首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Estrous response and pregnancy rates are decreased for cows given Syncro-Mate-B (SMB) during metestrus (Day 1 to 5 of an estrous cycle). Data indicate these decreases are due, in part, to retention of a functional corpus luteum (CL). Our objective was to determine whether PGF2alpha administered in conjunction with SMB would improve estrous response and pregnancy rates in metestrous cows with no detrimental effects to cows in other stages of the estrous cycle. Three hundred seventy-three suckled beef cows were observed for estrus for 21 d before SMB administration to determine stage of an estrous cycle. Blood samples were collected 14 and 7 d before treatment and at SMB administration. Serum was assayed for concentration of progesterone to verify stage of estrous cycle or noncyclicity. All cows received the standard SMB regime and were allotted by age and stage of cycle to one of two groups. Cows denoted SMB + L received 25 mg of PGF2alpha 8 d after implantation, whereas cows denoted SMB served as controls. On Day 10, SMB implants were removed and females were observed for subsequent estrus. At this time, calves were removed from their dams for 48 h. Artificial insemination was performed 12 hr after observation of a standing estrus. Timed insemination was performed at 48 hr after implant removal for cows not inseminated at 24 or 36 hr after implant removal. Interval to synchronized estrus (within 5 d of implant removal) was lengthened for metestrous cows compared to cows in other stages of the cycle irrespective of treatment (P < 0.001). Cows receiving PGF2alpha had a greater pregnancy rate at 5 d compared to controls (P = .0672). Interval to estrus, estrous response, and pregnancy rate to A1 at d 28 or end of breeding season were not affected by administration of PGF2alpha in conjunction with SMB when compared to the standard SMB protocol.  相似文献   

2.
Anestrus is common during the postpartum period in high-producing dairy cows. In a previous investigation, we were able to diagnose persistent follicles of 8 to 12 mm in anestrous cows. This report describes 2 consecutive studies. The objectives of the first were to 1) assess the association of persistent follicles with anestrus; and 2) evaluate 2 therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with the Ovsynch protocol. For Study 1, anestrous cows were considered to have a persistent follicle if it was possible to observe a single follicular structure > 8 mm in the absence of a corpus luteum or a cyst in 2 ultrasonographic examinations performed at an interval of 7 d. At diagnosis (Day 0), cows were assigned to 1 of 3 treatment groups. Cows in Group GnRH/PGF (n=17) were treated with 100 microg GnRH i.m., and 25 mg PGF2alpha i.m. on Day 14. Cows in Group PRID (n=18) were fitted with a progesterone releasing intravaginal device (PRID, containing 1.55 g of progesterone) for 9 d and were given 100 microg GnRH i.m. at the time of PRID insertion, and 25 mg PGF2alpha i.m. on Day 7. Cows in Group Control (n=18) received no treatment. The animals were inseminated at observed estrus and were monitored weekly by ultrasonography until AI or 5 weeks from diagnosis. Blood samples were also collected on a weekly basis for progesterone determination. The mean size of persistent follicles on Day 0 was 9.4 +/- 0.04 mm. Progesterone levels were < 0.2 ng/mL during the first 35 d in 16 of 18 Control cows. Cows in the PRID group showed a lower persistent follicle rate (16.7% < 70.6% < 88.9%; P < 0.0001; PRID vs GnRH/PGF vs Control, respectively); a higher estrus detection rate (83.3% > 29.4% > 11.1%; P < 0.0001) and a higher pregnancy rate (27.8% > 5.9% > 0%; P = 0.02). For the second study, 145 cows with persistent follicles were randomly assigned to 1 of 2 treatment groups: cows in Group Ovsynch (n=73) were treated with 100 microg GnRH i.m. on Day 0, 25 mg PGF2alpha i.m. on Day 7, and 100 microm GnRH i.m. 32 h later. Cows in this group were inseminated 16 to 20 h after the second GnRH dose (Ovsynch protocol). Cows in Group PRID (n=72) were treated as those in the PRID group of Study 1, and were inseminated 56 h after PRID removal. Cows in the PRID group showed a higher ovulation rate (84.8% > 8.2%: P < 0.0001); a higher pregnancy rate (34.2% > 4.1%; P < 0.0001) and lower follicular persistence rate (22.2% < 63%; P < 0.0001) than those in Ovsynch. Our results indicate that persistent follicles affect cyclic ovarian function in lactating dairy cows. Cows with persistent follicles can be successfully synchronized and time inseminated using progesterone, GnRH and PGF2alpha but show a limited response to treatment with GnRH plus PGF2alpha.  相似文献   

3.
It was hypothesized that prolonged elevation in 17beta-estradiol (E(2)) preceding ovulation as a result of a persistent ovarian follicle would have a detrimental effect on pregnancy rate after Day 7 (behavioral estrus = Day 0) of the estrous cycle. Cows were either treated with exogenous progesterone (P(4)) for 10 d or remained untreated (CON; n = 76). Cows were treated with 1 of 2 doses of P(4) from Day 6 to 16 which was intended to result in either elevated E(2) (EE(2); n = 76) or normal E(2) (NE(2); n = 76) concentration in the circulation. At the initiation of P(4) treatment, cows received prostaglandin F(2alpha) (PGF(2alpha)) to eliminate the endogenous source of P(4). On Day 16, the exogenous source of P(4) was removed from treated cows, while cows in the CON group received PGF(2alpha). A single embryo was transferred into each cow 7 days after observation of behavioral estrus. Blood samples were taken on alternating days during the treatment period to determine concentrations of P(4) and E(2). The pregnancy rate was determined by ultrasonographic examination 25 to 32 d after embryo transfer. There was a treatment-by-day interaction (P < 0.0001) on E(2) concentrations in the plasma during the 10-d treatment period. Cows in the EE(2) group had a higher concentration of E(2) by Day 8 (6.1 +/- 0.5 pg/ml) and this concentration remained elevated until PRID removal compared with that of cows in the NE(2) (2 +/- 0.2 pg/ml) and CON (2.0 +/- 0.3 pg/ml) groups, which had concentrations of E(2) similar to those at the initiation of treatment. Pregnancy rates after embryo transfer did not differ (P = 0.56; X(2) = 1.1) among cows in the EE(2) (30.7%), NE(2) (36.2%) and CON (32.9%) groups. Prolonged elevation of E(2) concentrations associated with the development of a persistent ovarian follicle preceding ovulation did not affect the pregnancy rate to embryo transfer after Day 7 of the estrous cycle in cows.  相似文献   

4.
This study was designed to determine conception rates in dairy cows after timed-insemination and simultaneous treatment with gonadotrophin releasing hormone (GnRH) and/or prostaglandin F2 alpha (PGF2alpha). A total of 2352 cows was randomly assigned to six groups. Cows in Groups 1 to 5 were palpated per rectum to determine the presence of a corpus luteum (CL) on the ovary, and blood samples were obtained for the determination of plasma progesterone (P4) concentrations. Cows with a CL and P4 concentrations >1 ng/ml were treated (Day 0) with PGF2alpha (25 mg, i.m.) and were observed for estrus. Cows in estrus prior to 72 hours after treatment (Group 5, n = 106) were bred, but were not treated. Cows not observed in estrus by 72 hours were divided into four remaining groups, were bred between 72 and 80 hours and were assigned as follows: Cows in Group 1 (n = 203) were not treated; Cows in Group 2 (n = 200) were treated with GnRH (100 ug, i.m.); Cows in Group 3 (n = 201) were treated with PGF2alpha (25 mg, i.m.); and cows in Group 4 (n = 202) were treated with both GnRH and PGF2alpha. Cows in Group 6 (n = 1440) were not treated with PGF2alpha on Day 0 and were estrual cows that were bred on days when cows in Groups 1 to 5 were time-inseminated. The percentage of cows in all groups pregnant at 45 to 50 days after one insemination was compared using analysis of variance (P<0.05). The conception rate of cows in Group 2 was significantly higher than that of cows in Groups 1 to 4. There was a significant group-by-season interaction. Cows treated with GnRH during the spring had a higher conception rate than at other times of the year. Conception rates of cows in Groups 1 to 4 that were inseminated during the summer were low and not significantly different from each other. Conception rates of cows in Groups 5 and 6 inseminated during the summer were not significantly different from each other, but were significantly higher than that of cows in Groups 1 to 4 that were inseminated during the summer.  相似文献   

5.
The objectives of this experiment were to determine if subnormal levels of progesterone (P4) indicative of luteal insufficiency influence (1) pulsatile release of luteinizing hormone (LH), (2) the interval to the preovulatory surge of LH after removal of P4, and (3) the secretion of P4 during the estrous cycle subsequent to administration of subnormal levels of P4. On Day 5 (Day = 0 day of estrus) of the estrous cycle, cows received P4-releasing intravaginal devices (PRID) to produce normal (2 PRIDs; n = 7) or subnormal (0.5 PRID; n = 6) concentrations of P4. Five cows served as controls. On Day 10, serial blood samples were collected from all cows. Collection of blood samples was again initiated on Day 17 in cows receiving PRIDs. The PRIDs were removed and blood collection continued for 78 h. Daily blood samples were collected from all animals for 42 days subsequent to estrus (estrous cycles 1 and 2, respectively). During estrous cycle 1, mean concentration of P4 was lower (p less than 0.05) and frequency of pulses of LH was higher (p less than 0.05) in cows receiving subnormal P4 than in cows receiving normal P4 and control cows. Plasma concentrations of estradiol (E2) were higher (p less than 0.05) on Days 9-16 of estrous cycle 1 in cows receiving subnormal P4 than in cows receiving normal P4 or in control cows. Concentrations of E2 were greater (p less than 0.05) at 6, 18, and 30 h following removal of PRIDs in cows receiving subnormal P4 than in cows receiving normal P4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The efficacy of GnRH and PGF2alpha (7-day injection interval) for estrus synchronization is diminished by estrous expression before PGF2alpha (premature estrus; PE). Effects of modifications to GnRH-PGF2alpha protocols on the incidence of PE and other indicators of reproductive performance were evaluated. In Experiment 1, Angus-based crossbred cows (n=51) received 25 mg of PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity and interval postpartum to receive GnRH 100 microg i.m. on either Day -7 or Day -6. Estrous detection and AI were conducted from Day -3 to Day 5. Treatment had no effect on the incidence of PE, estrous response, conception rate per AI or synchronized pregnancy rate (6- vs. 7-day interval; 8 vs. 15%; 92 vs. 93%; 77 vs. 76%; 71 vs. 70%, respectively). In Experiment 2, Angus cows (n=150) received GnRH 100 microg i.m. on Day -7 and 25 mg PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity, interval postpartum, and body condition score to receive either no further treatment (Control) or 0.5 mg melengestrol acetate/hd/d from Day -7 to Day -1 (MGA). Estrous detection and AI were conducted from Day -2 to Day 7. Fewer (P < 0.05) MGA-treated cows were detected in PE (0%) compared to controls (7%). Treatment had no effect on estrous response or synchronized pregnancy rates (Control vs. MGA; 78 vs. 84%; 52 vs. 60%, respectively). Conception rate per AI of cows > or = 60 days postpartum were not affected by treatment (Control vs. MGA; 79 vs. 73%) however, control cows < 60 days postpartum tended (P < 0.10) to have lower conception rates per AI (39%) than did their MGA-treated counterparts (69%). In summary, 6- and 7-day GnRH-PGF2alpha injection intervals resulted in similar synchronized reproductive performance. Inclusion of MGA feeding between GnRH and PGF2alpha injections eliminated the occurrence of premature estrus and improved conception rate per AI of late-calving cows.  相似文献   

7.
Two experiments were conducted to characterize the development and function of corpus luteum (CL) induced by hCG. In Experiment 1, cows (n = 18) were randomly assigned either to serve as controls (CONT, n = 6) or to receive hCG on Day 7 with (hCG-LUT, n = 6), or without (hCG-CONT, n = 6) surgical removal of the spontaneous CL on Day 12. The diameters of the hCG-induced and spontaneous CL of similar age did not differ (P > 0.05) between Days 1 and 4. At Day 5, the CONT (spontaneous) CL diameter (29.3 +/- 1.4 mm) was larger (P < 0.05) than that of the hCG-LUT (24.5 +/- 1.5 mm) or the hCG-CONT (24.6 +/- 1.7 mm) induced CL. Similarly, induced CL diameter for hCG-LUT and hCG-CONT groups was smaller (P < 0.01) than the CONT (spontaneous) CL between Days 10 to 14. Plasma progesterone (P(4)) levels were not different (P > 0.05) among treatment groups until Day 12. On Day 14, the P(4) concentration of hCG-LUT cows decreased (P < 0.01) to 1.1 +/- 0.9 ng/ml, then increased to 3.1 +/- 0.9 ng/ml by Day 18. Comparative values for hCG-CONT and CONT cows were 5.8 +/- 0.8 and 4.2 +/- 0.8; 4.5 +/- 0.8 and 5.5 +/- 0.8 ng/ml, respectively. The onset of regression of CL as well as estrous cycle length were similar (P > 0.05) for all treatment groups. In Experiment 2, the effects of intrauterine infusion of indomethacin on the diameter, function and life span of hCG-induced CL were examined. A slight, albeit not significant, suppression of PGFM levels was observed in indomethacin-infused cows (n = 4) compared with the controls (n = 4) in blood samples obtained once a day during the infusion period. However, in 2 cows from which blood samples were collected every 6 h, the control cow showed several pulses of PGFM while the indomethacin-treated cow exhibited none. Induced CL diameter and lifespan were not affected by indomethacin infusion. However, mean P(4) levels were higher (P < 0.05) between Days 16 and 20 in the indomethacin-infused group. In conclusion, the results suggest that 1) hCG-induced CL are functional but appear to be smaller and secrete less P(4) than spontaneous CL of similar age, and 2) the small size and reduced secretary function observed is not necessarily due to PGF(2alpha) secreted by the uterine endometrium but, probably, to inherent characteristics.  相似文献   

8.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

9.
One hundred and sixty-five suckled postpartum beef cows were utilized to evaluate the effectiveness of 2 estrus synchronization systems for the initiation and synchronization of estrus. The treatment groups consisted of 1) melengestrol acetate (MGA)-PGF2alpha (cows were given 0.5 mg MGA/head/day for 14 d with 25 mg PGF2alpha injected 17 d after the last day of MGA administration); 2) MGA-48-h calf removal (CR)-PGF2alpha (cows were given 0.5 mg MGA/head/day for 14 d with 48-h calf removal starting on the second day after completion of the MGA regimen plus 25 mg PGF2alpha administered 17 d after the last day of MGA); and 3) unsynchronized controls. Cows were assigned to treatments by the numbers of days post partum, body condition, age, and breed of sire. The cows were observed for estrus at 12-h intervals for 5 d after PGF2alpha administration and were artificially inseminated 12 to 18 h after the observed estrus. Both the MGA-PGF2alpha and MGA-CR-PGF2alpha treatments (64.8 and 61.8%) had greater (P < 0.05) 5-d estrus rates than the control treatments (34.5%). The synchronized pregnancy rate was greater (P < 0.05) for the MGA-CR-PGF2alpha than the control treatment.(52.7 vs 30.9%, respectively). The MGA-CR-PGF2alpha cows had a higher 25-d pregnancy rate than either the MGA-PGF2alpha (P < 0.05) or control cows (P < 0.08). Of the anestrous cows at the beginning of treatment, more MGA-CR-PGF2alpha (P = 0.1) and MGA-PGF2alpha cows were cyclic posttreatment than control cows (58.7 and 55.1 vs 44.7%, respectively), suggesting that treatment initiated estrous cycles in only a small number of the anestrous cows. Both MGA-PGF2alpha and MGA-CR-PGF2alpha treatments appear to be effective methods of synchronizing estrus in suckled postpartum beef cows. However, MGA-CR-PGF2alpha was more effective in establishing pregnancy earlier in the breeding season than MGA-PGF2alpha.  相似文献   

10.
This study was designed to compare two timed insemination protocols, in which progesterone, GnRH and PGF2alpha were combined, with the Ovsynch protocol in presynchronized, early postpartum dairy cows. Reproductive performance was also evaluated according to whether cows showed high or low plasma progesterone concentration, at the onset of treatment. One hundred and six early postpartum dairy cows were presynchronized with two cloprostenol treatments given 14 days apart, and then assigned to one of the three treatment groups. Treatments for the synchronization of estrus in all three groups started 7 days after the second cloprostenol injection, which was considered Day 0 of the actual treatment regime. Cows in the control group (Ovsynch, n=30) were treated with GnRH on Day 0, PGF2alpha on Day 7, and were given a second dose of GnRH 32 h later. Cows in group PRID (n=45) were fitted with a progesterone releasing intravaginal device (PRID) for 9 days, and were given GnRH at the time of PRID insertion and PGF2alpha on Day 7. In group PRID/GnRH (n=31), cows received the same treatment as in the PRID group, but were given an additional GnRH injection 36 h after PRID removal. Cows were inseminated 16-20 h after the administration of the second GnRH dose in the Ovsynch group, and 56 h after PRID removal in the PRID and PRID/GnRH groups. Ovulation rate was determined on Day 11 postinsemination by detecting the presence of a corpus luteum in the ovaries. Lactation number, milk production, body condition at the onset of treatment and treatment regime were included as potential factors influencing ovulation and pregnancy after synchronization. Logistic regression analysis for cows with high and low progesterone concentration on treatment Day 0 revealed that none of the factors included in the models, except the interaction between progesterone and treatment regime, influenced the risk of ovulation and pregnancy significantly. In cows with high progesterone concentration at treatment onset, Ovsynch treatment resulted in a significantly improved pregnancy rate over values obtained following PRID or PRID/GnRH treatment. In cows with low progesterone concentration, PRID or PRID/GnRH treatment led to markedly increased ovulation and pregnancy rates with respect to Ovsynch treatment. These findings suggest the importance of establishing ovarian status in early postpartum dairy cows before starting a timed AI protocol, in terms of luteal activity assessed by blood progesterone.  相似文献   

11.
Change in morphology of the corpus luteum (CL) and patterns of progesterone and estradiol secretion after treatment with melengestrol acetate (MGA) were monitored in postpartum beef cows. Twenty Angus cows were randomly assigned to MGA or MGA + prostaglandin F(2alpha) (PGF) treatments. All cows were fed 0.5 mg of MGA per cow per day for 14 d. The MGA-treated cows (n = 10) were allowed to return to estrus spontaneously at the second estrus after withdrawal of MGA from the feed. The MGA + PGF-treated cows (n = 10) received an injection containing 25 mg of PGF(2alpha) 17 d after the last feeding of MGA. Cycle 1 was defined as the first luteal phase after MGA feeding and Cycle 2 represented the subsequent cycle or luteal phase after PGF. Blood sampling and transrectal ultrasonography of the ovaries was done daily through the completion of 2 estrous cycles upon removal of MGA from the feed. Blood samples were analyzed for plasma progesterone and estradiol concentrations. Area of CL and fluid-filled cavities within each CL were determined by ultrasonography. Concentrations of progesterone and area of CL were similar between cycles and treatments. Estradiol concentrations were higher (P < 0.05) in Cycle 2 than in Cycle 1. Fluid-filled cavities were larger (P < 0.001) in Cycle 1 than in Cycle 2 for both mid-luteal (Days 5 to 9) and late-luteal (Days 10 to 14) phases. Multiple CL (2 or more during 1 cycle) were observed in 5 cows. Progesterone concentrations and total area of luteal tissue did not change with respect to treatment or cycle, but CL morphology was altered in the first cycle after MGA treatment. Of the 19 cows that ovulated after withdrawal of MGA, 3 experienced a short luteal phase. These data characterize changes that occur among cows that are fed melengestrol acetate during the postpartum period and enhance observations from prior studies regarding MGA use.  相似文献   

12.
Ninety two Friesian cows were used to determine physical properties of cervical mucus collected during normal estrus and estrus induced. Estrus was induced using either progesterone (P4) releasing intravaginal devices (PRID) and/or prostaglandin F2alpha (PGF2alpha). The animals were assigned to 4 groups (no treatment, a PRID for 12 days plus an injection of 1000 IU PMSG at the removal of the PRID, a double injection of 3 mL PGF2alpha 11 days apart, and a PRID for 7 days plus an injection of PGF2alpha 24 h before the removal of PRID). A number of cows with normal estrus exhibited three consecutive estrus cycles after calving. Cows that had not shown estrus for three months after calving had their reproductive system palpated twice at 10-day intervals, to determine their ovarian activity. Then PRID and/or PGF2alpha was administered to cows that were found to have a palpable corpus luteum in one of two palpations (cycling cows). The cows of the three induced estrous groups were artificially inseminated (AI) twice, while those with normal estrus received only a single AI. Cervical mucus samples were collected from all cows 5 to 30 min before the first AI. Additionally, samples of cervical mucus were collected from 20 cows at their first estrus after the induced estrus. The results are summarized as follows: 1) The physical properties of cervical mucus were similar in the first three normal consecutive estrus cycles after calving. 2) The physical properties of cervical mucus in normal estrus after calving were similar to those in the first estrus after an induced estrus. 3) The pH values for normal estrus were similar to those for induced estrus. 4) Viscosity of cervical mucus in the normal estrous group was significantly lower than that in the induced estrus. Furthermore, significant differences were noticed among the three induced estrous groups. 5) Spinnbarkeit, crystallization and receptivity of cervical mucus (penetration test) were significantly higher in the normal estrous group than in the induced estrous groups, while no difference was detected among induced estrus groups. 6) Pregnancy rates in the normal estrus group were the same as in the induced estrus groups. 7) The percentages of cows in the induced estrous groups that produced cervical mucus with similar viscosity, spinnbarkeit and receptivity (penetration test) characteristics as the normal estrus group, was very low.  相似文献   

13.
In this study, the fertility of postpartum dairy cows after a sequence of treatments with GnRH (Day 0), PGF2alpha (Day 7) and GnRH (Day 9) (GnRH group; n = 164) or hCG (Day 0), PGF2alpha (Day 7) and hCG (Day 9) (group hCG; n = 166) was investigated in summer and winter seasons. All cows were artificially inseminated without estrus detection, 16-18 h after the end of treatment. Control cows (CONT; n = 226) were not treated and were inseminated at natural estrus. The pregnancy rates at Day 90 (46% versus 33%; P < 0.05) and at Day 135 (76% versus 62%; P < 0.05) postpartum were significantly lower in CONT cows in summer compared to winter months but this effect was not observed in the two treated groups. The number of days from calving to conception was significantly lower in GnRH and hCG treatment groups compared to CONT cows in cold months (102 +/- 3.2, 106 +/- 4.2, 126 +/- 3.1, respectively; P < 0.001) and in hot months (112 +/- 3.2, 114 +/- 4.2, 139 +/- 3.1, respectively; P < 0.001). The concentration of insulin was significantly higher in winter (P < 0.001). There were no differences in average plasma concentration of glucose (P = 0.474), GH (P = 0.441) or IGF-I (P = 0.190). In conclusion, we have shown that veterinary supervision combined with a program of estrous synchronization and fixed time insemination can improve fertility of cows suffering heat stress.  相似文献   

14.
Mean concentrations of luteinizing hormone (LH) increase during the follicular phase of the estrous cycle in cows. The working hypotheses in the present study were (1) that increasing concentrations of 17 beta-estradiol (E2) during the follicular phase of the estrous cycle cause an increase in mean concentration of LH by increasing amplitude of pulses of LH, and (2) that increasing E2 concentrations during this stage of the estrous cycle decrease frequency of pulses of LH in bovine females. Day of estrus was synchronized in seventeen mature cows. Treatments were initiated on Day 16 of the experimental estrous cycle (Day 0 = estrus). At Hour 0 (on Day 16), 4 cows were lutectomized. Lutectomy of these cows (EE; n = 4) allowed for endogenous secretion of E2. The remaining cows were ovariectomized at Hour 0 and were assigned to one of three E2 treatments: luteal phase E2 (LE, n = 5), increasing then decreasing E2 (DE, n = 5), and no E2 (NE, n = 3). Cows in the group that received LE were administered one E2 implant at Hour 0, which provided low circulating concentrations of E2 similar to those observed during the luteal phase of the estrous cycle. Cows in the group that received DE were administered one E2 implant at Hour 0, and additional implants were administered at 8-h intervals through Hour 40; then, two implants were removed at Hours 48 and 56, and one implant was removed at Hour 64.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The objective of the present study was to determine whether treatment of postpartum multiparous and primiparous anestrous beef cows with an intravaginal progesterone-releasing insert (CIDR) and PGF(2alpha), with and without the addition of GnRH or estradiol cypionate (ECP) at the time of CIDR insertion, is effective in stimulating onset of estrous cycles. Postpartum lactating Angus primiparous (n=47, 2 years of age, 495+/-6 kg) and multiparous (n=76, >or=3 years of age, 553+/-9 kg) cows were assigned by calving date to four blocks spaced 21-day apart. Cows were assigned sequentially by calving date to four treatment groups: (1) PGF(2alpha) (n=30), (2) CIDR-PGF(2alpha) (n=30), (3) GnRH-CIDR-PGF(2alpha) (n=33), and (4) ECP-CIDR-PGF(2alpha) (n=27). Intravaginal CIDR inserts were in place from days -7 to 0. A single 100 microg injection of GnRH or 2 mg ECP were administered on day -7, and 25mg PGF(2alpha) was administered on day 0. Day 0 averaged 38+/-1 day postpartum. Blood samples were collected on days -19, -9, 0, 5, 9, 12, 16, 19, 23, 26, and 30 for determination of plasma progesterone concentrations. Pre-treatment luteal activity (progesterone>or=1 ng/ml) was detected in 19% of primiparous and 8% of multiparous cows. Progesterone concentrations on day 0 were greater (P<0.001) in primiparous (3.2+/-0.3 ng/ml) than multiparous (2.0+/-0.2 ng/ml) cows. Following CIDR withdrawal, progesterone concentrations from days 5 to 30 were used to categorize response profiles as either: (1) treatment-induced onset of estrous cycles, (2) continued anestrus, or (3) spontaneous ovulation and subsequent formation of a CL. Incidence of treatment-induced onset of estrous cycles, which was defined as progesterone concentrations >or=1 ng/ml in three or more consecutive samples from days 9 to 19, was influenced by treatment and parity. Percentages of cows initiating estrous cycles were greater (P<0.001) in the three CIDR-treated groups than in the PGF(2alpha) group (55 and 8%, respectively). Percentages of cows initiating estrous cycles in the CIDR-PGF(2alpha), GnRH-CIDR-PGF(2alpha), and ECP-CIDR-PGF(2alpha) groups were 55, 58, and 52%, respectively. Incidence of treatment-induced estrous cycles in the three CIDR-treated groups of cows was greater (P=0.008) in primiparous (76%) than multiparous (43%) cows. Treatment of postpartum anestrous primiparous and multiparous beef cows with CIDR-PGF(2alpha) approximately 40-day postpartum provides an approach to increase the percentage of cows that have reinitiated estrous cycles by the start of the breeding season.  相似文献   

16.
The aim in this study was to compare two estrus synchronization protocols in buffaloes. Animals were divided into two groups: Group A (n=111) received 100 microg GnRH on Day 0, 375 microg PGF(2alpha) on Day 7 and 100 microg GnRH on Day 9 (Ovsynch); Group B (n=117) received an intravaginal drug release device (PRID) containing 1.55 g progesterone and a capsule with 10mg estradiol benzoate for 10 days and were treated with a luteolytic dose of PGF(2alpha) and 1000 IU PMSG at the time of PRID withdrawal. Animals were inseminated twice 18 and 42 h after the second injection of GnRH (Group A) and 60 and 84 h after PGF(2alpha) and PMSG injections (Group B). Progesterone (P(4)) concentrations in milk samples collected 12 and 2 days before treatments were used to determine cyclic and non-cyclic buffaloes, and milk P(4) concentrations 10 days after Artificial insemination (AI) were used as an index of a functional corpus luteum. Cows were palpated per rectum at 40 and 90 days after AI to determine pregnancies. All previously non-cyclic animals in Group B had elevated P(4) (>120 pg/ml milk whey) on Day 10 after AI. Accordingly, a greater (P<0.01) relative percentage of animals with elevated P(4) 10 days after AI were observed in Group B (93.2%) than in Group A (81.1%). However, there was no difference in overall pregnancy rates between the two estrus synchronization protocols (Group A, 36.0%; Group B 28.2%). When only animals with elevated P(4) on Day 10 after AI were considered, pregnancy rate was higher (P<0.05) for animals in Group A (44.4%) than Group B (30.3%). The findings indicated that treatment with PRID can induce ovulation in non-cyclic buffalo cows. However, synchronization of estrus with Ovsynch resulted in a higher pregnancy rate compared with synchronization with PRID, particularly in cyclic buffalo.  相似文献   

17.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

18.
The synchronization of estrus with synthetic progestins or progesterone (P(4)) results in the development of a large, persistent ovarian follicle. The objectives of the present study were to determine if development of a persistent ovarian follicle during synchronization of estrus suppresses recruitment of additional follicles during FSH treatment. On Day 5 of the estrous cycle (estrus = Day 0), beef cows were treated with 0.5 or 2.0 P(4) releasing intravaginal devices (PRIDs) for 8 d (Experiment 1, n = 20), 5 or 2 d (Experiment 2, n = 44) before initiation of FSH treatment. Prostaglandin F(2alpha) (25 mg) was administered on Days 5 and 6. Superovulation was induced with 24 mg of recombinant bovine FSH (rbFSH, Experiment 1) or 28 mg of FSH-P (Experiment 2) over a 3- or 4-d period, respectively. The PRIDs were removed concurrently with the 5th injection of rbFSH or FSH-P. There was a treatment-by-day interaction (P < 0.001) for the concentration of 17beta-estradiol in cows treated for 8, 5 or 2 d before FSH treatment. In Experiment 1, FSH treatment initiated 8 d after insertion of a 0.5 PRID did not affect the number of CL (6.9 +/- 1.4 vs 6.7 +/- 1.6), ova/embryos (3.7 +/-1.3 vs 3.0 +/- 1.3) and transferable embryos (2.4 +/- 0.9 vs 3.0 +/- 0.9) compared with that of the 2.0 PRIDs. In Experiment 2, FSH treatment initiated 5 d after insertion of a 0.5 PRID decreased the number of CL (4.0 +/- 0.5 vs 8.3 +/- 0.8; P < 0.001), ova/embryos (3.0 +/- 0.6 vs 5.9 +/- 1.2; P < 0.03) and transferable embryos (2.3 +/- 0.6 vs 5.1 +/- 1.0; P < 0.03) compared with that of a 2.0 PRID, respectively. Initiation of FSH treatment 2 d after insertion of a 0.5 PRID compared with a 2.0 PRID had no affect on the number of CL (8.0 +/- 2.1 vs 8.7 +/- 1.2), total ova (4.8 +/- 1.4 vs 6.9 +/- 1.4) and transferable embryos (2.9 +/- 1.2 vs 6.1 +/- 1.7). In conclusion, treatment with low doses of P(4) (0.5 PRID) for 5 d but not for 2 or 8 d before initiation of FSH treatment results in the development of a dominant ovarian follicle, which reduces recruitment of ovarian follicles, and the number of CL, total ova and transferable embryos.  相似文献   

19.
Two experiments evaluated a modified delivery of prostaglandin F2alpha (PGF2alpha) after a melengestrol acetate (MGA) treatment in Angus and Bos indicus x Bos taurus (BI) heifers. Experiment 1 was replicated three times with yearling BI heifers (n = 695). Heifers received MGA (0.5 mg head(-1) day(-1)) for 14 days. In Replications 1 and 2, heifers received either 25 mg of PGF2alpha im 19 days after MGA (single) or 12.5 mg of PGF2alpha im 19 and 20 days after MGA (split). In Replication 3, heifers received the same treatments, with PGF2alpha initiated either 18 or 19 days after MGA. Estrus was detected for 72 h after PGF2alpha, with AI commencing 8-12 h after a detected estrus. Heifers not observed in estrus by 72 h were timed-AI concomitant with GnRH (100 microg im). Heifers from Replication 2 (n = 146) had blood samples collected at the initial PGF2alpha and at timed-AI to determine corpus luteum (CL) regression by evaluating plasma progesterone concentrations. The interval from MGA withdrawal to PGF2alpha did not have a significant effect on any variable in Replication 3 and there were no treatment by replication effects for any variables, therefore data were pooled. Modifying the PGF2alpha treatment from a single treatment to two treatments on consecutive days increased (P < 0.05) 72 h estrous response (43.2% versus 50.1%), timed-AI (23.9% versus 33.5%) and total-AI pregnancy rates (34.5% versus 42.5%), and CL regression (79.1% versus 92.5%), respectively. In Experiment 2, yearling Angus (n = 66) and 2-year-old BI (n = 68) heifers were synchronized as per Experiment 1 (with the initial PGF2alpha 19 days after MGA). Neither breed nor PGF2alpha treatment effected (P > 0.05) 72 h estrous response, total-AI pregnancy rate, or CL regression rate. In conclusion, treating yearling BI heifers with split treatments of PGF2alpha (given on two consecutive days) improved estrous response and pregnancy rates by increasing PGF2alpha-induced luteolysis.  相似文献   

20.
In Experiment 1, all cattle were fed MGA (0.5 mg/head/d) for 7 d (designated Days 0 to 6) and given PGF on Day 6. One-half were administered estradiol valerate (EV; 5 mg, im) on Day 0. At Location 1, a higher proportion (P < 0.005) of EV-treated heifers were detected in estrus and bred by AI between Days 7 and 13 than control heifers not receiving EV (27 of 33 versus 15 of 32), but the number of pregnancies (12 vs 10) was not significantly different. Eighty-three of 104 EV-treated and 89 of 106 control cows were inseminated, resulting in 50 and 45 pregnancies, respectively (not significant). At Location 2, cattle were similarly treated and exposed to bulls on Days 7 to 49. Fall pregnancy rate was higher (P < 0.015) for EV-treated than control heifers (44 of 48 vs 33 of 46), but was not significantly different for cows (22 of 26 vs 19 of 23). In Experiment 2, estradiol 17beta (E17beta; 5 mg, im) and progesterone (100 mg, im) were administered on Day 0 (instead of EV). In a third group (designated the PGF group), cattle were bred on Days 0 to 6, and PGF was administered on Day 6 to those not yet bred. For 213 cows, the percentage pregnant to a synchronized estrus was greater in the PGF group (72%) than in either the control group treated with MGA (49%; P = 0.005) or the group receiving MGA and E17beta (54%; P < 0.025). Fall pregnancy rates were 91, 89, and 96% for the 213 cows (not significant) and 89, 93, and 98% for 131 heifers (not significant) in the PGF, MGA and E17beta groups, respectively. In cattle without a functional CL, the average diameter of the largest follicle at Day 6 was 1 to 2 mm smaller in the E17beta + MGA group than in the MGA group (difference significant only in cows at Location 1). Combined for both locations, the synchronized pregnancy rate in heifers without a functional CL on Day 6 was higher (P < 0.05) in the E17beta + MGA group than in the MGA group (11 of 21, 52% versus 4 of 20, 20%). Estrogen treatment caused regression of ovarian follicles with emergence of a new follicular wave. Including estrogen in an estrus synchronization program utilizing MGA and PGF significantly increased fall pregnancy rate in heifers (at 1 location) and the synchronized pregnancy rate of heifers without a functional CL at the time of PGF treatment (combined for both locations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号