首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the maximum amount of orbicularis oculi muscle that may safely be resected from the upper eyelid without causing functional abnormalities. Measured amounts of that muscle were surgically excised from both upper eyelids in six cynomolgus monkeys. All the eyelids were photographed and videotaped at progressively increased intervals to permit the evaluation of wound healing, scarring, and function. Our preliminary results revealed that the excision of preseptal and partial supraorbital orbicularis oculi muscle, preseptal and complete supraorbital muscle, or pretarsal muscle only did not result in lagophthalmos. Complete resection of pretarsal, preseptal, and supraorbital orbicularis oculi did result in lagophthalmos but caused no corneal injury. The orbicularis oculi muscle in the cynomolgus monkey is similar to that in humans, but it is not yet clear whether our findings in the monkey are applicable in humans. A determination of the maximum amount of orbicularis oculi muscle that can safely be excised in humans would enable plastic surgeons to better understand and develop techniques for eyelid reconstruction and blepharoplasty.  相似文献   

2.
Although satellite cell differentiation is involved in postnatal myogenesis from growth to posttrauma regeneration, the early stages of this process remain unclear. This study investigatedpHuDes-nls-lacZtransgene activity, as revealed by X-gal staining and the accumulation of MyoD, myogenin, endogenous desmin, and myosin, in order to determine whether satellite cells share the same activation program during growth and regeneration. After birth, skeletal myonuclei in which myogenin expression was limited were briefly characterized by transgene activity. Satellite cells were only evidenced by MyoD and slow myosin accumulation, but failed to initiate transgene expression. After freeze trauma, satellite cell activation led to MyoD, myogenin, and desmin expression. Subsequently, when myosin expression occurred, transgene activation was apparent in regenerating structures, with more intense X-gal staining in mononucleated cells than regenerating myotubes. After the second week posttrauma, only desmin and myogenin expression were maintained in regenerating structures. In culture, the behavior of satellite cells showed that desmin expression was committed before transgene activation occurred, i.e., concurrently with MyoD, myogenin, myosin expression, and the first fusion events. Quantitative analysis confirmed the discrepancy between endogenous desmin and transgene expression and demonstrated the close correlation between transgene activation and the fusion index. Our results strongly suggest that satellite cells promote distinct pathways of myogenic response during growth and regeneration.  相似文献   

3.
Achieving aesthetic balance in the brow,eyelids, and midface   总被引:3,自引:0,他引:3  
Byrd HS  Burt JD 《Plastic and reconstructive surgery》2002,110(3):926-33; discussion 934-9
An approach to the brow, eyelids, and midface emphasizing release and advancement of the orbicularis oculi muscle, conservative removal of orbital fat, preservation of the nerve supply to the orbicularis oculi muscle, and avoidance of canthal division was evaluated in 100 consecutive patients. The technique describes the selected release of three key retaining ligaments to the forehead, brow, and upper eyelid; mobilization of the lateral retinaculum and division of the lower lid retaining ligament; and division of the midface malar retaining ligament (zygomatic-cutaneous ligament). Preservation of motor branches to the lower lid orbicularis is stressed. Of significance to this series of patients is the inclusion of 50 patients with morphologically prone lower eyelids defined as atonic lower lids, exorbitism, and/or negative vector orbits. Three sites had failure of brow fixation, two patients had midface asymmetry requiring revision, and three patients failed to have complete correction of their preoperative lower lid retraction. There was zero incidence of scleral show or lower lid retraction that was not present preoperatively. No patients required division of the lateral commissure with canthoplasty, taping or suture suspension, massage, or steroid injections. Only two patients required division of the deep head of the lateral canthus, and these patients were noted to have had lateral canthal malposition preoperatively.  相似文献   

4.
Festoons of orbicularis muscle as a cause of baggy eyelids   总被引:2,自引:0,他引:2  
Occasionally, baggy eyelids are caused by a laxity of the orbicularis oculi muscle. The extent of these orbicularis festoons is evaluated by a careful examination--including the "squinch" and the "pinch" tests. We excise such festoons of excess muscle and then support the orbicularis oculi of the lower lid by using periosteal and muscular sutures. (Orbicularis plication is an alternate procedure for the lower lid). Any muscle festoons of the upper lid are simply excised.  相似文献   

5.
The presence of desmin was characterized in cultured rat and bovine satellite cells and its potential usefulness as a marker for identifying satellite cells in vitro was evaluated. In primary cultures, positive immunohistochemical staining for desmin and skeletal muscle myosin was observed in rat and bovine myotubes. A small number of mononucleated cells (20% of rat satellite cells and 5% of bovine satellite cells) were myosin-positive, indicative of post-mitotic differentiated myocytes. In bovine satellite cell cultures 13% of the mononucleated cells were desmin-positive, while 84% of the mononucleated cells in rat satellite cell cultures were desmin-positive. Rat satellite cell mass cultures and bovine satellite cell clonal density cultures were pulsed with 3H-thymidine, and autoradiographic data revealed that greater than 94% of dividing rat cells were desmin-positive, suggesting that desmin is synthesized in proliferating rat satellite cells. However, no desmin was seen in cells that incorporated labeled thymidine in bovine satellite cell clones. Analysis of clonal density cultures revealed that only 14% of the mononucleated cells in bovine satellite cell colonies were desmin-positive, whereas 98% of the cells in rat satellite cell colonies were desmin-positive. Fibroblast colonies from both species were desmin-negative. In order to further examine the relationship between satellite cell differentiation and desmin expression, 5-bromo-2'-deoxyuridine (BrdU) was added to culture medium at the time of plating to inhibit differentiation. Fusion was inhibited in rat and bovine cultures, and cells continued to divide. Very few desmin-positive cells were found in bovine cultures, but greater than 90% of the cells in rat cultures stained positive for desmin. The presence of desmin and sarcomeric myosin was also evaluated in regenerating rat tibialis anterior five days after bupivacaine injection. In regenerating areas of the muscle many desmin-positive cells were present, and only a few cells stained positive for skeletal muscle myosin. Application of desmin staining to rat satellite cell growth assays indicated that rat satellite cells cultured in serum-containing medium were contaminated with fibroblasts at levels that ranged from approximately 5% in 24 hr cultures to 15% in mature cultures. In defined medium 4 day cultures contain approximately 95% to 98% desmin-positive satellite cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
The satellite cell compartment provides skeletal muscle with a remarkable capacity for regeneration. Here, we have used isolated myofibers to investigate the activation and proliferative potential of satellite cells. We have previously shown that satellite cells are heterogeneous: the majority express Myf5 and M-cadherin protein, presumably reflecting commitment to myogenesis, while a minority is negative for both. Although MyoD is rarely detected in quiescent satellite cells, over 98% of satellite cells contain MyoD within 24 h of stimulation. Significantly, MyoD is only observed in cells that are already expressing Myf5. In contrast, a minority population does not activate by the criteria of Myf5 or MyoD expression. Following the synchronous activation of the myogenic regulatory factor+ve satellite cells, their daughter myoblasts proliferate with a doubling time of approximately 17 h, irrespective of the fiber type (type I, IIa, or IIb) from which they originate. Although fast myofibers have fewer associated satellite cells than slow, and accordingly produce fewer myoblasts, each myofiber phenotype is associated with a complement of satellite cells that has sufficient proliferative potential to fully regenerate the parent myofiber within 4 days. This time course is similar to that observed in vivo following acute injury and indicates that cells other than satellite cells are not required for complete myofiber regeneration.  相似文献   

8.
Muscles ofspinal cord-transected rats exhibit severe atrophy and a shift toward afaster phenotype. Exercise can partially prevent these changes. Thegoal of this study was to investigate early events involved inregulating the muscle response to spinal transection and passivehindlimb exercise. Adult female Sprague-Dawley rats were anesthetized,and a complete spinal cord transection lesion(T10) was created in all ratsexcept controls. Rats were killed 5 or 10 days after transection orthey were exercised daily on motor-driven bicycles starting at 5 daysafter transection and were killed 0.5, 1, or 5 days after the firstbout of exercise. Structural and biochemical features of soleus andextensor digitorum longus (EDL) muscles were studied. Atrophy wasdecreased in all fiber types of soleus and in type 2a and type 2xfibers of EDL after 5 days of exercise. However, exercise did notappear to affect fiber type that was altered within 5 days of spinalcord transection: fibers expressing myosin heavy chain 2xincreased in soleus and EDL, and extensive coexpression of myosin heavy chain in soleus was apparent. Activation of satellite cells was observed in both muscles of transected rats regardless of exercise status, evidenced by increased accumulation of MyoD and myogenin. Increased expression was transient, except for MyoD, which remained elevated in soleus. MyoD and myogenin were detected both in myofiber and in satellite cell nuclei in both muscles, but in soleus, MyoD waspreferentially expressed in satellite cell nuclei, and in EDL, MyoD wasmore readily detectable in myofiber nuclei, suggesting that MyoD andmyogenin have different functions in different muscles. Exercise didnot affect the level or localization of MyoD and myogenin expression.Similarly, Id-1 expression was transiently increased in soleus and EDLupon spinal cord transection, and no effect of exercise was observed.These results indicate that passive exercise can ameliorate muscleatrophy after spinal cord transection and that satellite cellactivation may play a role in muscle plasticity in response to spinalcord transection and exercise. Finally, the mechanisms underlyingmaintenance of muscle mass are likely distinct from those controllingmyosin heavy chain expression.

  相似文献   

9.
10.
11.
The purpose of this study was to determine whether fiber hyperplasia occurs in the rat plantaris muscle during postnatal weeks 3-20. Total muscle fiber number, obtained via the nitric acid digestion method, increased by 28% during the early postnatal rapid growth phase (3-10 weeks), whereas the number of branched fibers was consistently low. Whole-muscle mitotic activity and amino acid uptake levels showed an inverse relationship to the increase in total fiber number. The expression of MyoD mRNA (RT-PCR) levels decreased from 3 to 20 weeks of age, as did the detection of anti-BrdU- and MyoD-positive cells in histological sections. Immunohistochemical staining patterns for MyoD, myogenin, or developmental myosin heavy chain on sections stained for laminin (identification of the basal lamina) and electron micrographs clearly indicate that de novo fiber formation occurred in the interstitial spaces. Myogenic cells in the interstitial spaces were negative for the reliable specific satellite cell marker M-cadherin. In contrast, CD34 (an established marker for hematopoietic stem cells)-positive cells were located only in the interstitial spaces, and their frequency and location were similar to those of MyoD- and/or myogenin-positive cells. These findings are consistent with fiber hyperplasia occurring in the interstitial spaces of the rat plantaris muscle during the rapid postnatal growth phase. Furthermore, these data suggest that the new fibers may be formed from myogenic cells in the interstitial spaces of skeletal muscle and may express CD34 that is distinct from satellite cells.  相似文献   

12.
The obese Zucker rat (OZR) is a model of metabolic syndrome, which has lower skeletal muscle size than the lean Zucker rat (LZR). Because satellite cells are essential for postnatal muscle growth, this study was designed to determine whether reduced satellite cell proliferation contributes to reduced skeletal mass in OZR vs. LZR. Satellite cell proliferation was determined by a constant-release 5-bromo-2-deoxyuridine (BrdU) pellet that was placed subcutaneously in each animal. Satellite cell proliferation, as determined by BrdU incorporation, was significantly attenuated in control soleus and plantaris muscles of the OZR compared with that shown in the LZR. To determine whether this attenuation of satellite cell activity could be rescued in OZR muscles, soleus and gastrocnemius muscles were denervated, placing a compensatory load on the plantaris muscle. In the LZR and the OZR after 21 days of loading, increases of approximately 25% and approximately 30%, respectively, were shown in plantaris muscle wet weight compared with that shown in the contralateral control muscle. The number of BrdU-positive nuclei increased similarly in loaded plantaris muscles from LZR and OZR. Myogenin, MyoD, and Akt protein expressions were lower in control muscles of OZR than in those of the LZR, but they were all elevated to similar levels in the loaded plantaris muscles of OZR and LZR. These data indicate that metabolic syndrome may reduce satellite cell proliferation, and this may be a factor that contributes to the reduced mass in control muscles of OZR; however, satellite cell proliferation can be restored with compensatory loading in OZR.  相似文献   

13.
Satellite cells are the major myogenic stem cells residing inside skeletal muscle and are indispensable for muscle regeneration. Satellite cells remain largely quiescent but are rapidly activated in response to muscle injury, and the derived myogenic cells then fuse to repair damaged muscle fibers or form new muscle fibers. However, mechanisms eliciting metabolic activation, an inseparable step for satellite cell activation following muscle injury, have not been defined. We found that a noncanonical Sonic Hedgehog (Shh) pathway is rapidly activated in response to muscle injury, which activates AMPK and induces a Warburg-like glycolysis in satellite cells. AMPKα1 is the dominant AMPKα isoform expressed in satellite cells, and AMPKα1 deficiency in satellite cells impairs their activation and myogenic differentiation during muscle regeneration. Drugs activating noncanonical Shh promote proliferation of satellite cells, which is abolished because of satellite cell-specific AMPKα1 knock-out. Taken together, AMPKα1 is a critical mediator linking noncanonical Shh pathway to Warburg-like glycolysis in satellite cells, which is required for satellite activation and muscle regeneration.  相似文献   

14.
15.
16.
Molecular signaling pathways linking the hypertrophy after mechanical overloading in vivo have not been identified. Using western blot analysis, immunoprecipitation, and immunohistochemistry, we investigated the effect of the mechanical overloading state on RhoA, serum response factor (SRF), and MyoD in the rat plantaris muscle. Adult male rats (10 weeks of age) were used in this experiment. Compensatory enlargement of the plantaris muscle was induced in one leg of each rat by surgical removal of the ipsilateral soleus and gastrocnemius muscles. In the normal plantaris muscle of rats, slight expression of RhoA and SRF was observed in the quiescent satellite cells possessing CD34 and c-Met. Western blotting using the homogenate of whole muscle clearly showed that mechanical overloading of the plantaris muscle significantly increased the amount of RhoA during 3-6 days postsurgery. Threonine phosphorylation of SRF occurred at 2-4 h after mechanical overloading. The most marked increase in SRF protein was observed in the hypertrophied muscle at 6 days postsurgery. At 2 days postoperation, SRF immunoreactivity was not detected in the proliferating satellite cells possessing bromodeoxyuridine and in the infiltrating macrophages expressing ED1 in the overloaded muscle by surgical removal. The SRF protein was colocalized with RhoA, FAK, and myogenin but not Myf-5 in many mononuclear cells at 6 days of functional overload. At this time, MyoD immunoreactivity was detected in the cytoplasm of mononuclear cells (possibly satellite cell-derived myoblasts) possessing SRF protein at the nucleus. These results suggest that the signaling pathway through RhoA-FAK-SRF is important to the differentiation of satellite cells by interacting MyoD and myogenin in the hypertrophied muscle of rats.  相似文献   

17.
 We have studied the phenotypic changes in regenerating smooth muscle (SM) tissue of detrusor muscle after local application of a necrotizing, freeze–thaw injury to the serosal surface of rabbit bladder. Bromo-deoxyuridine (BrdU) incorporation and immunofluorescence studies were performed on bladder cryosections from day 2 up to day 15 after surgery with monoclonal antibodies specific for some cytoskeletal markers [desmin, vimentin, non-muscle (NM) myosin] and for SM-specific proteins (α-actin, myosin, and SM22). Four days after lesion, some clls incorporated in regenerating SM bundles are BrdU positive, but all display a phenotypic pattern identical to that of the interstitial, highly proliferating cells, i.e., expression of vimentin. By days 7–15 the differentiation profile of regenerating SM returns to that of uninjured SM tissue (appearance of desmin, SM-type α-actin, and SM myosin). A chemical denervation achieved by 6-hydroxydopamine treatment for 2 weeks induces the formation of vimentin/SM α-actin/NM myosin/SM22-containing myofibroblasts in the interstitial, fibroblast-like cells of uninjured bladder. In the bladder wall, alteration of reinnervation during the regenerating SM process produces: (1) in the outer region, the activation of vimentin/SM α-actin/desmin myofibroblasts in the de novo SM cell bundles; and (2) in the inner region of bladder, including the muscularis mucosae, the formation of proliferating, fully differentiated SM cells peripherally to newly formed SM cell bundles. These findings suggest that: (1) the de novo SM tissue formation in the bladder can occur via incorporation of interstitial cells into growing SM bundles; and (2) the alteration of reinnervation during the regenerating process induces a spatial-specific differentiation of interstitial myofibroblasts in SM cells before SM cell bundling. Accepted: 14 May 1997  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号