首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The present study aimed to investigate whether l-carnitine (LC) protects the vascular endothelium and tissues against oxidative damage in hypertension. Antioxidant enzyme activities, glutathione and lipid peroxidation were measured in the liver and heart of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Nitrite and nitrate levels and total antioxidant status (TAS) were evaluated in plasma, and the expression of endothelial nitric oxide synthase (eNOS) and p22phox subunit of NAD(P)H oxidase was determined in aorta. Glutathione peroxidase activity was lower in SHR than in WKY rats, and LC increased this activity in SHR up to values close to those observed in normotensive animals. Glutathione reductase and catalase activities, which were higher in SHR, tended to increase after LC treatment. No differences were found in the activity of superoxide dismutase among any animal group. The ratio between reduced and oxidized glutathione and the levels of lipid peroxidation were respectively decreased and increased in hypertensive rats, and both parameters were normalized after the treatment. Similarly, LC was able to reverse the reduced plasma nitrite and nitrate levels and TAS observed in SHR. We found no alterations in the expression of aortic eNOS among any group; however, p22phox mRNA levels showed an increase in SHR that was reversed by LC. In conclusion, chronic administration of LC leads to an increase in hepatic and cardiac antioxidant defense and a reduction in the systemic oxidative process in SHR. Therefore, LC might increase NO availability in SHR aorta by a reduction in superoxide anion production.  相似文献   

2.
Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future.  相似文献   

3.
Studies suggest that the inflammatory cytokine TNF-alpha plays a role in the prognosis of end-stage renal diseases. We previously showed that TNF-alpha inhibition slowed the progression of hypertension and renal damage in angiotensin II salt-sensitive hypertension. Thus, we hypothesize that TNF-alpha contributes to renal inflammation in a model of mineralocorticoid-induced hypertension. Four groups of rats (n = 5 or 6) were studied for 3 wk with the following treatments: 1) placebo, 2) placebo + TNF-alpha inhibitor etanercept (1.25 mg.kg(-1).day(-1) sc), 3) deoxycorticosterone acetate + 0.9% NaCl to drink (DOCA-salt), or 4) DOCA-salt + etanercept. Mean arterial blood pressure (MAP) measured by telemetry increased in DOCA-salt rats compared with baseline (177 +/- 4 vs. 107 +/- 3 mmHg; P < 0.05), and TNF-alpha inhibition had no effect in the elevation of MAP in these rats (177 +/- 8 mmHg). Urinary protein excretion significantly increased in DOCA-salt rats compared with placebo (703 +/- 76 vs. 198 +/- 5 mg/day); etanercept lowered the proteinuria (514 +/- 64 mg/day; P < 0.05 vs. DOCA-salt alone). Urinary albumin excretion followed a similar pattern in each group. Urinary monocyte chemoattractant protein (MCP)-1 and endothelin (ET)-1 excretion were also increased in DOCA-salt rats compared with placebo (MCP-1: 939 +/- 104 vs. 43 +/- 7 ng/day, ET-1: 3.30 +/- 0.29 vs. 1.07 +/- 0.03 fmol/day; both P < 0.05); TNF-alpha inhibition significantly decreased both MCP-1 and ET-1 excretion (409 +/- 138 ng/day and 2.42 +/- 0.22 fmol/day, respectively; both P < 0.05 vs. DOCA-salt alone). Renal cortical NF-kappaB activity also increased in DOCA-salt hypertensive rats, and etanercept treatment significantly reduced this effect. These data support the hypothesis that TNF-alpha contributes to the increase in renal inflammation in DOCA-salt rats.  相似文献   

4.
Apolipoprotein A-I (ApoA-I), the major protein component of serum high-density lipoprotein (HDL), exhibits its anti-inflammatory activity in inflammatory responses. As renal inflammation plays an important role in ischemia/reperfusion (I/R) injury of the kidney, the aim of this study was to investigate the beneficial effect of ApoA-I on renal I/R injury in rats and the underlined mechanism. Using rats subjected to renal I/R by occlusion of bilateral renal pedicles, we found that administration of ApoA-I significantly reduced serum creatinine levels, serum TNF-α and IL-1β levels as well as tissue myeloperoxidase (MPO) activity, compared with I/R controls. Moreover, ApoA-I treatment suppresses the expression of intercellular adhesion molecules-1 (ICAM-1) and P-selectin on endothelium, thus diminishing neutrophil adherence and the subsequent tissue injury. These results showed that ApoA-I reduced I/R-induced inflammatory responses, decreased renal microscopic damage and improved renal function. It seems likely that ApoA-I protects kidney from I/R injury by inhibiting inflammatory cytokines release and neutrophil infiltration and activation.  相似文献   

5.
Angiotensin-(1-7) [ANG-(1-7)] plays a counterregulatory role to angiotensin II in the renin-angiotensin system. In trained spontaneous hypertensive rats, Mas expression and protein are upregulated in ventricular tissue. Therefore, we examined the role of ANG-(1-7) on cardiac hemodynamics, cardiac functions, and cardiac remodeling in trained two-kidney one-clip hypertensive (2K1C) rats. For this purpose, rats were divided into sedentary and trained groups. Each group consists of sham and 2K1C rats with and without ANG-(1-7) infusion. Swimming training was performed for 1 h/day, 5 days/wk for 4 wk following 1 wk of swimming training for acclimatization. 2K1C rats showed moderate hypertension and left ventricular hypertrophy without changing left ventricular function. Chronic infusion of ANG-(1-7) attenuated hypertension and cardiac hypertrophy only in trained 2K1C rats but not in sedentary 2K1C rats. Chronic ANG-(1-7) treatment significantly attenuated increases in myocyte diameter and cardiac fibrosis induced by hypertension in only trained 2K1C rats. The Mas receptor, ANG II type 2 receptor protein, and endothelial nitric oxide synthase phosphorylation in ventricles were upregulated in trained 2K1C rats. In conclusion, chronic infusion of ANG-(1-7) attenuates hypertension in trained 2K1C rats.  相似文献   

6.
Gentamicin (GM) is an antibiotic whose clinical use is limited by its nephrotoxicity. Experimental evidences suggest a role of reactive oxygen species in GM-induced nephrotoxicity. Therefore, we investigated if aged garlic extract (AGE), an antioxidant, has a protective role in this experimental model. Four groups of male Wistar rats were studied: 1) Control (CT), injected subcutaneously (s.c.) and intraperitoneally (i.p.) with saline, 2) GM, treated s.c. with GM (70 mg/kg/12 hours/4 days), 3) AGE, treated i.p with AGE (1.2 mL/kg/12 hours/6 days), and 4) GM + AGE treated with GM and AGE. The treatment with AGE started two days before the first dose of GM (GM + AGE group) or saline (AGE group). Animals were sacrificed on day 5, and blood, urine, and kidneys were obtained. Nephrotoxicity was made evident by: 1) the increase in blood urea nitrogen and plasma creatinine, 2) the decrease in plasma glutathione peroxidase (GPx) activity and the urinary increase in N-acetyl-beta-D-glucosaminidase activity and total protein, and 3) necrosis of proximal tubular cells. These alterations were prevented or ameliorated by AGE treatment. Furthermore, AGE prevented the GM-induced increase in the renal levels of oxidative stress markers: nitrotyrosine and protein carbonyl groups and the decrease in manganese superoxide dismutase (Mn-SOD), GPx, and glutathione reductase (GR) activities. The protective effect of AGE was associated with the decrease in the oxidative stress and the preservation of Mn-SOD, GPx, and GR activities in renal cortex. These data suggest that AGE may be a useful agent for the prevention of GM-nephrotoxicity.  相似文献   

7.
Nephrotoxicity is an adverse side effect of methotrexate (MTX) chemotherapy. The present study verifies whether melatonin, an endogenous antioxidant prevents MTX‐induced renal damage. Adult rats were administered 7 mg/kg body weight MTX intraperitoneally for 3 days. In the melatonin pretreated rats, 40 mg/ kg body weight melatonin was administered daily intraperitoneally 1 h before the administration of MTX. The rats were killed 12 h after the final dose of MTX/vehicle. The kidneys were used for light microscopic and biochemical studies. The markers of oxidative stress were measured along with the activities of the antioxidant enzymes and myeloperoxidase activity in the kidney homogenates. Pretreatment with melatonin reduced MTX induced renal damage both histologically and biochemically as revealed by normal plasma creatinine levels. Melatonin pretreatment reduced MTX induced oxidative stress, alteration in the activity of antioxidant enzymes as well as elevation in myeloperoxidase activity. The results suggest that melatonin has the potential to reduce MTX induced oxidative stress, neutrophil infiltration as well as renal damage. As melatonin is an endogenous antioxidant and is non‐toxic even in high doses it is suggested that melatonin may be beneficial in minimizing MTX induced renal damage in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this study was to investigate the inhibitory effect of a siRNA cocktail targeting Vascular endothelial growth factor (VEGF) and Human epidermal growth factor receptor 2 (HER2) on cell proliferation, induced apoptosis and the expression of VEGF and HER2 in human gastric carcinoma cell. The silencing rate of pre-designed siRNAs that targeted VEGF and HER2 was detected by Real-time Quantitative PCR (RT-QPCR) analysis. Furthermore, the best silencing siRNA that targeted VEGF and HER2 was prepared as a cocktail to co-knockdown VEGF and HER2 expression at both mRNA and protein levels which were detected by RT-QPCR and Western blot analysis. Cell proliferation inhibition rates were determined by CCK8 assay. The effect of siRNA cocktail on cell apoptosis was determined by flow cytometry. The migration inhibition of siRNA cocktail was analyzed by wound-healing assay. The ability of VEGF to induce endothelial cells to proliferate was examined in HUVECs by the method of tube formation assay. The pre-designed siRNAs could inhibit VEGF and HER2 mRNA level. siRNA cocktail, and co-downregulation of VEGF and HER2 result in significant inhibition of gastric cancer growth and migration in vitro. The inhibition of VEGF and HER2 expressions can induce apoptosis of SGC-7901 cells.  相似文献   

9.
We previously showed that the male streptozotocin (STZ)-induced diabetic rat exhibits decreased circulating testosterone and increased estradiol levels. While supplementation with dihydrotestosterone is partially renoprotective, the aim of the present study was to examine whether inhibition of estradiol synthesis, by blocking the aromatization of testosterone to estradiol using an aromatase inhibitor, can also prevent diabetes-associated renal injury. The study was performed on male Sprague-Dawley nondiabetic, STZ-induced diabetic, and STZ-induced diabetic rats treated with 0.15 mg/kg of anastrozole, an aromatase inhibitor (Da) for 12 wk. Treatment with anastrozole reduced diabetes-associated increases in plasma estradiol by 39% and increased plasma testosterone levels by 187%. Anastrozole treatment also attenuated urine albumin excretion by 42%, glomerulosclerosis by 30%, tubulointerstitial fibrosis by 32%, along with a decrease in the density of renal cortical CD68-positive cells by 50%, and protein expression of transforming growth factor-β by 20%, collagen type IV by 29%, tumor necrosis factor-α by 28%, and interleukin-6 by 25%. Anastrozole also increased podocin protein expression by 18%. We conclude that blocking estradiol synthesis in male STZ-induced diabetic rats is renoprotective.  相似文献   

10.
In hypertensive animals and patients, oxidative stress represents the primary risk factor for progression of left ventricular hypertrophy. Recently, it has been demonstrated that hydrogen, as a novel antioxidant, can selectively reduce hydroxyl radicals and peroxynitrite anion to exert therapeutic antioxidant activity. In the current study, we explored the effect of chronic treatment with hydrogen-rich saline (HRS) on left ventricular hypertrophy in spontaneously hypertensive rats (SHR). The 8-week-old male SHR and age-matched Wistar-Kyoto rats (WKY) were randomized into HRS-treated (6 ml/kg/day for 3 months, i.p.) and vehicle-treated groups. HRS treatment had no significant effect on blood pressure, but it effectively attenuated left ventricular hypertrophy in SHR. HRS treatment abated oxidative stress, restored the activity of antioxidant enzymes including GPx, GST, catalase, and SOD, suppressed NADPH oxidase activity and downregulated Nox2 and Nox4 expression in left ventricles of SHR. HRS treatment suppressed pro-inflammatory cytokines including IL-1β, IL-6, TNF-α, and MCP-1, and inhibited NF-κB activation through preventing IκBα degradation in left ventricles of SHR. HRS treatment preserved mitochondrial function through restoring electron transport chain enzyme activity, repressing ROS formation, and enhancing ATP production in left ventricles of SHR. Moreover, HRS treatment suppressed ACE expression and locally reduced angiotensin II generation in left ventricles of SHR. In conclusion, HRS treatment attenuates left ventricular hypertrophy through abating oxidative stress, suppressing inflammatory process, preserving mitochondrial function, in which suppression of HRS on angiotensin II in left ventricles locally might be involved.  相似文献   

11.
Nitric oxide (NO) is essential for normal function of the cardiovascular system. This study has determined whether chronic administration of l-arginine, the biological precursor of NO, attenuates the development of structural and functional changes in hearts and blood vessels of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Uninephrectomized rats treated with DOCA (25 mg every 4th day sc) and 1% NaCl in the drinking water for 4 wk were treated with l-arginine (5% in food, 3.4 +/- 0.3 g x kg body wt(-1) x day(-1)). Changes in cardiovascular structure and function were determined by echocardiography, microelectrode studies, histology, and studies in isolated hearts and thoracic aortic rings. DOCA-salt hypertensive rats developed hypertension, left ventricular hypertrophy with increased left ventricular wall thickness and decreased ventricular internal diameter, increased inflammatory cell infiltration, increased ventricular interstitial and perivascular collagen deposition, increased passive diastolic stiffness, prolonged action potential duration, increased oxidative stress, and inability to increase purine efflux in response to an increased workload. l-Arginine markedly attenuated or prevented these changes and also normalized the reduced efficacy of norepinephrine and acetylcholine in isolated thoracic aortic rings of DOCA-salt hypertensive rats. This study suggests that a functional NO deficit in blood vessels and heart due to decreased NO synthase activity or increased release of reactive oxygen species such as superoxide may be a key change initiating many aspects of the cardiovascular impairment observed in DOCA-salt hypertensive rats. These changes can be prevented or attenuated by administration of l-arginine.  相似文献   

12.
The enzyme, poly(ADP-ribose) polymerase (PARP), effects repair of DNA after ischemia-reperfusion (I/R) injury to cells in nerve and muscle tissue. However, its activation in severely damaged cells can lead to ATP depletion and death. We show that PARP expression is enhanced in damaged renal proximal tubules beginning at 6-12 h after I/R injury. Intraperitoneal administration of PARP inhibitors, benzamide or 3-amino benzamide, after I/R injury accelerates the recovery of normal renal function, as assessed by monitoring the levels of plasma creatinine and blood urea nitrogen during 6 days postischemia. PARP inhibition leads to increased cell proliferation at 1 day postinjury as assessed by proliferating cell nuclear antigen and improves the histopathological appearance of kidneys examined at 7 days postinjury. Furthermore, inhibition of PARP increases levels of ATP measured at 24 h postischemia compared with those in vehicle-treated animals. Our data indicate that PARP activation is a part of the cascade of molecular events that occurs after I/R injury in the kidney. Although caution is advised, transient inhibition of PARP postischemia may constitute a novel therapy for acute renal failure.  相似文献   

13.
14.
Both NADPH oxidase-derived reactive oxygen species (ROS) and asymmetric dimethylarginine (ADMA) are increased in hypertension. Apocynin, an NADPH oxidase inhibitor, could inhibit ROS, thus we tested whether apocynin can block NADPH oxidase and prevent increases of ADMA and blood pressure (BP) in spontaneously hypertensive rats (SHRs). SHRs and Wistar Kyoto (WKY) rats, aged 4 weeks, were assigned to four groups: untreated SHRs and WKY rats, SHRs and WKY rats that received 2.5 mM apocynin for 8 weeks. BP was significantly higher in SHRs compared to WKY rats, which was attenuated by apocynin. Apocynin prevented p47phox translocation in SHR kidneys, but not the increase of superoxide and H(2)O(2). Additionally, apocynin did not protect SHRs against increased ADMA. Apocynin blocks NADPH oxidase to attenuate hypertension, but has little effect on the ADMA/nitric oxide (NO) pathway in young SHRs. The reduction of ROS and the preservation of NO simultaneously might be a better approach to restoring ROS-NO balance to prevent hypertension.  相似文献   

15.
BACKGROUND: Urinary tract infection (UTI) may cause inflammation of the renal parenchyma and may lead to impairment in renal function and scar formation. Oxidant injury and reactive oxygen species (ROS) have been found responsible in the pathogenesis of UTI. The neurohypophyseal hormone oxytocin (OT) facilitates wound healing and is involved in the modulation of immune and inflammatory processes. We investigated the possible therapeutic effects of OT against Escherichia coli induced pyelonephritis in rats both in the acute and chronic setting. METHODS: Twenty-four Wistar rats were injected 0.1 ml solution containing E. coli ATCC 25922 10(10) colony forming units/ml into left renal medullae. Six rats were designed as sham group and were given 0.1 ml 0.9% NaCl. Pyelonephritic rats were treated with either saline or OT immediately after surgery and at daily intervals. Half of the pyelonephritic rats were decapitated at the 24th hour of E. coli infection, and the rest were followed for 7 days. Renal function tests (urea, creatinine), systemic inflammation markers [lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-alpha)] and renal tissue malondialdehyde (MDA) as an end product of lipid peroxidation, glutathione (GSH) as an antioxidant parameter and myeloperoxidase (MPO) as an indirect index of neutrophil infiltration were studied. RESULTS: Blood urea, creatinine, and TNF-alpha levels were increased, renal tissue MDA and MPO levels were elevated and GSH levels were decreased in both of the pyelonephritic (acute and chronic) rats. All of these parameters and elevation of LDH at the late phase were all reversed to normal levels by OT treatment. CONCLUSION: OT alleviates oxidant renal injury in pyelonephritic rats by its anti-oxidant actions and by preventing free radical damaging cascades that involves excessive infiltration of neutrophils.  相似文献   

16.
This study was to explore whether repeated non-invasive limb ischemic pre-conditioning (NLIP) can confer an equivalent cardioprotection against myocardial ischemia-reperfusion (I/R) injury in acute diabetic rats to the extent of conventional myocardial ischemic pre-conditioning (MIP) and whether or not the delayed protection of NLIP is mediated by reducing myocardial oxidative stress after ischemia-reperfusion. Streptozotocin-induced diabetic rats were randomized to four groups: Sham group, the I/R group, the MIP group and the NLIP group. Compared with the I/R group, both the NLIP and MIP groups showed an amelioration of ventricular arrhythmia, reduced myocardial infarct size, increased activities of total superoxide dismutase (SOD), manganese-SOD and glutathione peroxidase, increased expression of manganese-SOD mRNA and decreased xanthine oxidase activity and malondialdehyde concentration (All p < 0.05 vs I/R group). It is concluded that non-invasive limb ischemic pre-conditioning reduces oxidative stress and attenuates myocardium ischemia-reperfusion injury in diabetic rats.  相似文献   

17.
Chronic kidney disease is associated with higher risk of cardiovascular complication and this interaction can lead to accelerated dysfunction in both organs. Renalase, a kidney‐derived cytokine, not only protects against various renal diseases but also exerts cardio‐protective effects. Here, we investigated the role of renalase in the progression of cardiorenal syndrome (CRS) after subtotal nephrectomy. Sprague–Dawley rats were randomly subjected to sham operation or subtotal (5/6) nephrectomy (STNx). Two weeks after surgery, sham rats were intravenously injected with Hanks' balanced salt solution (sham), and STNx rats were randomly intravenously injected with adenovirus‐β‐gal (STNx+Ad‐β‐gal) or adenovirus‐renalase (STNx+Ad‐renalase) respectively. After 4 weeks of therapy, Ad‐renalase administration significantly restored plasma, kidney and heart renalase expression levels in STNx rats. We noticed that STNx rats receiving Ad‐renalase exhibited reduced proteinuria, glomerular hypertrophy and interstitial fibrosis after renal ablation compared with STNx rats receiving Ad‐β‐gal; these changes were associated with significant decreased expression of genes for fibrosis markers, proinflammatory cytokines and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase components. At the same time, systemic delivery of renalase attenuated hypertension, cardiomyocytes hypertrophy and cardiac interstitial fibrosis; prevented cardiac remodelling through inhibition of pro‐fibrotic genes expression and phosphorylation of extracellular signal‐regulated kinase (ERK)‐1/2. In summary, these results indicate that renalase protects against renal injury and cardiac remodelling after subtotal nephrectomy via inhibiting inflammation, oxidative stress and phosphorylation of ERK‐1/2. Renalase shows potential as a therapeutic target for the prevention and treatment of CRS in patients with chronic kidney disease.  相似文献   

18.
Background: Evidence suggests that estradiol offers protection against the development of cardiovascular and renal pathologies, although the mechanisms involved are still under investigation. The nitric oxide (NO) pathway regulates blood pressure and kidney function, and estradiol is associated with increases in NO bioavailability. We hypothesized that in female spontaneously hypertensive rats (SHRs), estra-diol increases NO bioavailability, activates the NO synthase (NOS) pathway, and suppresses superoxide production compared with rats that underwent ovariectomy (OVX).Objective: The goal of this study was to determine whether estradiol regulates the NO/cyclic guanosine monophosphate (cGMP) pathway and superoxide levels in the kidneys of female SHR.Methods: Three types of SHRs were studied: gonad-intact females, OVX rats, and OVX rats with estra-diol replacement (OVX+E). Renal cortical cGMP levels were measured to assess NO bioavailability. NOS enzymatic activity, NOS protein expression, basal superoxide production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity were measured in the renal cortex.Results: Fifty-six SHRs were included in the study (17 intact females, 21 OVX rats, 18 OVX+E rats). Mean (SEM) cGMP levels were significantly lower in the renal cortex of OVX rats (0.03 [0.008] pmol/mg, n = 5) than in intact females (0.1 [0.02] pmol/mg, n = 6; P < 0.05), and estradiol restored cGMP levels to those seen in intact females (0.1 [0.01] pmol/mg, n = 5; P < 0.05). Despite a decrease in cGMP following OVX, renal cortical NOS activity, NOS1 and NOS3 protein expression, and the phosphorylation status of NOS3 were comparable among the 3 groups (n = 7–9 per group). However, mean basal superoxide production in the renal cortex was higher in OVX rats (3.2 [0.3] cpm/mg, n = 12) than in intact females (1.9 [0.3] cpm/mg, n = 8; P < 0.05) and lower in OVX+E rats (1.3 [0.3] cpm/mg, n = 9; P < 0.05). Mean NADPH oxidase activity was comparable in the renal cortex of intact females and OVX rats (81 [4] and 83 [12] cpm/35 μg, respectively [n = 5 per group]). OVX+E rats had significantly lower mean renal cortical NADPH oxidase activity than did rats in the other groups (45 [6] cpm/35 μg, n = 6; P < 0.05), and the decrease in activity was accompanied by a decrease in p22phox protein expression.Conclusions: In vivo manipulations of estradiol levels influenced renal cortical NO bioavailability, as assessed indirectly by cGMP measurements. The decrease in cGMP following OVX was not due to alterations in the activity or expression of NOS.  相似文献   

19.
A wide number of pesticides, including highly persistent organochlorine compounds, such as lindane (γ-Hexachlorocyclohexane), have deteriorative effect on fauna and flora by inducing oxidative stress. Lindane induces cell damage by producing free radicals and reactive oxygen species. Quercetin, a dietary flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. In this study the flavonoid quercetin was used to investigate its antioxidative effect against lindane induced oxidative stress in rats. The level of lipid peroxidation, reduced glutathione (GSH) were analysed in addition to the antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione-s-transferase (GST) activities in the liver and kidney tissue. Levels of hepatic marker enzymes in serum like Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH) and renal markers like serum creatinine and serum urea were estimated. Administration of Lindane induced histopathological alterations and increased levels of serum hepatic and renal markers and malondialdehyde (MDA) with a significant decrease in GSH content and CAT, SOD, GPx and GST activities. Cotreatment of quercetin along with lindane significantly decreased the lindane induced alteration in histology, serum hepatic and renal markers and MDA and also improved the cellular antioxidant status. The results show that Quercetin ameliorates Lindane induced oxidative stress in liver and kidney. The quercetin exhibited chemopreventive effect when administered along with lindane.  相似文献   

20.
Minerals in renal and SHR hypertensive rats   总被引:1,自引:0,他引:1  
References to individual trace minerals in hypertensive rats have been made; however, data on multiple minerals in SHR hypertensive rats is lacking. The purpose of this study was to investigate five trace minerals in normotensive, chronic renal and SHR hypertensive rats. Blood samples were drawn to measure serum levels of Ca, Fe, K, Mg, and Na. Serum K values were elevated in the chronic renal hypertensive animals. Iron levels were decreased in both the renal and SHR hypertensive animals. No difference was observed in levels of Ca, Mg, and Na between normotensive and chronic renal or SHR hypertensive rats. Further study of multiple trace minerals in experimental hypertension is recorded in order to extend these deviations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号