days 14-15 and thereafter decreased to about 250-260 bpm on days 16-18. Baseline HRV, which is an oscillation of the MHR baseline, occurred as HR decreased from days 15-16 and became predominant on days 17-18. The magnitude of the baseline oscillations reached up to 50 bpm in some embryos and the period ranged between about 40-90 min (ultradian rhythm). A circadian rhythm of MHR was not found in late chick embryos. On days 18-19, embryonic activities were augmented and then breathing movements began to occur, disturbing ACG signals and thus making it difficult to measure the HR. Instead, the development of breathing activities was recorded. Breathing frequency was irregular at first and then increased to a maximum of about 1.5 Hz prior to hatching.  相似文献   

17.
The purpose of this study was to determine if endogenous tachykinins can cause bradycardia in the isolated perfused guinea pig heart through stimulation of cholinergic neurons. Capsaicin was used to stimulate release of tachykinins and calcitonin gene-related peptide (CGRP) from cardiac afferents. A bolus injection of 100 nmol capsaicin increased heart rate by 26 +/- 7% from a baseline of 257 +/- 14 beats/min (n = 6, P < 0.01). This positive chronotropic response was converted to a minor bradycardic effect in hearts with 1 microM CGRP-(8-37) present to block CGRP receptors. The negative chronotropic response to capsaicin was markedly potentiated in another group of hearts with the further addition of 0.5 microM neostigmine to inhibit cholinesterases. In this group, capsaicin decreased heart rate by 30 +/- 10% from a baseline of 214 +/- 6 beats/min (n = 8, P < 0.05). This large bradycardic response to capsaicin was inhibited by 1) infusion of neurokinin A to desensitize tachykinin receptors or 2) treatment with 1 microM atropine to block muscarinic receptors. The latter observations implicate tachykinins and acetylcholine, respectively, as mediators of the bradycardia. These findings support the hypothesis that endogenous tachykinins could mediate axon reflexes to stimulate cholinergic neurons of the intrinsic cardiac ganglia.  相似文献   

18.
Cu/Zn superoxide dismutase (SOD1) is implicated in various pathological conditions including Down's syndrome, neurodegenerative diseases, and afflictions of the autonomic nervous system (ANS). To assess the SOD1 contribution to ANS dysfunction, especially its influence on cardiac regulation, we studied the heart rate variability (HRV) and cardiac arrhythmias in conscious 12-month-old male and female transgenic mice for the human SOD1 gene (TghSOD1). TghSOD1 mice presented heart rate reduction as compared with control FVB/N individuals. All HRV parameters reflecting parasympathetic activity were increased in TghSOD1. Pharmacological studies confirmed that the parasympathetic tone was exacerbated and the sympathetic pathway was functional in TghSOD1 mice. A high frequency of atrioventricular block and premature ventricular contractions was observed in TghSOD1. By biochemical assays we found that SOD1 activities were multiplied by 9 and 4 respectively in the heart and brainstem of transgenic mice. A twofold decrease in cholinesterase activity was observed in the heart but not in the brainstem. We demonstrate that SOD1 overexpression induces an ANS dysfunction by an exacerbated vagal tone that may be related to impaired cardiac activity of the cholinesterases and may explain the high occurrence of arrhythmias.  相似文献   

19.
We studied the effect of losartan on baroreflex sensitivity (BRS) and heart rate variability (HRV) of adult Wistar rats during acute and chronic inhibition of nitric oxide synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME). Chronic L-NAME administration (50 mg/kg per day for 7 days, orally through gavage) increased mean arterial pressure (MAP), heart rate but significantly decreased BRS. In addition, a significant fall of standard deviation of normal RR intervals, total spectral power, high frequency spectral power and a rise of low frequency to high frequency (LF: HF) ratio was seen. Acute L-NAME administration (30 mg/kg, i.v. bolus dose) also raised MAP and impaired HRV but it was associated with augmented BRS for bradycardia reflex. Losartan treatment (10 mg/kg, i.v.) in both acute and chronic L-NAME treated rats, decreased MAP but the difference was not significant. On the other hand, losartan administration normalized depressed BRS for bradycardia reflex and significantly reduced LF to HF ratio in chronic L-NAME treated rats. But this improvement was not observed in acute L-NAME group. These results indicate importance of mechanisms other than renin-angiotensin system in the pressor response of both acute as well as chronic L-NAME. However, autonomic dysregulation especially following chronic L-NAME appears to be partly angiotensin dependent.  相似文献   

20.
Intracerebroventricular (icv) injection of hemicholinium-3 (HC-3) in doses of 10–20 μg causes a dose-related decrease in the blood pressure of conscious spontaneous hypertensive (SH) rats but not of normotensive rats. HC-3 also reduces heart rate (HR) in both SH and normotensive rats. The bradycardia was blocked by intravenous injection of methylatropine, implicating increased vagal activity as a cause of the response. The decrease in HR also was blocked by icv injection of atropine but not by icv injection of mecamylamine, suggesting that the bradycardia is mediated via central muscarinic receptors. In contrast, the fall in blood pressure in SH rats was not influenced by intravenous administration of methylatropine or by the icv injection of either atropine or mecamylamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号