首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
An NADP(+)-dependent D-xylose dehydrogenase from pig liver cytosol was purified about 2000-fold to apparent homogeneity with a yield of 15% and specific activity of 6 units/mg of protein. An Mr value of 62,000 was obtained by gel filtration. PAGE in the presence of SDS gave an Mr value of 32,000, suggesting that the native enzyme is a dimer of similar or identical subunits. D-Xylose, D-ribose, L-arabinose, 2-deoxy-D-glucose, D-glucose and D-mannose were substrates in the presence of NADP+ but the specificity constant (ratio kcat./Km(app.)) is, by far, much higher for D-xylose than for the other sugars. The enzyme is specific for NADP+; NAD+ is not reduced in the presence of D-xylose or other sugars. Initial-velocity studies for the forward direction with xylose or NADP+ concentrations varied at fixed concentrations of the nucleotide or the sugar respectively revealed a pattern of parallel lines in double-reciprocal plots. Km values for D-xylose and NADP+ were 8.8 mM and 0.99 mM respectively. Dead-end inhibition studies to confirm a ping-pong mechanism showed that NAD+ acted as an uncompetitive inhibitor versus NADP+ (Ki 5.8 mM) and as a competitive inhibitor versus xylose. D-Lyxose was a competitive inhibitor versus xylose and uncompetitive versus NADP+. These results fit better to a sequential compulsory ordered mechanism with NADP+ as the first substrate, but a ping-pong mechanism with xylose as the first substrate has not been ruled out. The presence of D-xylose dehydrogenase suggests that in mammalian liver D-xylose is utilized by a pathway other than the pentose phosphate pathway.  相似文献   

4.
Murinoglobulin, a newly identified mouse plasma protein resembling alpha-macroglobulins [Saito, A. & Sinohara, H. (1985) J. Biol. Chem. 260, 775-781], was also found in guinea pig plasma, and purified to homogeneity. Guinea pig murinoglobulin consisted of a single 180-kDa polypeptide chain containing about 18% carbohydrate. It inhibited the proteolytic activities of trypsin and thermolysin towards Remazol brilliant blue hide powder, but stimulated the amidolytic activities of trypsin and Staphylococcus aureus V8 protease towards small synthetic substrates. Heat treatment of murinoglobulin completely abolished the former activities, but partially retained the latter activities. The ability of guinea pig murinoglobulin to inhibit the proteolysis was much weaker than that of the mouse homologue. On interaction with trypsin, murinoglobulin underwent cleavage of one susceptible bond with concomitant unmasking of one thiol group. Methylamine treatment also released one thiol group per molecule.  相似文献   

5.
Guinea pig insulin. I. Purification and physical properties   总被引:2,自引:0,他引:2  
  相似文献   

6.
Glutamate dehydrogenase from pig kidney has been purified to homogeneity by means of affinity chromatography on matrix bound Cibacron Blue F3G-A and gel chromatography on Sepharose 6B. The enzyme exhibits allosteric properties with the substrates alpha-ketoglutarate, ammonium, and NADH, respectively. GTP is a strong inhibitor which strengthened the cooperative interactions between the ammonium binding sites. ADP as an activator relieves the inhibition by GTP. Like glutamate dehydrogenase from bovine liver, glutamate dehydrogenase from pig kidney shows the ability of self-association, too. The sedimentation coefficient increases from 13.5 S at 0.07 mg protein/ml to 19.4 S at 1.32 mg protein/ml. In the sodium dodecylsulphate gel electrophoresis the enzyme migrates as a single band with a molecular-weight at 51000.  相似文献   

7.
L-3-Glycerophosphate dehydrogenase (EC 1.1.99.5) was purified from pig brain mitochondria by extraction with deoxycholate, ion-exchange chromatography and (NH4)2SO4 fractionation in cholate, and preparative isoelectric focusing in Triton X-100. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis shows that the purified enzyme consists of a single subunit of mol.wt. 75 000. The enzyme contains non-covalently bound FAD and low concentrations of iron and acid labile sulphide. No substrate reducible e.p.r. signals were detected. The conditions of purification, particularly the isoelectric focusing step, lead to considerable loss of FAD and possibly iron-sulphur centres. It is therefore not possible to decide with certainty whether the enzyme is a flavoprotein or a ferroflavoprotein. The enzyme catalyses the oxidation of L-3-glycerophosphate by a variety of electron acceptors, including ubiquinone analogues. A number if compounds known to inhibit ubiquinone oxidoreduction by other enzymes of the respiratory chain failed to inhibit L-3-glycerophosphate dehydrogenase, except at very high concentrations.  相似文献   

8.
Rat liver alcohol dehydrogenase. Purification and properties   总被引:1,自引:2,他引:1       下载免费PDF全文
Alcohol dehydrogenase (EC 1.1.1.1) from the rat liver supernatant fraction has been purified 200-fold and partially characterized. The isolation procedure involved ammonium sulphate fractionation, DEAE-Sephadex chromatography and gel filtration. The purified enzyme behaved as a homogeneous preparation as evaluated by cellulose acetate and polyacrylamide-gel disc electrophoresis. Sulphoethyl-Sephadex chromatography and immunoelectrophoresis with rabbit antiserum indicated the presence of a minor component. Rat liver alcohol dehydrogenase appears to contain 4mol of zinc/mol, has an estimated molecular weight of 65000 and consists of two subunits of similar molecular weight. Heavy-metal ions, thiol-blocking reagents, urea at concentrations below 8m, low pH (5.5) and chelating agents deactivate the enzyme but do not dissociate it into subunits. Deactivated enzyme could not be reactivated. The enzyme is strictly specific for NAD(+) and has a broad specificity for alcohols, which are bound at a hydrophobic site. Inhibition occurred with the enzyme equilibrated with Zn(2+) at concentrations above 0.1mm.  相似文献   

9.
Purification and properties of pig liver kynureninase.   总被引:1,自引:0,他引:1  
Kynureninase [L-kynurenine hydrolase, EC 3.7.1.3] was purified from pig liver by a procedure including DEAE-cellulose chromatography, hydroxyapatite chromatography, ammonium sulfate fractionation, DEAE-Bio Gel chromatography, Sephacryl S-200 gel filtration, kynurenine-Sepharose affinity chromatography, and Sephadex G-200 gel filtration. The enzyme was found to be homogeneous by the criterion of disc-gel electrophoresis. The enzyme has a molecular weight of about 100,000 and exhibits absorption maxima at 280 and 420 nm. The optimum pH and the isoelectric point of the enzyme are 8.5 and 5.0, respectively. The Michaelis constants were determined to be as follows: L-kynurenine, 7.7 X 10(-4) M; L-3-hydroxykynurenine, 1.3 X 10(-5) M; and pyridoxal 5'-phosphate, 1.8 X 10(-6) M. L-3-Hydroxykynurenine is hydrolyzed more rapidly than L-kynurenine; the liver enzyme can be regarded as a 3-hydroxy-kynureninase.  相似文献   

10.
11.
12.
Dihydropyrimidine dehydrogenase was isolated from cytosolic pig liver extracts and purified 3100-fold to apparent homogeneity. Purification made use of ammonium sulfate fractionation, precipitation with acetic acid and chromatography on DEAE-cellulose and 2',5'-ADP-Sepharose with 28% recovery of total activity. The native enzyme has a molecular mass of 206 kDa and is apparently composed of two similar, if not identical, subunits. Proteolytic cleavage reveals two fragments with apparent molecular masses of 92 kDa and 12 kDa. The C-terminal 12-kDa fragment seems to be extremely hydrophobic. The enzyme contains tightly associated compounds including four flavin nucleotide molecules and 32 iron atoms/206-kDa molecule. The iron atoms are probably present in iron-sulfur centers. The flavins released from the enzyme were identified as FAD and FMN in equal amounts. An isoelectric point of 4.65 was determined for the dehydrogenase. Apparent kinetic parameters were obtained for the substrates thymine, uracil, 5-aminouracil, 5-fluorouracil and NADPH.  相似文献   

13.
14.
15.
Two NADPH-dependent aromatic aldehyde-ketone reductases purified from guinea pig liver catalyzed oxidoreduction of 17 beta-hydroxysteroids and 17-ketosteroids. One enzyme efficiently oxidized 5 beta-androstanes and reduced 17-ketosteroids of A/B cis configuration, whereas the other enzyme efficiently oxidized 5 alpha-androstanes and equally reduced both 5 alpha-and 5 beta-androstanes of 17-ketosteroids. However, aromatic aldehydes and ketones, and 3-ketosteroids were irreversibly reduced by the two enzymes. The two enzymes utilized NADP+ or NADPH as cofactor, but little activity with NAD+ or NADH was found. Phosphate ions enhanced the NAD+-dependent dehydrogenase activity and NADH-dependent reductase activity of the two enzymes, whereas the activities with NADP+ and NADPH were not affected. The ratios of the two activities of ketone reduction and 17 beta-hydroxysteroid oxidation of the two enzymes were almost constant during the purification steps after the two enzymes had been separated by DEAE-cellulose chromatography. By kinetic studies and electrophoresis and isoelectric focusing experiments it was confirmed that both of the two enzymes were responsile for the reduction aldehydes, ketones, and ketosteroids and for the oxidation of 17 beta-hydroxysteroids. These results indicate that 17 beta-hydroxysteroid dehydrogenases may play important roles in the metabolism of exogeneous aldehydes and ketones as well as steroids.  相似文献   

16.
17.
18.
1. Galactokinase has been purified from the liver of young pigs by high-speed centrifugation, chromatography on Sephadex G-100 and DEAE-cellulose, and ammonium sulphate fractionation. 2. The enzyme preparation has a specific activity of 10-18mumoles of galactose phosphorylated/mg. of protein/min. at 37 degrees and has been purified 400-fold from the liver supernatant. 3. Purified liver galactokinase has Michaelis constants of 1x10(-4)-3x10(-4)m for galactose and 2x10(-4)m for ATP-Mg(2+), and the enzyme reaction produces equimolar amounts of galactose 1-phosphate and ADP. 4. Galactokinase phosphorylates 2-deoxygalactose and galactosamine in addition to galactose, has a pH optimum of 7.8, a Q(10) of 2, and is stimulated by cysteine and other thiols. 5. With the exception of substrate specificity, the properties of liver galactokinase are similar to galactokinase purified from yeast and Escherichia coli.  相似文献   

19.
The NADP-dependent isocitrate dehydrogenase from pig liver soluble fraction was purified over 500-fold with an overall yield of 25%. The purified enzyme, which is homogeneous by all the usual criteria, has a molecular weight of about 75000 and is composed of two identical subunits. This has been demonstrated by ultracentrifugation, fluorescence titration and peptide ;fingerprinting'. The maximal turnover number, extinction coefficients at 280nm and 260nm and amino acid analysis are described.  相似文献   

20.
There are two 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) in rat liver, one in mitochondria (type I enzyme), and another in peroxisomes (type II enzyme). In a series of the studies on the properties and the physiological roles of fatty acid oxidation systems in both organelles, the two enzymes were purified and compared for their properties. The final preparations obtained were judged to be homogeneous based on the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Type I enzyme was composed of two identical subunits of molecular weight of 32,000, whereas type II enzyme was a monomeric enzyme having a molecular weight of 70,000–77,000. These subunit structures were confirmed by the results of fluorescence studies. Both enzymes were different in amino acid compositions, especially in the contents of tryptophan and half-cystine. Antibodies against them formed single precipitin lines for the corresponding enzymes, but not for the others when subjected to an Ouchterlony double-diffusion test. The Km values of type II enzyme for various substrates were lower than those of type I enzyme except those for acetoacetyl-CoA. As for 3-hydroxyacyl-CoA substrates, both enzymes had lower Km's for longer-chain substrates. The V for the substrates of C4C10 were similar for each enzyme, though the value of type II enzyme for C10 substrate was rather lower. The results of fluorescence studies suggested that their dissociation constants for NADH were lower and those for NAD+ were higher at lower pH. Both enzymes were specific to l-form of 3-hydroxyacyl-CoA substrate. The optimal pH of the forward reaction of type I and type II enzymes was 9.6 and 9.8, and of the reverse reaction, 4.5 and 6.2, respectively. From these results they were concluded to be completely different enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号