首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seminal plasma is generally removed from equine spermatozoa prior to cryopreservation. Two experiments were designed to determine if adding seminal plasma back to spermatozoa, prior to cryopreservation, would benefit the spermatozoa. Experiment 1 determined if different concentrations of seminal plasma affected post-thaw sperm motility, viability and acrosomal integrity of frozen/thawed stallion spermatozoa. Semen was washed through 15% Percoll to remove seminal plasma and spermatozoa resuspended to 350 x 10(6)sperm/mL in a clear Hepes buffered diluent containing either 0, 5, 10, 20, 40 or 80% seminal plasma for 15 min, prior to being diluted to a final concentration of 50 x 10(6)sperm/mL in a Lactose-EDTA freezing diluent and cryopreserved. Sperm motility was analyzed at 10 and 90 min after thawing, while sperm viability and acrosomal integrity were analyzed 20 min after thawing. Seminal plasma did not affect sperm motility, viability or acrosomal integrity (P>0.05). Experiment 2 tested the main affects of seminal plasma level (5 or 20%), incubation temperature (5 or 20 degrees C) and incubation time (2, 4 or 6 h) prior to cryopreservation. In this experiment, spermatozoa were incubated with 5 or 20% seminal plasma for up to 6h at either 5 or 20 degrees C prior to cryopreservation in a skim milk, egg yolk freezing extender. Samples cooled immediately to 5 degrees C, prior to freezing had higher percentages of progressively motile spermatozoa than treatments incubated at 20 degrees C (31 versus 25%, respectively; P<0.05), when analyzed 10 min after thawing. At 90 min post-thaw, total motility was higher for samples incubated at 5 degrees C (42%) compared to 20 degrees C (35%; P<0.05). In addition, samples containing 5% seminal plasma had higher percentages of total and progressively motile spermatozoa (45 and 15%) than samples exposed to 20% seminal plasma (33 and 9%; P<0.05). In conclusion, although the short-term exposure of sperm to seminal plasma had no significant effect on the motility of cryopreserved equine spermatozoa, prolonged exposure to seminal plasma, prior to cryopreservation, was deleterious.  相似文献   

2.
The supplementation of the freezing diluent with 3 amino acids (glutamine, proline and histidine) and 1 amino acid-related compound (betaine) in preserving stallion spermatozoa diluted in INRA82 extender containing 2.5% (v/v) glycerol and 2% (v/v) egg yolk (control extender) during freezing and thawing was studied at 0, 40, 80, 120 and 160 mM in 20 split ejaculates (10 stallions x 2 ejaculates; Experiment 1). Glutamine and proline were studied at 0, 10, 20, 30, 40, 50, 60, 70 and 80 mM in 20 split ejaculates (10 stallions x 2 ejaculates; Experiment 2). In each experiment, spermatozoa were evaluated after thawing by computer automated sperm analyzer. The percentage of motile spermatozoa (faster than 30 microns/sec) was assessed. In addition, the velocity of the average path (VAP), the straight line velocity (VSL), the curvilinear velocity (VCL) and the amplitude of the lateral head displacement (ALH) were also measured. In Experiment 1, only glutamine (40 mM) significantly improved sperm motility (56.0% +/- 3.0 vs 49.7% +/- 1.6; P < 0.05) compared with the control extender, while velocities were unaffected at concentrations of 40 to 120 mM. However, at 160 mM, a significant decrease in motility and velocity was observed for all amino acids. In Experiment 2, motility in glutamine (range 41.1% +/- 3.8%; 42.4% +/- 3.6) and proline (43.0% +/- 3.7; 45.6% +/- 3.8) extenders compared with the control (34.7% +/- 1.6) was improved significantly (P < 0.05). Sperm velocity was improved at concentrations higher than 40 mM glutamine and 50 mM proline.  相似文献   

3.
Two experiments were designed to evaluate the effects of egg yolk and glycerol concentrations, freezing rate, and clarification of a lactose-EDTA-egg yolk extender on the post-thaw motility of stallion spermatozoa. In both experiments there was no influence of freezing rate (vapor vs controlled) on the percentage of progressively motile spermatozoa after thawing. Furthermore, no significant interaction among treatments was detected. In Experiment 1, clarified (centrifuged at 34,400 × g for 30 min) lactose-EDTA-egg yolk extenders containing 16 or 20% egg yolk and 3 or 4% glycerol were superior to those containing 12% egg yolk or 2% glycerol, based on the percentage of progressively motile stallion spermatozoa at 0, 30, 60, and 90 min after thawing. However, in Experiment 2, clarification of the lactose-EDTA-egg yolk extender was detrimental to the ability of the stallion spermatozoa to survive after thawing; 4% glycerol was superior to 2% glycerol. The best extender based on the percentage of progressively motile spermatozoa after thawing was nonclarified lactose-EDTA-egg yolk extender containing 20% egg yolk and 4% glycerol.  相似文献   

4.
Although use of cryopreserved stallion spermatozoa is currently accepted by many breed registries, utilization of this technique remains limited due to poor fertility for some stallions. One reason for these results is osmotic stress that spermatozoa experiences when the cryoprotectant (glycerol) is added to the cells prior to freezing and removal from the cells after thawing. In an effort to minimize osmotic damage, alternative cryoprotectants, having lower molecular weights and greater membrane permeability than glycerol, were evaluated to determine their effectiveness for cryopreserving stallion spermatozoa. In the first experiment, equal molar concentrations of several amides were compared to determine if they could preserve the motility of sperm as well as glycerol. At 0.55 M concentration, addition of glycerol to a skim milk-egg yolk (SMEY) diluent resulted in higher percentages of motile sperm (61%) than methyl formamide (40%) or dimethyl formamide (38%, P<0.05), while formamide, acetamide, and methyl acetamide resulted in recovery of less than 20% motile cells (P<0.05). When methyl formamide or dimethyl formamide were increased to 0.6 or 0.9 M they resulted in percentages of motile cells (48-54%) similar to that achieved with glycerol (52%). Similarly, 0.9 M ethylene glycol also resulted in similar percentages of motile cells (43%). Replacing the glucose and fructose in the SMEY diluent with either raffinose or trehalose did not result in higher percentages of motile sperm (65 and 66%, respectively) than the control SMEY (63%). Similarly, addition of methyl cellulose also did not increase the percentages of motile spermatozoa in the samples, after cryopreservation (P>0.05). In conclusion, both methyl formamide and dimethyl formamide protected stallion spermatozoa from cryodamage as effectively as glycerol. Since these compounds permeate the plasma membrane more effectively than glycerol, they should cause less osmotic damage to stallion spermatozoa than glycerol. Therefore, these compounds may prove very effective in the cryopreservation of stallion spermatozoa, and may be particularly useful for spermatozoa from stallions that produce spermatozoa that have poor post-thaw characteristics when glycerol is used as the cryoprotectant.  相似文献   

5.
Aboagla EM  Terada T 《Theriogenology》2004,62(6):1160-1172
Four experiments were conducted to investigate the effects of egg yolk during the freezing step of cryopreservation (namely, the process except for the cooling step), on the viability of goat spermatozoa. The effects of egg yolk on sperm motility and acrosome integrity during the freezing step were investigated in Experiment 1. Spermatozoa diluted with Tris-citric acid-glucose (TCG) solution containing 20% (v/v) egg yolk were cooled to 5 degrees C, washed, and then frozen in TCG with egg yolk (TCG-Y), TCG without egg yolk (TGG-NY), 0.370 M trehalose with egg yolk (TH-Y), or trehalose without egg yolk (TH-NY). All extenders contained glycerol. In frozen-thawed spermatozoa, the inclusion of egg yolk in the freezing extenders increased (P<0.05) percentages of motile sperm, progressively motile sperm, and the recovery rate (ratio of post-thaw to pre-freeze values), but decreased (P<0.05) acrosomal integrity. Moreover, extenders with trehalose had better (P<0.05) post-thaw sperm viability. In Experiment 2, the effects of egg yolk on acrosome status before and after freezing were studied. Egg yolk significantly decreased the proportion of intact acrosomes before freezing, leading to fewer (P<0.05) intact acrosomes post-thaw and lower (P<0.05) recovery rates for intact acrosomes. In Experiment 3, including sodium dodecyl sulfate (SDS) in a diluent containing egg yolk tended to preserve the acrosome compared with the egg yolk containing diluent free of SDS, however, spermatozoa had a lower (P<0.05) proportion of intact acrosomes than those in a yolk-free diluent. However, after cooling, spermatozoa were diluted with a glycerolated extender containing egg yolk. Therefore, the objective of Experiment 4 was to explore whether the egg yolk or glycerol was responsible for the reduced intact acrosome percentage. In this experiment, after cooling and washing the spermatozoa were diluted in TCG with glycerol and/or egg yolk. The combination of glycerol and egg yolk in the extender reduced (P<0.05) the proportion of intact acrosomes compared with egg yolk or glycerol alone. In conclusion, the inclusion of egg yolk significantly improved sperm motility, indicating its beneficial effects during the freezing step of cryopreservation; trehalose appeared to synergistically increase its cryoprotective effects. Furthermore, although neither glycerol nor egg yolk per se affected the proportion of intact acrosomes, the combination of the two significantly reduced the proportion of acrosome-intact spermatozoa.  相似文献   

6.
Stallion spermatozoa were cryopreserved in different extenders, and the correlations between laboratory assay results and sperm fertility were determined. Spermatozoa were cryopreserved in 1) a skim milk-egg yolk medium (CO); 2) a skim milk-egg yolk-sugar medium (SMEY); 3) CO after pretreatment with phosphatidylserine+cholesterol liposomes (CO + L); or 4) cooled to 5 degrees C without cryopreservation. The per cycle embryo recovery rates for mares inseminated with spermatozoa frozen in CO, SMEY, CO + L and spermatozoa cooled to 5 degrees C were 47, 42, 45 and 37%, respectively (P>0.05). The fertility rates of the 5 stallions used were 72, 71, 29, 25 and 16%, respectively (P<0.05). The percentage of motile spermatozoa immediately after thawing (42 to 47%) and after preparation for zona-free hamster oocyte penetration assays (27 to 35%) were not different across treatments (P>0.05). The percentages of motile spermatozoa after cryopreservation were not different across stallions (52 to 58%) initially but were different when spermatozoa were treated with 35 microM dilauroylphosphatidylcholine (PC12) to induce the acrosome reaction (17 to 42%; P<0.05). The percentages of viable spermatozoa and viable acrosome-intact spermatozoa ranged from 30 to 57% and 27 to 48%, respectively, across stallions. The percentages of penetrated hamster oocytes ranged from 19% to 55% and from 24% to 72% when spermatozoa were treated with 35 microM and 50 microM PC12, respectively. The number of spermatozoa penetrating each oocyte ranged from 0.21 to 1.16 sperm/oocyte and from 0.37 to 1.59 sperm/oocyte when spermatozoa were treated with 35 microM and 50 microM PC12, respectively. Analyses of single sperm parameters were not highly correlated with stallion fertility. However, a model utilizing data from flow cytometric analyses (percentage of viable spermatozoa), the percentage of motile spermatozoa, and hamster oocyte penetration (percentage of penetrated hamster oocytes) was highly correlated with stallion fertility (r = 0.85; P = 0.002).  相似文献   

7.
A study was conducted to investigate the effects of prefreezing sperm concentration using two extenders on post-thaw survival and acrosomal status of ram spermatozoa (Experiment 1) and fertility after intrauterine insemination with differing doses of semen (Experiment 2). In autumn (Northern hemisphere), semen was collected by artificial vagina from 8 adult Leccese rams and ejaculates of good quality semen were pooled. Two extender systems for cryopreservation were considered, one based on milk-lactose egg yolk (Milk-LY) and the other based on tris-fructose egg yolk (Tris-FY). Experiment 1 (2 x 6 factorial scheme) examined the in vitro characteristics of spermatozoa in relation to the Milk-LY and Tris-FY extenders and six prefreezing sperm concentrations (50, 100, 200, 400, 500 and 800 x 10(6) spermatozoa/mL). Experiment 2 (2 x 4 factorial) evaluated the influence of the Milk-LY vs Tris-FY extenders and four doses (20, 40, 80 and 160 x 10(6) spermatozoa/0.25 mL) corresponding to prefreezing spermatozoa concentrations of 100, 200, 400 and 800 x 10(6) spermatozoa/mL, on fertility of ewes inseminated in uterus by laparoscope. Prefreezing sperm concentration influenced (P < 0.01) freezability of spermatozoa and affected negatively all the in vitro parameters at 800 x 10(6) spermatozoa/mL. Overall, Milk-LY tended to ensure higher viability and acrosomal integrity of spermatozoa after thawing at the intermediate sperm densities (range 100 to 500 x 10(6) spermatozoa/mL). At 500 x 10(6) spermatozoa/mL concentration corresponded the best condition for survival of spermatozoa (71.2%), acrosome integrity (71.5%) and acrosomal loss (6.0%). At the lowest sperm concentration (50 x 10(6) spermatozoa/mL), Tris-FY resulted in a higher survival rate than Milk-LY (61.3%, P < 0.05) and lower acrosomal loss (9.7%, P < 0.05). Milk-LY supported spermatozoa motility better than Tris-FY after incubation at sperm concentration between 50 and 400 x 10(6) spermatozoa/mL (0.05 > P < 0.01). Semen doses of 20 to 40 x 10(6) spermatozoa/ewe provided satisfactory fertility rates (64 to 81%). The increase of inseminate doses to 160 x 10(6) spermatozoa/ewe failed to improve fertility, actually tending to decrease lambing rates.  相似文献   

8.
In an effort to improve the number of functional spermatozoa following sex-sorting and cryopreservation, the effects on in vitro sperm characteristics of the additives: (i) catalase (pre-sorting); (ii) cholesterol-loaded cyclodextrins (CLCs; pre-sorting); and (iii) seminal plasma (post-thawing) were investigated. For all experiments, spermatozoa (three males, n=3 ejaculates/male) were processed using a high speed flow cytometer before cryopreservation, thawing and incubation for 6h. Catalase had no effect (P>0.05) on post-thaw motility characteristics (as measured by CASA) of sex-sorted ram spermatozoa, but pre-sort addition of CLCs reduced (P<0.05) sperm quality after post-thaw incubation for 0 h (motility), 3h (motility, average path velocity, viability and acrosome integrity) and 6h (motility, average path and curvilinear velocity, straightness, linearity, viability and acrosome integrity). Seminal plasma had a differential effect (P<0.001) on sex-sorted and non-sorted spermatozoa. Post-thaw supplementation of increasing levels of seminal plasma caused all motility characteristics of sex-sorted, frozen-thawed spermatozoa to decline (P<0.05); conversely, non-sorted, frozen-thawed spermatozoa exhibited improvements (P<0.05) in motility, viability, acrosome integrity and mitochondrial respiration. In summary, incorporation of catalase, CLCs and seminal plasma into the sorting protocol failed to improve post-thaw sperm quality and, consequently efficiency of sex-sorting of ram spermatozoa. The paradoxical effect of seminal plasma supplementation on the in vitro characteristics of ram spermatozoa provides further evidence that sex-sorting by flow cytometry produces a selected population of cells with different functions compared with non-sorted spermatozoa.  相似文献   

9.
Two experiments were conducted to determine pregnancy rates in mares inseminated 1) with 5, 25 and 500 x 10(6) progressively motile spermatozoa (pms), or 2) with 25 x 10(6) sex-sorted cells. In Experiment 1, mares were assigned to 1 of 3 treatments: Group 1 (n=20) was inseminated into the uterine body with 500 x 10(6) pms. Group 2 (n=21) and Group 3 (n=20) were inseminated into the tip of the uterine horn ipsilateral to the preovulatory follicle with 25 and 5 x 10(6) pms, respectively. Mares in all 3 groups were inseminated either 40 (n=32) or 34 h (n=29) after GnRH administration. More mares became pregnant when inseminated with 500 x 10(6) (18/20 = 90%) than with 25 x 10(6) pms (12/21 = 57%; P<0.05), but pregnancy rates were similar for mares inseminated with 25 x 10(6) vs 5 x 10(6) pms (7/20 = 35%) (P>0.1). In Experiment 2, mares were assigned to 1 of 2 treatments: Group A (n=11) was inseminated with 25 x 10(6) spermatozoa sorted into X and Y chromosome-bearing populations in a skimmilk extender. Group B (n=10) mares were inseminated similarly except that spermatozoa were sorted into the skimmilk extender + 4% egg yolk. Inseminations were performed 34 h after GnRH administration. Freshly collected semen was incubated in 224 microM Hoechst 33342 at 400 x 10(6) sperm/mL in HBGM-3 for 1 hr at 35 degrees C and then diluted to 100 x 10(6) sperm/mL for sorting. Sperm were sorted by sex using flow cytometer/cell sorters. Spermatozoa were collected at approximately 900 cells/sec into either the extender alone (Group A) or extender + 4% egg yolk (Group B), centrifuged and suspended to 25 x 10 sperm/mL and immediately inseminated. Pregnancy rates were similar (P>0.1) between the sperm treatments (extender alone = 13/10, 30% vs 4% EY + extender = 5/10, 50%). Based on ultrasonography, fetal sex at 60 to 70 d correlated perfectly with the sex of the sperm inseminated, demonstrating that foals of predetermined sex can be obtained following nonsurgical insemination with sexed spermatozoa.  相似文献   

10.
11.
The only known means of effectively separating populations of X and Y bearing sperms is the Beltsville sexing technology. The technology implies that each individual sperm is interrogated for DNA content, measuring the intensity of the fluorescence after staining the spermatozoa with Hoechst 33342. Because there are no data regarding the effect of the staining on stallion sperm, ejaculates were incubated up to 90 min in presence of 0, 4.5, 9, 22.5, 31.5, 45, 54, 67.5, 76.5 and 90 μM of Hoechst 33342, in two media, KMT or INRA-Tyrodes. After 40 and 90 min of incubation, motility (CASA) and membrane integrity (flow cytometry after YoPro-1/Eth staining) were evaluated. In KMT extender sperm motility significantly decreased after 45 min of incubation when sperm were incubated in the presence of concentrations of Hoechst of 45 μM or greater (P<0.05). When incubated in modified INRA96, stallion spermatozoa tolerated greater concentrations of Hoechst, because sperm motility only decreased when incubated in presence of 90 μM (P<0.05) and membrane integrity was not affected. After 90 min of incubation the same effect was observed, but in this case at concentrations over 45 μM the percentage of total motile sperm was also reduced although only in samples incubated in KMT. To produce this effect in samples incubated in Tyrodes modified INRA 96, Hoechst had to be present at concentrations over 67.5 μM. Apparently, the detrimental effect of Hoechst to stallion spermatozoa varies depending on the media, and INRA modified extender may be an alternative to KMT.  相似文献   

12.
The fertility of ram spermatozoa cryopreserved prior to, and following, sex-sorting by flow cytometry was assessed after insemination of mature Merino ewes at a synchronised estrus. Ewes were inseminated with spermatozoa from three rams, split into four treatment groups: 50 x 10(6) motile non-sorted, frozen-thawed (Control50), 15 x 10(6) motile non-sorted, frozen-thawed (Control15), 15 x 10(6) motile sex-sorted, frozen-thawed (SF15) or 15 x 10(6) motile frozen-thawed, sex-sorted, re-frozen-thawed (FSF15) ram spermatozoa. Separation of SF15 and FSF15 treatments into X- and Y-chromosome-bearing populations was achieved using a high-speed sperm sorter. The percentage of ewes lambing after insemination was similar for Control15 (36/74; 48.6%), SF15 (35/76; 46.1%) and FSF15 (26/72; 36.1%) groups (P>0.05). A higher percentage of ewes produced lambs in the Control50 (38/70; 54.3%) than the FSF15 group (P<0.05). Fifty-one of the 55 (92.7%) lambs derived from fresh, sex-sorted frozen-thawed spermatozoa were of the predicted sex, as were 41/43 (95.3%) lambs derived from frozen-thawed, sex-sorted, re-frozen-thawed spermatozoa. This study demonstrated for the first time in any species that frozen-thawed spermatozoa, after sex-sorting and a second cryopreservation step, are capable of producing offspring of the predicted sex following artificial insemination.  相似文献   

13.
The magnitude of damage to the viability of cryopreserved bovine spermatozoa by pre- and post-thaw thermal insults was compared. Semen collected by artificial vagina from 5 Holstein bulls was diluted in egg yolk-citrate-7% glycerol extender (EYCG) and cryopreserved in 0.5 mL French straws at a sperm concentration of 40 to 60 x 10(6) cells/mL. In Experiment 1, straws were subjected to 22, 5 or -18 degrees C static air temperature for a duration of 1, 2, 3, 4 or 5 min before or after thawing in a 37 degrees C water bath for 1 min. Control straws were thawed in a 37 degrees C water bath for 1 min without further thermal insult. In Experiment 2, straws were thawed for 1 min in a 37 (control), 20 or 5 degrees C water bath, or were loaded into an insemination gun and plunged into a 37 degrees C water bath for 3 min. In both experiments, straws were returned to a 37 degrees C water bath for incubation prior to viability analysis. Viability evaluations, conducted in triplicate, included the percentage of motile spermatozoa at 1 min and at 3 h post thermal insult and the percentage of intact acrosomal membranes at 3 h post thermal insult. In both experiments, acrosomal integrity was more sensitive than motility to thermal insult. In Experiment 1, a significant interaction was observed between timing of thermal insult (pre- or post-thaw), static air temperature and duration of straw exposure. At 22 and 5 degrees C, thermal insults applied before thawing significantly (P<0.05) reduced acrosomal integrity at > or = 2 and > or = 4 min of exposure, respectively. However, post-thaw exposure to 22 and 5 degrees C for up to 5 min had no effect on any of the sperm viability parameters evaluated. In contrast, at -18 degrees C static air temperature, post-thaw exposure for > or = 3 min decreased acrosomal integrity (P<0.05), while 5 min of pre-thaw exposure was required for alteration of acrosomal integrity. In Experiment 2, each alternative thawing method resulted in significantly (P<0.05) lower incubated acrosomal integrity relative to the controls. These findings suggest that bovine spermatozoa cryopreserved in EYCG extender are more sensitive to pre-thaw than post-thaw thermal insults and that acrosomal integrity following 3-h incubation at 37 degrees C is superior to motility evaluations for detection of damage to sperm viability due to thermal insult.  相似文献   

14.
Semen cryopreservation is an important technique for the banking of animal germplasm from endangered species and exploitation of genetically superior sires through artificial insemination. Being a member of bovidae family, bison semen has poor freezing ability as compared to dairy and beef bulls' semen. This study was designed to quantify the damage to bison sperm at different stages of cryopreservation, and to determine the effects of extender (commercial Triladyl(?) vs. custom made tris-citric acid [TCA]) and freeze rate (-10, -25 and -40°C/min) on post-thaw quality of bison semen. Semen was collected from five bison bulls (three woods and two plains) via electroejaculation. In Experiment 1, semen was diluted in Triladyl? extender and frozen with freeze rate -10°C/min. Sperm motility characteristics were recorded in fresh, diluted, cooled (4°C) and freeze-thawed semen using computer-assisted sperm analyzer (CASA). In Experiment 2, semen was diluted in Triladyl? or TCA extender, and frozen with three different freeze rates, i.e. -10, -25 or -40°C/min. Thawing was performed at 37°C for 60s. Post-thaw sperm motility characteristics were assessed using CASA, and sperm structural characteristics (plasma membrane, mitochondrial membrane potential and acrosomes) were evaluated using flow cytometer, at 0 and 3h while incubating semen at 37°C. In Experiment 1, total and progressive motilities did not differ among pre-freeze stages of cryopreservation (P>0.05). However, sperm total and progressive motilities declined (P<0.001) in freeze-thawed semen by 35% and 42%, respectively, compared to after cooling (pre-freeze) semen. In Experiment 2, Triladyl?, as compared to TCA, yielded greater (P<0.05) post-thaw sperm total motility (41% compared to 36%) and progressive motility (34% compared to 29%) at 0h, respectively. The percent change in post-thaw sperm total and progressive motilities, VAP, VCL, VSL, IPM-high ΔΨm and IPM-IACR during 3h incubation at 37°C, was less (P<0.05) in TCA than in Triladyl?. There was an effect of freeze rate on post-thaw sperm average path velocity at 0h, and total motility, progressive motility, VCL, IPM and IPM-IACR at 3h were the greatest (P<0.05) when bison semen was frozen at -40°C/min. Likewise, the percent change in post-thaw sperm total and progressive motilities, during 3h incubation at 37°C, was less (P<0.05) in bison semen frozen at -40°C/min. All post-thaw bison sperm characteristics decreased (P<0.05) from 0h to 3h, during incubation at 37°C. In conclusion, the maximum damage to bison sperm occurred during freeze-thaw processes. Post-thaw total and progressive motilities of bison sperm were greater in Triladyl? at 0h whereas sperm survival was greater in TCA extender during 3h post-thaw incubation. Bison sperm had greater survival (P<0.05) when frozen at -40°C/min freeze rate.  相似文献   

15.
The aims of the present study were: (1) to determine the existence of sperm subpopulations with specific motility characteristics in fresh ejaculates from Holstein bulls, (2) to investigate the effects of semen cryopreservation and post-thaw incubation on the distribution of spermatozoa within the different subpopulations, and (3) to evaluate the existence of between-bull variation in the sperm subpopulations structure of fresh and frozen-thawed semen. Six ejaculates were collected from each of 9 Holstein bulls and cryopreserved following a standard protocol. Overall sperm motility and the individual kinematic parameters of motile spermatozoa, determined using a CASA system, were evaluated before freezing and after 0, 2 and 4h of post-thaw incubation at 37 degrees C. Data from 16,740 motile spermatozoa, defined by VCL, VSL, VAP, LIN, STR, WOB, ALH and BCF, were analysed using a multivariate clustering procedure to identify and quantify specific subpopulations within the semen samples. The statistical analysis clustered all the motile spermatozoa into four separate subpopulations with defined patters of movement: Subpopulation (Subp. 1) moderately slow but progressive spermatozoa (23.2%), (Subp. 2) highly active but non-progressive spermatozoa (16.0%), (Subp. 3) poorly motile non-progressive sperm (35.5%), and (Subp. 4) highly active and progressive sperm (25.3%). Subpopulations 2 and 4 significantly (P<0.01) decreased during cryopreservation and post-thaw incubation (Subp. 2: 21.1%, 18.1%, 8.7% and 5.9%; and Subp. 4: 34.1%, 20.6%, 15.2% and 7.3%, respectively, for fresh, 0, 2 and 4h post-thaw) whereas Subp. 3 significantly (P<0.01) increased (10.7%, 27.2%, 27.2% and 30.7%, respectively, for fresh, 0, 2 and 4h post-thaw). The frequency distribution of spermatozoa within subpopulations was quite similar for the 9 bulls, either in fresh or frozen-thawed semen, and differences among bulls were mainly due to differences in the Subp. 4. Significant correlations (P<0.01) were found between the proportions of spermatozoa assigned to Subp. 4 in the fresh ejaculates and those in frozen-thawed semen after 0 (r=0.473), 2 (r=0.513) and 4h post-thaw (r=0.450). This indicated that the ejaculates with the highest subpopulations of rapid and progressive sperm were also the most resistant to cryopreservation and showed the best post-thaw sperm longevity.  相似文献   

16.
Effects of seminal plasma on post-thaw motility and membrane integrity of cryopreserved horse spermatozoa were investigated. Carboxyfluorescein diacetate staining was used for the assessment of sperm membrane integrity. Adding 30% of seminal plasma from stallions with high post-thaw sperm motility to ejaculates from stallions with low post-thaw sperm motility increased progressive motility from 24.0 +/- 1.6 to 34.5 +/- 1.9% (P < 0.05) and membrane integrity from 27.0 +/- 2.1 to 34.3 +/- 2.3% membrane-intact spermatozoa (P < 0.05). Conversely, the addition of seminal plasma from stallions with low post-thaw sperm motility to ejaculates from stallions with high post-thaw motility decreased progressive motility from 36.0 +/- 1.6 to 30.0 +/- 2.7% (P < 0.05) but did not induce changes in membrane integrity. Seminal plasma from stallions with opposite post-thaw motility therefore clearly influenced the resistance of spermatozoa to the freezing and thawing process. We conclude that the individual composition of seminal plasma affects the suitability of stallions for semen cryopreservation.  相似文献   

17.
The use of chilled-stored stallion semen is limited by its relatively short-term fertilizing capacity. An important reason for the decrease in fertility during storage is the peroxidation of sperm membrane lipids. In this study, effects of the antioxidants ascorbic acid (0.45 and 0.9 g/L) and catalase (0.45 x 10(6) and 1.8 x 10(6) units/L) on chilled-stored stallion semen were investigated. Semen was collected by artificial vagina from 7 stallions and was diluted with skim milk extender or glycin extender. Sperm motility and membrane integrity were investigated after dilution and after 24, 48 and 72 h at 5 degrees C. Ascorbic acid significantly increased the percentage of membrane-intact spermatozoa at 24, 48 and 72 h at 5 degrees C when compared with that of the controls (P < 0.05), irrespective of the extender. Ascorbic acid decreased the percentage of progressively motile spermatozoa (P < 0.05) at a concentration of 0.9 g/L in glycin extender. Catalase decreased (P < 0.05) progressively motile spermatozoa after 24, 48 and 72 h at 5 degrees C in skim milk extender at a concentration of 1.8 x 10(6) units/L. Catalase decreased (P < 0.05) the percentage of membrane-intact spermatozoa at 24 h. Motility and membrane integrity of spermatozoa after dilution with glycin extender containing catalase did not differ from the controls. In conclusion, ascorbic acid has protective effects on sperm membrane integrity in diluted stallion semen.  相似文献   

18.
Cryopreservation induces partially irreversible damage to equine sperm membranes. Part of this damage occurs due to membrane alterations induced by the membrane changing from the fluid to the gel-state as the temperature is reduced lower than the membrane transition temperature. One way to prevent this damage is to increase the membrane fluidity at low temperatures by adding cholesterol to the membrane. Different concentrations of cholesterol-loaded-cyclodextrins (CLC) were added to stallion sperm to determine the CLC concentration that optimizes cryosurvival. Higher percentages of motile sperm were maintained after thawing when 1.5 mg CLC was added to sperm from stallions whose sperm do not survive freezing well, compared to control sperm from those same stallions (67% vs. 50%; P<0.05). Addition of CLCs increased the percentages of membrane intact sperm surviving cryopreservation compared to untreated sperm for all stallions (P<0.05). The amount of cholesterol that incorporated into the membranes of the sperm cells increased in a polynomial fashion (R2=0.9978) and incorporated into all sperm membranes. In addition, there was a significant loss of cholesterol from sperm membranes after cryopreservation; however, addition of CLCs to sperm prior to cryopreservation maintained higher cholesterol levels in the sperm after freezing and thawing than untreated sperm (P<0.05). Addition of CLCs also resulted in more sperm binding to the zona pellucida of bovine oocytes after cryopreservation than control sperm (48 vs. 15; P<0.05). In conclusion, CLCs improved the percentage of post-thaw viability in equine sperm as well as increased the number of sperm that bind to zona pellucida. Addition of CLCs to stallion sperm prior to cryopreservation is a simple procedure that increases the cryosurvival of cells.  相似文献   

19.
Information on the number of motile spermatozoa needed to maximize pregnancy rates for frozen-thawed stallion semen is limited. Furthermore, concentration of spermatozoa per 0.5-mL straw has been shown to affect post-thaw motility (7). The objectives of this study were 1) to compare the effect of increasing the concentration of spermatozoa in 0.5-mL straws from 400 to 1,600 x 10(6) spermatozoa/mL on pregnancy rate of mares, and 2) to determine whether increasing the insemination dose from approximately 320 to 800 million progressively motile spermatozoa after thawing would increase pregnancy rates. Several ejaculates from each of 5 stallions were frozen in a skim milk-egg yolk based freezing medium at 2 spermatozoal concentrations in 0.5-mL polyvinyl-chloride straws. Half of each ejaculate was frozen at 400 x 10(6) cells/mL and half at 1,600 x 10(6) cells/mL. Insemination doses were based on post-thaw spermatozoal motility and contained approximately 320 x 10(6) (320 to 400) motile spermatozoa or approximately 800 x 10(6) (800 to 900) motile spermatozoa. Sixty-three mares were assigned to 1 of 4 spermatozoal treatments (1--low spermatozoal number, low concentration; 2--low spermatozoal number, high concentration; 3--high spermatozoal number, low concentration; 4--high spermatozoal number, high concentration) and were inseminated daily. Post-thaw spermatozoal motility was similar for cells frozen at both spermatozoal concentrations (P > 0.1). One-cycle pregnancy rates were 15, 40, 28 and 33%, respectively, for Treatments 1, 2, 3 and 4. Packaging spermatozoa at the high concentration tended to increase pregnancy rates vs packaging at the low concentration (37 vs 22%; P = 0.095). Furthermore, when the lower spermatozoal number was used, there tended (P < 0.1) to be a higher pregnancy rate if spermatozoa were packaged at the higher concentration. There was no increase in pregnancy rates when higher numbers of motile spermatozoa were inseminated (27 vs 31%; P > 0.1). Based on these results, a single 0.5-mL straw dose containing 800 x 10(6) spermatozoa should be used and each insemination dose should contain approximately 320 x 10(6) motile spermatozoa. Fertility trials utilizing other freezing extenders are necessary before recommending a single 0.5-mL insemination dose for all freezing extenders.  相似文献   

20.
Three experiments were designed to analyze the effects of cooling rate on survival of stallion spermatozoa in a milk-based extender, at 0 to 96 hours after reaching the desired temperature. The samples were warmed to 37 degrees C and were evaluated by computer-assisted analysis of sperm motility. In Experiment 1, rate of cooling between 37 and 20 degrees C was evaluated. Sperm motion was not affected by cooling at plunge, -0.42 or -0.28 degrees C/minute. However, storage of spermatozoa at 5 degrees C after slow cooling below 20 degrees C was superior to storage at 20 degrees C. In Experiment 2, 3 cooling rates from 37 degrees to 5 degrees C were evaluated. Cooling at either -0.05 or -0.7 degrees C/minute was superior (P<0.05) to plunging spermatozoa to 5 degrees C. Cooling at -0.05 degrees C/minute rather than -0.7 degrees C/minute maximized the percentage of motile spermatozoa and their curvilinear velocity. In Experiment 3, cooling rates from 20 to 5 degrees C were evaluated, with all samples cooled at -0.7 degrees C/minute from 37 to 20 degrees C. Sperm motion was similar (P>0.05) after cooling below 20 degrees C at -0.012, -0.05 or -0.10 degrees C/minute, and the 2 slower rates were superior (P<0.05) to cooling at -0.3 degrees C/minute. It was concluded that stallion spermatozoa can be cooled rapidly from 37 to 20 degrees C, but should be cooled at 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号