首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human gammaherpesviruses are associated with the development of lymphomas and epithelial malignancies. The heterogeneity of these tumors reflects the ability of these viruses to route infection to different cell types at various stages of their lifecycle. While the Epstein Barr virus uses gp42 – human leukocyte antigen class II interaction as a switch of cell tropism, the molecular mechanism that orientates tropism of rhadinoviruses is still poorly defined. Here, we used bovine herpesvirus 4 (BoHV-4) to further elucidate how rhadinoviruses regulate their infectivity. In the absence of any gp42 homolog, BoHV-4 exploits the alternative splicing of its Bo10 gene to produce distinct viral populations that behave differently based on the originating cell. While epithelial cells produce virions with high levels of the accessory envelope protein gp180, encoded by a Bo10 spliced product, myeloid cells express reduced levels of gp180. As a consequence, virions grown in epithelial cells are hardly infectious for CD14+ circulating cells, but are relatively resistant to antibody neutralization due to the shielding property of gp180 for vulnerable entry epitopes. In contrast, myeloid virions readily infect CD14+ circulating cells but are easily neutralized. This molecular switch could therefore allow BoHV-4 to promote either, on the one hand, its dissemination into the organism, or, on the other hand, its transmission between hosts.  相似文献   

2.
All gammaherpesviruses encode a virion glycoprotein positionally homologous to Epstein-Barr virus gp350. These glycoproteins are thought to be involved in cell binding, but little is known of the roles they might play in the whole viral replication cycle. We have analyzed the contribution of murine gammaherpesvirus 68 (MHV-68) gp150 to viral propagation in vitro and host colonization in vivo. MHV-68 lacking gp150 was viable and showed normal binding to fibroblasts and normal single-cycle lytic replication. Its capacity to infect glycosaminoglycan (GAG)-deficient CHO-K1 cells and NS0 and RAW264.7 cells, which express only low levels of GAGs, was paradoxically increased. However, gp150-deficient MHV-68 spread poorly through fibroblast monolayers, with reduced cell-free infectivity, consistent with a deficit in virus release. Electron microscopy showed gp150-deficient virions clustered on infected-cell plasma membranes. MHV-68-infected cells showed reduced surface GAG expression, suggesting that gp150 prevented virions from rebinding to infected cells after release by making MHV-68 infection GAG dependent. Surprisingly, gp150-deficient viruses showed only a transient lag in lytic replication in vivo and established normal levels of latency. Cell-to-cell virus spread and the proliferation of latently infected cells, for which gp150 was dispensable, therefore appeared to be the major route of virus propagation in an infected host.  相似文献   

3.
The first contact a virus makes with cells is an important determinant of its tropism. Murid Herpesvirus-4 (MuHV-4) is highly dependent on glycosaminoglycans (GAGs) for cell binding. Its first contact is therefore likely to involve a GAG-binding virion glycoprotein. We have previously identified two such proteins, gp70 and gp150. Gp70 binds strongly to GAGs. However, deleting it makes little difference to MuHV-4 cell binding or GAG-dependence. Deleting gp150, by contrast, frees MuHV-4 from GAG dependence. This implies that GAGs normally displace gp150 to allow GAG-independent cell binding. But the gp150 GAG interaction is weak, and so would seem unlikely to make an effective first contact. Since neither gp70 nor gp150 matches the expected profile of a first contact glycoprotein, our understanding of MuHV-4 GAG interactions must be incomplete. Here we relate the seemingly disconnected gp70 and gp150 GAG interactions by showing that the MuHV-4 gH/gL also binds to GAGs. gH/gL-blocking and gp70-blocking antibodies individually had little effect on cell binding, but together were strongly inhibitory. Thus, there was redundancy in GAG binding between gp70 and gH/gL. Gp150-deficient MuHV-4 largely resisted blocks to gp70 and gH/gL binding, consistent with its GAG independence. The failure of wild-type MuHV-4 to do the same argues that gp150 is normally engaged only down-stream of gp70 or gH/gL. MuHV-4 GAG dependence is consequently two-fold: gp70 or gH/gL binding provides virions with a vital first foothold, and gp150 is then engaged to reveal GAG-independent binding.  相似文献   

4.
Glycosaminoglycans (GAGs) commonly participate in herpesvirus entry. They are thought to provide a reversible attachment to cells that promotes subsequent receptor binding. Murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts and epithelial cells is highly GAG-dependent. This is a function of the viral gp150, in that gp150-deficient mutants are much less GAG-dependent than wild-type. Here we show that the major MHV-68 GAG-binding protein is not gp150 but gp70, a product of ORF4. Surprisingly, ORF4-deficient MHV-68 showed normal cell binding and was more sensitive than wild-type to inhibition by soluble heparin rather than less. Thus, the most obvious viral GAG interaction made little direct contribution to infection. Indeed, a large fraction of the virion gp70 had its GAG-binding domain removed by post-translational cleavage. ORF4 may therefore act mainly to absorb soluble GAGs and prevent them from engaging gp150 prematurely. In contrast to gp70, gp150 bound poorly to GAGs, implying that it provides little in the way of adhesion. We hypothesize that it acts instead as a GAG-sensitive switch that selectively activates MHV-68 entry at cell surfaces.  相似文献   

5.
Epstein-Barr virus (EBV) glycoprotein gp350/gp220 association with cellular CD21 facilitates virion attachment to B lymphocytes. Membrane fusion requires the additional interaction between virion gp42 and cellular HLA-DR. This binding is thought to catalyze membrane fusion through a further association with the gp85-gp25 (gH-gL) complex. Cell lines expressing CD21 but lacking expression of HLA class II molecules are resistant to infection by a recombinant EBV expressing enhanced green fluorescent protein. Surface expression of HLA-DR, HLA-DP, or HLA-DQ confers susceptibility to EBV infection on resistant cells that express CD21. Therefore, HLA-DP or HLA-DQ can substitute for HLA-DR and serve as a coreceptor in EBV entry.  相似文献   

6.
7.
Epstein-Barr virus (EBV) is a persistent, orally transmitted herpesvirus that replicates in B cells and epithelial cells and is associated with lymphoid and epithelial malignancies. The virus binds to CD21 on B cells via glycoprotein gp350/220 and infects efficiently. Infection of cultured epithelial cells has not typically been efficient but can occur in the absence of gp350/220 and CD21 and in vivo is thought to be important to the development of nasopharyngeal carcinoma. We report here that antibodies to gp350/220, which inhibit EBV infection of B cells, enhance infection of epithelial cells. The effect is not mediated by Fc receptor binding but is further enhanced by antibody cross-linking, which may patch gp350/220 in the virus envelope. Saliva from EBV-seropositive individuals has similar effects that can be reversed by depletion of antibody. The results are consistent with a model in which gp350/220 interferes with the access of other important players to the epithelial cell surface. The results may have implications for the development of nasopharyngeal carcinoma in high-risk populations in which elevated titers of antibody to EBV lytic cycle proteins are prognostic.  相似文献   

8.
9.
Human herpesvirus-8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus K8.1 gene encodes for two immunogenic glycoproteins, gpK8.1A and gpK8.1B, originating from spliced messages. The 228-amino-acid (aa) gpK8.1A is the predominant form associated with the virion envelope, consisting of a 167-aa region identical to gpK8.1B and a 61-aa unique region (L. Zhu, V. Puri, and B. Chandran, Virology 262:237-249, 1999). HHV-8 has a broad in vivo and in vitro cellular tropism, and our studies showed that this may be in part due to HHV-8's interaction with the ubiquitous host cell surface molecule, heparan sulfate (HS). Since HHV-8 K8.1 gene is positionally colinear to the Epstein-Barr virus (EBV) gene encoding the gp350/gp220 protein involved in EBV binding to the target cells, gpK8.1A's ability to interact with the target cells was examined. The gpK8.1A without the transmembrane and carboxyl domains (DeltaTMgpK8.1A) was expressed in a baculovirus system and purified. Radiolabeled purified DeltaTMgpK8.1A protein bound to the target cells, which was blocked by unlabeled DeltaTMgpK8.1A. Unlabeled DeltaTMgpK8.1A blocked the binding of [(3)H]thymidine-labeled purified HHV-8 to the target cells. Binding of radiolabeled DeltaTMgpK8.1A to the target cells was inhibited in a dose-dependent manner by soluble heparin, a glycosaminoglycan (GAG) closely related to HS, but not by other GAGs such as chondroitin sulfate A and C, N-acetyl heparin and de-N-sulfated heparin. Cell surface absorbed DeltaTMgpK8.1A was displaced by soluble heparin. Radiolabeled DeltaTMgpK8.1A also bound to HS expressing Chinese hamster ovary (CHO-K1) cells, and binding to mutant CHO cell lines deficient in HS was significantly reduced. The DeltaTMgpK8.1A specifically bound to heparin-agarose beads, which was inhibited by HS and heparin, but not by other GAGs. Virion envelope-associated gpK8.1A was specifically precipitated by heparin-agarose beads. These findings suggest that gpK8.1A interaction with target cells involves cell surface HS-like moieties, and HHV-8 interaction with HS could be in part mediated by virion envelope-associated gpK8.1A.  相似文献   

10.
Epstein-Barr virus is an orally transmitted human herpesvirus that infects epithelial cells and establishes latency in memory B lymphocytes. Movement of virus between the two cell types is facilitated by changes in amounts of an envelope glycoprotein, gp42, which are effected by interaction of gp42 with HLA class II in a B cell. Here we used the differential ability of virus to bind to CD21-positive B cells and CD21-negative epithelial cells, which is also influenced by levels of gp42, to determine that the majority of virus shed in saliva is derived from an HLA class II-negative cell.  相似文献   

11.
Treatment of mink cell focus-inducing (MCF) virus (isolate AK-13) producing SC-1 cells with mouse fibroblast interferon (150 to 600 U/ml) led to a 100-fold decrease in the release of infectious virus, whereas there was a 2.5- to 10-fold decrease in various parameters of virus particle release. Analysis of labeled virion proteins indicated that a temporal change in virion protein composition occurred after interferon treatment. After a 24-h exposure of chronically infected cells to interferon, the virions produced contained a 85,000-dalton glycoprotein (apparently of nonviral origin) which was in excess of the virus envelope glycoprotein gp70. Particles produced from cells treated with interferon for 32 to 48 h were nearly devoid of gp70 and contained substantially lower quantities of p30. Intracellular processing of viral precursor polyproteins to the mature virion structural proteins was not altered in the presence of interferon. However, an accumulation of the viral p30 and p12E proteins was observed in interferon-treated cells, consistent with an increase in cell-associated virions. Immunoprecipitation analysis of the tissue culture fluids from [35S]methionine-labeled control and interferon-treated cells revealed marked decrease in p30 and p15E/p12E released after interferon treatment. In contrast, gp70 did not accumulate in interferon-treated cells, but was released into the culture medium in a form that was neither pelletable nor associated with p15E/p12E.  相似文献   

12.
Cell surface-associated viral glycoproteins are thought to play a major role as target antigens in cellular cytotoxicity and antiviral immunosurveillance. One such glycoprotein is the Epstein-Barr virus (EBV)-encoded glycoprotein 350 (gp350), which is expressed on both virion envelope and EBV producer cells and carries the virus attachment protein moiety. Although it is known that some antibodies to gp350 can neutralize the virus, the role of this glycoprotein in EBV-specific cellular cytotoxicity is not yet clear. We describe here a study in which we successfully used a new approach to demonstrate that gp350 is a target antigen for EBV-specific antibody-dependent cellular cytotoxicity (ADCC). Transfection of gp350-negative cells resistant to natural killer (NK) cell activity (i.e., Raji) with a recombinant vector (pZIP-MA) containing the gene encoding the EBV-gp350 and the neomycin resistance gene enabled us to isolate cell clones with a stable and strong expression of gp350 on their surface membranes. ADCC determined by using two clones clearly demonstrated that gp350 is the target of the EBV ADCC. Interestingly, this ADCC was comparable to that obtained against the EBV-superinfected (coated) Raji cell expressing the same percentage of gp350 positivity as the two clones. No cytotoxic activity was detected against either nontransfected (gp350-negative) Raji cells or cells transfected with the vector [pZIP-neo-SV(X)1] lacking the gp350 gene. In addition to demonstrating that gp350 is a target molecule for EBV-specific ADCC, our approach in using NK-resistant transfectants provides a lead for probing the role of cell surface-associated viral antigens in specific cellular killing and immunosurveillance.  相似文献   

13.
14.
The envelope glycoprotein of human immunodeficiency virus type 2 (HIV-2) is primarily responsible for virus attachment and entry into the target cell population. We constructed an HIV-2 mutant virus containing an in-frame deletion within the putative CD4-binding sequences of the envelope glycoprotein and confirmed that the mutant envelope is unable to bind CD4 and that the mutant virus is noninfectious. To investigate whether this mutant could dominantly interfere with wild-type replication, we coexpressed proviral DNAs of both wild-type and mutant viruses in cells and assayed the production of infectious HIV-2 virions. Interference with virus replication was indeed observed with mutant DNA, and a maximal effect was achieved with 10-fold excess mutant DNA over wild-type DNA in the cotransfection experiments. The transdominant effect on virus replication does not appear to be at the level of wild-type envelope expression or gp120-CD4 interaction. Rather, the interference may be at the level of mixed-oligomer formation during progeny virus assembly and may occur by either destabilizing the multimeric structure of gp120 or forming a defective mixed multimeric gp120 which is unable to complete the receptor binding and/or postbinding events needed for infection.  相似文献   

15.
The magnitude of immunologic defects observed in HIV-1-infected individuals before the development of overt AIDS is disproportionately high in comparison to the levels of infectious virus in these patients--suggesting that factors other than direct virus-induced cytopathology may be involved. With this in mind, we investigated the immunologic consequences of the interaction between purified HIV-1 gp120 and the CD4 molecules expressed by uncommitted as well as Ag-specific lymphocytes. HIV-1 gp120 exhibited a dose-dependent immunosuppressive effect on: 1) Ag-driven proliferation of cloned CD4+ lymphocytes, 2) OKT3-driven proliferation of cloned CD4+ lymphocytes, and 3) cytolytic activity of CD4+, EBV-specific CTL. Thus, HIV-1 gp120 can, in a manner similar to OKT4A antibodies, suppress T cell activation and the expression of cytolytic activities through its interaction with CD4. Additionally, activated CD4+ lymphoblasts can be rendered susceptible to immune cytolysis by virtue of their binding of purified gp120. This "targeting" of activated lymphoblasts can occur with levels of gp120 far below that which is needed to saturate all OKT4A-defined CD4 epitopes. Adsorbed gp120 could be demonstrated on the surface of these cells for up to 12 h, a sufficient time for interaction with host cytolytic elements. The data from these in vitro modeling experiments highlight one of many potential mechanisms of HIV-1 induced immunosuppression and lymphocyte destruction that can occur in the absence of infectious virus and that is based on the unique interaction between HIV-1 gp120 and its cellular receptor, CD4.  相似文献   

16.
Human immunodeficiencey virus, type 1 (HIV-1) encodes three proteins, Nef, Vpu, and gp160, that down-modulate surface expression of the CD4 receptor during viral infection. In the present study, we have investigated the role of CD4 down-modulation in the HIV-1 infection cycle, primarily from the perspective of Vpu function. We report here that, like Nef, Vpu-mediated CD4 degradation modulates positively HIV-1 infectivity. Our data reveal that accumulation of CD4 at the cell surface of Vpu-deficient HIV-1-producing cells leads to an efficient recruitment of CD4 into virions and to an impairment of viral infectivity. This CD4-mediated inhibition of viral infectivity was not observed when a CD4 mutant unable to bind Env gp120 was used or when VSV-G glycoprotein was utilized to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. Indeed, protein analysis of Vpu-defective viral particles reveals that CD4 recruitment is associated with an increased formation of gp120-CD4 complexes at the virion surface. Interestingly, we did not detect any difference at the level of total virion-associated Env glycoproteins between wild-type and Vpu-defective virus, indicating that accumulation of CD4 at the cell surface and recruitment of CD4 into Vpu-defective HIV-1 particles exert a negative effect on viral infectivity, most likely by promoting the formation of nonfunctional gp120-CD4 complexes at the virion surface. Finally, we show that both Vpu- and Nef-induced CD4 down-modulation activities are required for production of fully infectious particles in CD4+ T cell lines and primary cells, an observation that has clear implications for viral spread in vivo.  相似文献   

17.
All gammaherpesviruses encode a major glycoprotein homologous to the Epstein-Barr virus gp350. These glycoproteins are often involved in cell binding, and some provide neutralization targets. However, the capacity of gammaherpesviruses for long-term transmission from immune hosts implies that in vivo neutralization is incomplete. In this study, we used Bovine Herpesvirus 4 (BoHV-4) to determine how its gp350 homolog--gp180--contributes to virus replication and neutralization. A lack of gp180 had no impact on the establishment and maintenance of BoHV-4 latency, but markedly sensitized virions to neutralization by immune sera. Antibody had greater access to gB, gH and gL on gp180-deficient virions, including neutralization epitopes. Gp180 appears to be highly O-glycosylated, and removing O-linked glycans from virions also sensitized them to neutralization. It therefore appeared that gp180 provides part of a glycan shield for otherwise vulnerable viral epitopes. Interestingly, this O-glycan shield could be exploited for neutralization by lectins and carbohydrate-specific antibody. The conservation of O-glycosylation sites in all gp350 homologs suggests that this is a general evasion mechanism that may also provide a therapeutic target.  相似文献   

18.
The alpha-glucosidase inhibitor N-butyldeoxynojirimycin (NB-DNJ) is an inhibitor of human immunodeficiency virus (HIV) replication and HIV-induced syncytium formation in vitro. Although an NB-DNJ-mediated change in viral envelope N-glycan composition inhibits HIV entry at the level of post-CD4 binding, the exact mechanism of inhibition remains to be established. In this study we have examined the effects of NB-DNJ on virion envelope composition and CD4-induced gp120 shedding and gp41 exposure. Virion composition analysis revealed an NB-DNJ-mediated reduction of 15% in overall virion envelope glycoprotein content and a reduction of 26% in the proteolytic maturation of virion gp160. Taken together, these two effects resulted in a reduction of approximately 40% in virion gp120 content. CD4-induced shedding of gp120 from the surfaces of envelope-transfected Cos cells was undetectable when gp120 was expressed in the presence of NB-DNJ. Similarly, the shedding of virion-associated gp120 was reduced 7.4-fold. CD4-induced exposure of cryptic gp41 epitopes on the surfaces of HIV-expressing ACH-2 cells was also greatly impaired, and the exposure of virion-associated gp41 epitopes was reduced 4.0-fold. Finally, CD4-induced increases in the binding of antibodies to the V3 loop of ACH-2-cell-expressed envelope glycoproteins were reduced 25-fold when the glycoproteins were expressed in the presence of NB-DNJ. These results suggest that the NB-DNJ-mediated retention of glycosylated N-glycans inhibits HIV entry by a combined effect of a reduction in virion gp120 content and a qualitative defect within the remaining gp120, preventing it from undergoing conformational changes after CD4 binding.  相似文献   

19.
This study reports that in bovine herpesvirus 4, glycoprotein B (gB) is a heterodimer and a major component of the virion, unlike gBs of Epstein-Barr virus (gp110) and murine gammaherpesvirus 68, two other gammaherpesviruses. These are new characteristics with regard to the general features of gB in the Gammaherpesvirinae subfamily.  相似文献   

20.
The human gammaherpesviruses Epstein-Barr virus and Kaposi Sarcoma-associated herpesvirus both contain a glycoprotein (gp350/220 and K8.1, respectively) that mediates binding to target cells and has been studied in great detail in vitro. However, there is no direct information on the role that these glycoproteins play in pathogenesis in vivo. Infection of mice by murid herpesvirus 4 strain 68 (MHV-68) is an established animal model for gammaherpesvirus pathogenesis and expresses an analogous glycoprotein, gp150. To elucidate the in vivo function of gp150, a recombinant MHV-68 deficient in gp150 production was generated (vgp150Delta). The productive viral replication in vitro and in vivo was largely unaffected by mutation of gp150, aside from a partial defect in the release of extracellular virus. Likewise, B-cell latency was established. However, the transient mononucleosis and spike in latently infected cells associated with the spread of MHV-68 to the spleen was significantly reduced in vgp150Delta-infected mice. A soluble, recombinant gp150 was found to bind specifically to B cells but not to epithelial cells in culture. In addition, gp150-deficient MHV-68 derived from mouse lungs bound less well to spleen cells than wild-type virus. Thus, gp150 is highly similar in function in vitro to the Epstein-Barr virus gp350/220. These results suggest a role for these analogous proteins in mononucleosis and have implications for their use as vaccine antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号