首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imp4p is a component of U3 snoRNP (small nucleolar ribonucleoprotein) involved in the maturation of 18S rRNA. We have shown that Imp4p interacts with Cdc13p, a single-stranded telomere-binding protein involved in telomere maintenance. To understand the role of Imp4p in telomeres, we purified recombinant Imp4p protein and tested its binding activity towards telomeric DNA using electrophoretic mobility-shift assays. Our results showed that Imp4p bound specifically to single-stranded telomeric DNA in vitro. The interaction of Imp4p to telomeres in vivo was also demonstrated by chromatin immunoprecipitation experiments. Significantly, the binding of Imp4p to telomeres was not limited to yeast proteins, since the hImp4 (human Imp4) also bound to vertebrate single-stranded telomeric DNA. Thus we conclude that Imp4p is a novel telomeric DNA-binding protein that, in addition to its role in rRNA processing, might participate in telomere function.  相似文献   

2.
May T  Soll J 《The Plant cell》2000,12(1):53-64
Transit sequences of chloroplast-destined precursor proteins are phosphorylated on a serine or threonine residue. The amino acid motif around the phosphorylation site is related to the phosphopeptide binding motif for 14-3-3 proteins. Plant 14-3-3 proteins interact specifically with wheat germ lysate-synthesized chloroplast precursor proteins and require an intact phosphorylation motif within the transit sequence. Chloroplast precursor proteins do not interact with 14-3-3 when synthesized in the heterologous reticulocyte lysate. In contrast, a precursor protein destined for plant mitochondria was found to be associated with 14-3-3 proteins present in the reticulocyte lysate but not with 14-3-3 from wheat germ lysate. This indicates an unrecognized selectivity of 14-3-3 proteins for precursors from mitochondria and plastids in plants in comparison to fungi and animals. The heterooligomeric complex has an apparent size of 200 kD. In addition to the precursor protein, it contains 14-3-3 (probably as a dimer) and a heat shock protein Hsp70 isoform. Dissociation of the precursor complex requires ATP. Protein import experiments of precursor from the oligomeric complex into intact pea chloroplasts reveal three- to fourfold higher translocation rates compared with the free precursor, which is not complexed. We conclude that the 14-3-3-Hsp70-precursor protein complex is a bona fide intermediate in the in vivo protein import pathway in plants.  相似文献   

3.
Homologs of the Imp4 protein, a component specific to the eukaryotic U3 snoRNP complex, have been found in all archaeal genomes. The archaeal and eukaryotic Imp4 proteins that are related to four other protein families, the Imp4-like, the SSF1 homologs and two sets of hypothetical proteins, are characterized by the Imp4 signature pattern. These findings, together with the presence of other snoRNPs homologs in Archaea, provide evidence for similar RNA processing and folding in Eukarya and Archaea.  相似文献   

4.
The function of the U3 small nucleolar ribonucleoprotein (snoRNP) is central to the events surrounding pre-rRNA processing, as evidenced by the severe defects in cleavage of pre-18S rRNA precursors observed upon depletion of the U3 RNA and its unique protein components. Although the precise function of each component remains unclear, since U3 snoRNA levels remain unchanged upon genetic depletion of these proteins, it is likely that the proteins themselves have significant roles in the cleavage reactions. Here we report the identification of two previously undescribed protein components of the U3 snoRNP, representing the first snoRNP components identified by using the two-hybrid methodology. By screening for proteins that physically associate with the U3 snoRNP-specific protein, Mpp10p, we have identified Imp3p (22 kDa) and Imp4p (34 kDa) (named for interacting with Mpp10p). The genes encoding both proteins are essential in yeast. Genetic depletion reveals that both proteins are critical for U3 snoRNP function in pre-18S rRNA processing at the A0, A1, and A2 sites in the pre-rRNA. Both Imp proteins associate with Mpp10p in vivo, and both are complexed only with the U3 snoRNA. Conservation of RNA binding domains between Imp3p and the S4 family of ribosomal proteins suggests that it might associate with RNA directly. However, as with other U3 snoRNP-specific proteins, neither Imp3p nor Imp4p is required for maintenance of U3 snoRNA integrity. Imp3p and Imp4p are therefore novel protein components specific to the U3 snoRNP with critical roles in pre-rRNA cleavage events.  相似文献   

5.
MAGP-1 and fibrillin-1, two protein components of extracellular microfibrils, were shown by immunoprecipitation studies to interact with the chondroitin sulfate proteoglycan decorin in the medium of cultured fetal bovine chondrocytes. Decorin interacted with each protein individually and with both proteins together to form a ternary complex. Expression of truncated fibrillin-1 proteins in Chinese hamster ovary cells localized proteoglycan binding to an amino-terminal region near the proline-rich domain. A spatially analogous fibrillin-2 truncated protein did not coprecipitate the same sulfated molecule, suggesting that chondroitin sulfate proteoglycan binding in this region is specific for fibrillin-1. An interaction between fibrillin and MAGP-1 was also observed under culture conditions that abrogated decorin secretion, suggesting that the two microfibrillar proteins can associate in the absence of the proteoglycan. Sulfation of matrix proteins is important for elastic fiber assembly because inhibition of sulfation was shown to prevent microfibrillar protein incorporation into the extracellular matrix of cultured cells.  相似文献   

6.
Cyclophilins (Cyps) catalyze the cis/trans isomerization of peptidyl-prolyl bonds, a rate-limiting step in protein folding. In some cases, cyclophilins have also been shown to form stable complexes with specific proteins in vivo and may thus also act as chaperone-like molecules. We have characterized the 20kD protein of the spliceosomal 25S [U4/U6.U5] tri-snRNP complex from HeLa cells and show that it is a novel human cyclophilin (denoted SnuCyp-20). Purified [U4/U6.U5] tri-snRNPs, but not U1, U2, or U5 snRNPs, exhibit peptidyl-prolyl cis/trans isomerase activity in vitro, which is cyclosporin A-sensitive, suggesting that SnuCyp-20 is an active isomerase. Consistent with its specific association with tri-snRNPs in vitro, immunofluorescence microscopy studies showed that SnuCyp-20 is predominantly located in the nucleus, where it colocalizes in situ with typical snRNP-containing structures referred to as nuclear speckles. As a first step toward the identification of possible targets of SnuCyp-20, we have investigated the interaction of SnuCyp-20 with other proteins of the tri-snRNP. Fractionation of RNA-free protein complexes dissociated from isolated tri-snRNPs by treatment with high salt revealed that SnuCyp-20 is part of a biochemically stable heteromer containing additionally the U4/U6-specific 60kD and 90kD proteins. By coimmunoprecipitation experiments performed with in vitro-translated proteins, we could further demonstrate a direct interaction between SnuCyp-20 and the 60kD protein, but failed to detect a protein complex containing the 90kD protein. The formation of a stable SnuCyp-20/60kD/90kD heteromer may thus require additional factors not present in our in vitro reconstitution system. We discuss possible roles of SnuCyp-20 in the assembly of [U4/U6.U5] tri-snRNPs and/or in conformational changes occurring during the splicing process.  相似文献   

7.
Three reading frames called ccmF(N1), ccmF(N2), and ccmF(c) are found in the mitochondrial genome of Arabidopsis. These sequences are similar to regions of the bacterial gene ccmF involved in cytochrome c maturation. ccmF genes are always absent from animal and fungi genomes but are found in mitochondrial genomes of land plant and several evolutionary distant eukaryotes. In Arabidopsis, ccmF(N2) despite the absence of a classical initiation codon is not a pseudo gene. The 3 ccmF genes of Arabidopsis are expressed at the protein level. Their products are integral proteins of the mitochondrial inner membrane with in total 11 to 13 predicted transmembrane helices. The conserved WWD domain of CcmF(N2) is localized in the inter membrane space. The 3 CcmF proteins are all detected in a high molecular mass complex of 500 kDa by Blue Native PAGE. Direct interaction between CcmF(N2) and both CcmF(N1) and CcmF(C) is shown with the yeast two-hybrid split ubiquitin system, but no interaction is observed between CcmF(N1) and CcmF(C). Similarly, interaction is detected between CcmF(N2) and apocytochrome c but also with apocytochrome c(1). Finally, CcmF(N1) and CcmF(N2) both interact with CCMH previously shown to interact as well with cytochrome c. This strengthens the hypothesis that CcmF and CCMH make a complex that performs the assembly of heme with c-type apocytochromes in plant mitochondria.  相似文献   

8.
We have purified three new human U4/U6-snRNP proteins from HeLa cells. The three proteins formed a tightly bound complex and behaved as a single species throughout the purification. All three proteins have been identified by peptide sequencing, and full-length cDNA sequences have been obtained for all of them. Two of the proteins are homologues of the Saccharomyces cerevisiae splicing factors Prp3 and Prp4, and the third protein is a cyclophilin. Both the human and S. cerevisiae Prp4 proteins have seven repeats of the WD motif and likely fold into structures very similar to those of the beta subunits of G proteins. The human Prp3 protein is highly basic and is closely related to S. cerevisiae Prp3 only in its carboxyl-terminal half. The human homologues of Prp3 and Prp4 are part of a stable complex in the absence of RNA. The third protein in the complex is a new cyclophilin. Cyclophilins have been proposed to act as chaperones in a variety of cellular processes, and we discuss some possible roles of this U4/U6 snRNP-associated cyclophilin.  相似文献   

9.
We have isolated and characterized Mpp10p, a novel protein component of the U3 small nucleolar ribonucleoprotein (snoRNP) from the yeast Saccharomyces cerevisiae. The MPP10 protein was first identified in human cells by its reactivity with an antibody that recognizes specific sites of mitotic phosphorylation. To study the functional role of MPP10 in pre-rRNA processing, we identified the yeast protein by performing a GenBank search. The yeast Mpp10p homolog is 30% identical to the human protein over its length. Antibodies to the purified yeast protein recognize a 110-kDa polypeptide in yeast extracts and immunoprecipitate the U3 snoRNA, indicating that Mpp10p is a specific protein component of the U3 snoRNP in yeast. As a first step in the genetic analysis of Mpp10p function, diploid S. cerevisiae cells were transformed with a null allele. Sporulation and tetrad analysis indicate that MPP10 is an essential gene. A strain was constructed where Mpp10p is expressed from a galactose-inducible, glucose- repressible promoter. After depletion of Mpp10p by growth in glucose, cell growth is arrested and levels of 18S and its 20S precursor are reduced or absent while the 23S and 35S precursors accumulate. This pattern of accumulation of rRNA precursors suggests that Mpp10p is required for cleavage at sites A0, A1, and A2. Pulse-chase analysis of newly synthesized pre-rRNAs in Mpp10p-depleted yeast confirms that little mature 18S rRNA formed. These results reveal a novel protein essential for ribosome biogenesis and further elucidate the composition of the U3 snoRNP.  相似文献   

10.
The role of proteasomes in ubiquitin (Ub)-dependent protein degradation was studied by analyzing lysates of human promyelocytic leukemia HL-60 cells by glycerol density gradient centrifugation. High succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide hydrolyzing activity was found in the 26S fraction, whereas the 20S fraction containing proteaomes had no activity. Addition of 0.05% sodium dodecylsulfate to the latter fraction, however, induced marked activity. The 26S, but not the 20S fraction catalyzed ATP-dependent degradation of [125I]lysozyme-Ub conjugate. Depletion from the lysate of ATP caused complete shift of the active 26S complex to the latent 20S form, whereas in the lysate prepared from ATP-depleted cells, ATP converted 20S proteasomes to 26S complexes. The immunoprecipitated 26S complexes were found to consist of proteasomes and 13-15 other proteins ranging in size from 35 to 110 kDa. We conclude that in the lysate, latent proteasomes undergo reversible, ATP-dependent association with multiple protein components to form 26S complexes that catalyze ATP-dependent degradation of Ub-protein conjugates.  相似文献   

11.
The interaction of the Escherichia coli elongation factor Tu guanosine tetraphosphate complex (EF-Tu ppGpp) with aminoacyl-tRNAs(aa-tRNA) was reinvestigated by gel filtration and hydrolysis protection experiments. These experiments show that EF-Tu X ppGpp like EF-Tu X GDP (Pingoud, A., Block, W., Wittinghofer, A., Wolf, H. & Fischer, E. (1982) J. Biol. Chem. 257, 11261-11267) forms a fairly stable complex with Phe-tRNAPhe, KAss being 0.6 X 10(5) M-1 at 25 degrees C. The binding of the EF-Tu X ppGpp X aa-tRNA complex to programmed ribosomes was investigated by a centrifugation technique. It is shown that this complex is bound codon-specific with KAss = 3 X 10(7) M-1 at 0 degrees C and that it stimulates peptidyl transfer. A numerical estimation of the intracellular concentration of EF-Tu X GTP X aa-tRNA and EF-Tu X ppGpp X aa-tRNA during normal growth and under the stringent response indicates that ppGpp accumulation does affect the EF-Tu X GTP X aa-tRNA concentration but does not lead to major depletion of this pool. Furthermore, due to the higher affinity of EF-Tu X GTP to aa-tRNA and of the ternary complex EF-Tu X GTP X aa-tRNA to the ribosome, EF-Tu X ppGpp X aa-tRNA binding to the ribosome is not significant. According to our measurements and calculations, therefore, a direct participation of EF-Tu in slowing down the rate of protein biosynthesis and improving its accuracy during amino acid starvation is not obvious.  相似文献   

12.
The mouse ribosomal protein S3a-encoding gene (mRPS3a) was cloned and sequenced in this study. mRPS3a shares identical exon/intron structure with its human counterpart. Both genes are split to six exons and exhibit remarkable conservation of the promoter region (68.8% identity in the 250 bp upstream of cap site) and coding region (the proteins differ in two amino acids). mRPS3a displays many features common to other r-protein genes, including the CpG-island at 5′-end of the gene, cap site within an oligopyrimidine tract and no consensus TATA or CAAT boxes. However, mRPS3a represents a rare subclass of r-protein genes that possess a long coding sequence in the first exon. Comparison of human and mouse S3a genes revealed sequence fragments with striking similarity within introns 3 and 4. Here we demonstrate that these sequences encode for a novel small nucleolar RNA (snoRNA) designated U73. U73 contains C, D and D′ boxes and a 12-nucleotide antisense complementarity to the 28S ribosomal RNA. These features place U73 into the family of intron-encoded antisense snoRNAs that guide site-specific 2′-O-ribose methylation of pre-rRNA. We propose that U73 is involved in methylation of the G1739 residue of the human 28S rRNA. In addition, we present the mapping of human ribosomal protein S3a gene (hRPS3a) and internally nested U73 gene to the human chromosome 4q31.2–3.  相似文献   

13.
Messenger RNA analogues (42-mers) containing a GAC codon (aspartic acid) in the middle of their sequence followed by a s(4)UGA stop codon were used to identify the components of the human ribosomal A site in direct contact with the photoactivatable 4-thiouridine (s(4)U) residue. We compared the behavior of the nonphased ribosome-mRNA complex, (-)tRNA(Asp), to the one of the phased complex, (+)tRNA(Asp), in the absence and in the presence of eRF1, the eukaryotic class 1 translation termination factor of human origin. The patterns of cross-links obtained for the three complexes were similar to those previously reported for rabbit ribosomes [Chavatte, L., et al. (2001) Eur. J. Biochem. 268, 2896-2904]. Cross-links involving proteins S2, S3, S3a, and S30 were poorly dependent on the presence of tRNA(Asp) and eRF1. Cross-linking to nucleotide C1696 of 18S rRNA occurred in all complexes, but its yield was at least two times higher in the phased complex with an empty A site than in the nonphased complex or when the A site was occupied by eRF1. In contrast, protein S15 cross-linked only in the phased complex in the absence of eRF1. The data obtained point to notable differences in organization of the decoding site between mammalian and prokaryotic ribosomes and to large internal mobility of the components of the tRNA (eRF1)-free A site.  相似文献   

14.
15.
16.
17.
Immunoaffinity-purified human 25S [U4/U6.U5] tri-snRNPs harbor a set of polypeptides, termed the tri-snRNP proteins, that are not present in Mono Q-purified 20S U5 snRNPs or 10S U4/U6 snRNPs and that are important for tri-snRNP complex formation (Behrens SE, Lührmann R, 1991, Genes & Dev 5:1439-1452). Biochemical and immunological characterization of HeLa [U4/U6.U5] tri-snRNPs led to the identification of two novel proteins with molecular weights of 61 and 63kD that are distinct from the previously described 15.5, 20, 27, 60, and 90kD tri-snRNP proteins. For the initial characterization of tri-snRNP proteins that interact directly with U4/U6 snRNPs, immunoaffinity chromatography with an antibody directed against the 60kD protein was performed. We demonstrate that the 60 and 90kD tri-snRNP proteins specifically associate with the U4/U6 snRNP at salt concentrations where the tri-snRNP complex has dissociated. The primary structures of the 60kD and 90kD proteins were determined by cloning and sequencing their respective cDNAs. The U4/U6-60kD protein possesses a C-terminal WD domain that contains seven WD repeats and thus belongs to the WD-protein family, whose best-characterized members include the Gbeta subunits of heterotrimeric G proteins. A database homology search revealed a significant degree of overall homology (57.8% similarity, 33.9% identity) between the human 60kD protein and the Saccharomyces cerevisiae U4/U6 snRNP protein Prp4p. Two additional, previously undetected WD repeats (with seven in total) were also identified in Prp4p, consistent with the possibility that 60kD/Prp4p, like beta-transducin, may adopt a propeller-like structure. The U4/U6-90kD protein was shown to exhibit significant homology, particularly in its C-terminal half, with the S. cerevisiae splicing factor Prp3p, which also associates with the yeast U4/U6 snRNP. Interestingly, U4/U6-90kD shares short regions of homology with E. coli RNase III, including a region encompassing its double-stranded RNA binding domain. Based on their structural similarity with essential splicing factors in yeast, the human U4/U6-60kD and 90kD proteins are likely also to play important roles in the mammalian splicing process.  相似文献   

18.
19.
The alpha-synuclein gene, which encodes a brain presynaptic nerve terminal protein of unknown function, is linked to familial early-onset Parkinson's disease (PD). The finding that alpha-synuclein forms the major fibrillary component of Lewy bodies in brains of PD patients suggests that the two point mutations in alpha-synuclein (Ala(53)Thr, Ala(30)Pro) may promote the aggregation of alpha-synuclein into filaments. To address the role of alpha-synuclein in neurodegenerative diseases, we performed a yeast two-hybrid screen of a rat adult brain cDNA library using rat alpha-synuclein 2 (alphaSYN2). Here we report that alphaSYN2 interacts specifically with Tat binding protein 1, a subunit of the 700-kDa proteasome activator (PA700), the regulatory complex of the 26S proteasome and of the modulator complex, which enhances PA700 activation of the proteasome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号