首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleocytoplasmic transport occurs through gigantic proteinaceous channels called nuclear pore complexes (NPCs). Translocation through the NPC is exquisitely selective and is mediated by interactions between soluble transport carriers and insoluble NPC proteins that contain phenylalanine-glycine (FG) repeats. Although most FG nucleoporins (Nups) are organized symmetrically about the planar axis of the nuclear envelope, very few localize exclusively to one side of the NPC. We constructed Saccharomyces cerevisiae mutants with asymmetric FG repeats either deleted or swapped to generate NPCs with inverted FG asymmetry. The mutant Nups localize properly within the NPC and exhibit exchanged binding specificity for the export factor Xpo1. Surprisingly, we were unable to detect any defects in the Kap95, Kap121, Xpo1, or mRNA transport pathways in cells expressing the mutant FG Nups. These findings suggest that the biased distribution of FG repeats is not required for major nucleocytoplasmic trafficking events across the NPC.  相似文献   

2.
Weis K 《Cell》2003,112(4):441-451
Macromolecular transport between the cytoplasm and the nucleus occurs through the nuclear pore complex (NPC) and is mediated by multiple families of soluble transport factors. All these transport factors share the ability to translocate across the NPC through specific interactions with components of the nuclear pore. This review highlights advances in our understanding of the structure and function of the NPC and the shuttling transport receptors involved in nuclear transport. It discusses recently proposed models for the translocation of receptor-cargo complexes through the NPC channel and reviews how the small GTPase Ran functions as a positional marker of the genome to regulate multiple important aspects of the eukaryotic cell cycle.  相似文献   

3.
In Vivo Dynamics of Nuclear Pore Complexes in Yeast   总被引:7,自引:1,他引:6       下载免费PDF全文
While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.  相似文献   

4.
Nucleocytoplasmic transport occurs through the nuclear pore complex (NPC), which in yeast is a ~50 MDa complex consisting of ~30 different proteins. Small molecules can freely exchange through the NPC, but macromolecules larger than ~40 kDa must be aided across by transport factors, most of which belong to a related family of proteins termed karyopherins (Kaps). These transport factors bind to the disordered phenylalanine-glycine (FG) repeat domains in a family of NPC proteins termed FG nups, and this specific binding allows the transport factors to cross the NPC. However, we still know little in terms of the molecular and kinetic details regarding how this binding translates to selective passage of transport factors across the NPC. Here we show that the specific interactions between Kaps and FG nups are strongly modulated by the presence of a cellular milieu whose proteins appear to act as very weak competitors that nevertheless collectively can reduce Kap/FG nup affinities by several orders of magnitude. Without such modulation, the avidities between Kaps and FG nups measured in vitro are too tight to be compatible with the rapid transport kinetics observed in vivo. We modeled the multivalent interactions between the disordered repeat binding sites in the FG nups and multiple cognate binding sites on Kap, showing that they should indeed be sensitive to even weakly binding competitors; the introduction of such competition reduces the availability of these binding sites, dramatically lowering the avidity of their specific interactions and allowing rapid nuclear transport.  相似文献   

5.
Transport between the nucleus and the cytoplasm occurs through large macromolecular assemblies called nuclear pore complexes (NPCs). The NPC is traditionally viewed as a passive structure whose primary role is to provide an interface for the soluble transport machinery, the karyopherins and their cargos, to move molecules between these compartments. Recent work has challenged this view of the NPC and provides support for a dynamic structure that can modify its architecture to actively regulate nuclear transport.  相似文献   

6.
7.
beta-Catenin is an example of a typical molecule that can be translocated bidirectionally through nuclear pore complexes (NPCs) on its own in a facilitated manner. In this work the nuclear import and export of beta-catenin were examined to compare the sequence requirement of this molecule and to determine whether molecular interactions required for its bidirectional NPC passage are distinct or not. Deletion analysis of beta-catenin revealed that armadillo repeats 10-12 and the C terminus comprise the minimum region necessary for nuclear migration activity. Further dissection of this fragment showed that the C terminus tail plays an essential role in nuclear migration. The region of beta-catenin required for export substantially overlapped the region required for import. Therefore, the NPC translocation of beta-catenin is apparently reversible, which is consistent with findings reported previously. However, different translocating molecules blocked nuclear import and export of beta-catenin differentially. The data herein indicate that beta-catenin shows an overlapping sequence requirement for its import and export but that bidirectional movement through the NPC proceeds through distinct molecular interactions.  相似文献   

8.
The double membrane of the nuclear envelope is a formidable barrier separating the nucleus and cytoplasm of eukaryotic cells. However, movement of specific macromolecules across the nuclear envelope is critical for embryonic development, cell growth and differentiation. Transfer of molecules between the nucleus and cytoplasm occurs through the aqueous channel formed by the nuclear pore complex (NPC)
  • 1 Abbreviations: NPC, nuclear pore complex; GlcNac, N-acetylglucosamine; WGA, wheat germ agglutinin
  • . Although small molecules may simply diffuse across the NPC, transport of large proteins and RNA requires specific transport signals and is energy dependent. A family of pore glycoproteins modified by O-linked N-acetylglucosamine moieties are essential for transport through the NPC. Recent evidence suggests that the regulation of nuclear transport may also involve the inteaction of RNA and nuclear proteins with specific binding proteins that recognize these transport signals. Are these nuclear pore glycoproteins and signal binding proteins the ‘gatekeepers’ that control access to the genetic material? Recent evidence obtained from a combination of biochemical and genetic approaches suggests – perhaps.  相似文献   

    9.
    Until very recently, the vertebrate protein Npap60/Nup50 was thought merely to be a component of the nuclear pore complex (NPC). This conclusion was based on the observations that Npap60/Nup50 localizes at the NPC by immunofluorescence and electron microscopy and also contains FG (Phe-Gly) repeats, a motif commonly found in nucleoporins but not in proteins located elsewhere. However, far from being a fixed structural component of the NPC, it now appears as though Npap60 can shuttle from one side of the NPC to the other. Most significantly, a recent paper shows that Npap60 enhances the nuclear import of a cargo possessing a basic nuclear localization sequence by associating directly with the import cargo-carrier complex and (presumably) moving through the NPC with it. Several NPC proteins have now been shown to be mobile in the NPC, and this new report might indicate that these 'mobile' nucleoporins play a more active role in the nuclear transport of cargo than was previously appreciated.  相似文献   

    10.
    The nuclear pore complex (NPC) is a large proteinaceous structure through which bidirectional transport of macromolecules across the nuclear envelope (NE) takes place. Nup153 is a peripheral NPC component that has been implicated in protein and RNP transport and in the interaction of NPCs with the nuclear lamina. Here, Nup153 is localized by immunogold electron microscopy to a position on the nuclear ring of the NPC. Nuclear reconstitution is used to investigate the role of Nup153 in nucleo- cytoplasmic transport and NPC architecture. NPCs assembled in the absence of Nup153 lacked several nuclear basket components, were unevenly distributed in the NE and, unlike wild-type NPCs, were mobile within the NE. Importin alpha/beta-mediated protein import into the nucleus was strongly reduced in the absence of Nup153, while transportin-mediated import was unaffected. This was due to a reduction in import complex translocation rather than to defective receptor recycling. Our results therefore reveal functions for Nup153 in NPC assembly, in anchoring NPCs within the NE and in mediating specific nuclear import events.  相似文献   

    11.
    Background: The transport of macromolecules between the nucleus and cytoplasm is an energy-dependent process. Substrates are translocated across the nuclear envelope through nuclear pore complexes (NPCs). Translocation requires nucleocytoplasmic transport receptors of the importin β family, which interact both with the NPC and, either directly or via an adaptor, with the transport substrate. Although certain receptors have recently been shown to cross the NPC in an energy-independent manner, translocation of substrate–receptor complexes through the NPC has generally been regarded as an energy-requiring step.Results: We describe an in vitro system that is based on permeabilised cells and supports nuclear export mediated by leucine-rich nuclear export signals. In this system, export is dependent on exogenous CRM1/Exportin1 – a nuclear export receptor – the GTPase Ran and nucleotide triphosphates (NTPs), and is further stimulated by Ran-binding protein 1 (RanBP1) and nuclear transport factor 2 (NTF2). Unexpectedly, non-hydrolysable NTP analogues completely satisfy the NTP requirements for a single-round of CRM1-mediated translocation of protein substrates across the NPC. Similarly, single transportin-mediated nuclear protein import events are shown not to require hydrolysable NTPs and to occur in the absence of the Ran GTPase.Conclusions: Our data show that, contrary to expectation and prior conclusions, the translocation of substrate–receptor complexes across the NPC in either direction occurs in the absence of NTP hydrolysis and is thus energy independent. The energy needed to drive substrate transport against a concentration gradient is supplied at the step of receptor recycling in the cytoplasm.  相似文献   

    12.
    Protein import through the nuclear pore complex is a multistep process   总被引:44,自引:30,他引:14       下载免费PDF全文
    The transport of macromolecules across the nuclear envelope is mediated by the nuclear pore complex (NPC). Using cryo-electron microscopy and image processing we have mapped the interaction of three specific gold probes with the NPC and obtained projection maps of two possible intermediates in nuclear import. The probes used in these experiments were (a) mAb-414, which cross-reacts with Xenopus nucleoporins containing O-linked N-acetyl glucosamines; (b) wheat germ agglutinin, a transport inhibitor; and (c) nucleoplasmin, a transport substrate. Strong binding sites of the three probes are circularly arrayed on NPCs between radii of 100 and 125 A and may be coextensive. These results suggest that nucleoplasmin-gold (NP-gold) can form at least three distinct complexes with a central transport assembly of the NPC, which may represent intermediates of a multistep protein import pathway. Initially, NP-gold appears to bind at multiple sites located around the periphery of the closed NPC transporter and also directly over the center where it can dock. In a subsequent step NP-gold is translocated through the nuclear pore.  相似文献   

    13.
    We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.  相似文献   

    14.
    Transport of macromolecules between the nucleus and the cytoplasm.   总被引:15,自引:1,他引:14       下载免费PDF全文
    Nuclear transport is an energy-dependent process mediated by saturable receptors. Import and export receptors are thought to recognize and bind to nuclear localization signals or nuclear export signals, respectively, in the transported molecules. The receptor-substrate interaction can be direct or mediated by an additional adapter protein. The transport receptors dock their cargoes to the nuclear pore complexes (NPC) and facilitate their translocation through the NPC. After delivering their cargoes, the receptors are recycled to initiate additional rounds of transport. Because a transport event for a cargo molecule is unidirectional, the transport receptors engage in asymmetric cycles of translocation across the NPC. The GTPase Ran acts as a molecular switch for receptor-cargo interaction and imparts directionality to the transport process. Recently, the combined use of different in vitro and in vivo approaches has led to the characterization of novel import and export signals and to the identification of the first nuclear import and export receptors.  相似文献   

    15.
    Transport across the nuclear membranes occurs through the nuclear pore complex (NPC), and is mediated by soluble transport factors including Ran, a small GTPase that is generally GDP-bound during import and GTP-bound for export. The dynamic nature of the NPC structure suggests a possible active role for it in driving translocation. Here we show that RanGTP but not RanGDP causes alterations of NPC structure when injected into the cytoplasm of Xenopus oocytes, including compaction of the NPC and extension of the cytoplasmic filaments. RanGTP caused accumulation of nucleoplasmin-gold along the length of extended cytoplasmic filaments, whereas RanGDP caused accumulation around the cytoplasmic rim of the NPC. This suggests a possible role for Ran in altering the conformation of the cytoplasmic filaments during transport.  相似文献   

    16.
    Nuclear protein import proceeds through the nuclear pore complex (NPC). Importin-beta mediates translocation via direct interaction with NPC components and carries importin-alpha with the NLS substrate from the cytoplasm into the nucleus. The import reaction is terminated by the direct binding of nuclear RanGTP to importin-beta which dissociates the importin heterodimer. Here, we analyse the sites of interaction on importin-beta for its multiple partners. Ran and importin-alpha respectively require residues 1-364 and 331-876 of importin-beta for binding. Thus, RanGTP-mediated release of importin-alpha from importin-beta is likely to be an active displacement rather than due to simple competition between Ran and importin-alpha for a common binding site. Importin-beta has at least two non-overlapping sites of interaction with the NPC, which could potentially be used sequentially during translocation. Our data also suggest that termination of import involves a transient release of importin-beta from the NPC. Importin-beta fragments which bind to the NPC, but not to Ran, resist this release mechanism. As would be predicted from this, these importin-beta mutants are very efficient inhibitors of NLS-dependent protein import. Surprisingly, however, they also inhibit M9 signal-mediated nuclear import as well as nuclear export of mRNA, U snRNA, and the NES-containing Rev protein. This suggests that mediators of these various transport events share binding sites on the NPC and/or that mechanisms exist to coordinate translocation through the NPC via different nucleocytoplasmic transport pathways.  相似文献   

    17.
    Importin alpha: a multipurpose nuclear-transport receptor   总被引:11,自引:0,他引:11  
    The importin alpha/beta heterodimer targets hundreds of proteins to the nuclear-pore complex (NPC) and facilitates their translocation across the nuclear envelope. Importin alpha binds to classical nuclear localization signal (cNLS)-containing proteins and links them to importin beta, the karyopherin that ferries the ternary complex through the NPC. A second karyopherin, the exportin CAS, recycles importin alpha back to the cytoplasm. In this article, we discuss control mechanisms that importin alpha exerts over the assembly and disassembly of the ternary complex and we describe how new groups of importin alpha genes arose during the evolution of metazoan animals to function in development and differentiation. We also describe activities of importin alpha that seem to be distinct from its housekeeping functions in nuclear transport.  相似文献   

    18.
    All transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). Despite their enormous size, ∼60 MD in vertebrates, they are comprised of only ∼30 distinct proteins (nucleoporins or Nups), many of which form subcomplexes that act as building blocks for NPC assembly. One of these evolutionarily conserved subcomplexes, the Nup93 complex, is a major structural component linking the NPC to the membranes of the NE. Using in vitro nuclear assembly assays, we show that two components of the Nup93 complex, Nup188 and Nup205, are dispensable for NPC formation. However, nuclei lacking Nup188 increase in size by several fold compared with wild type. We demonstrate that this phenotype is caused by an accelerated translocation of integral membrane proteins through NPCs, suggesting that Nup188 confines the passage of membrane proteins and is thus crucial for the homeostasis of the different nuclear membranes.  相似文献   

    19.
    20.
    Nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. The simplicity and specialization of this system, combined with the availability of crystal structures of NTF2, RanGDP and their complex, has facilitated the investigation of the molecular mechanism of its trafficking. NTF2 binds to both RanGDP and FxFG repeat-containing nucleoporins. Mutants engineered on the basis of structural information together with determination of binding constants have been used to dissect the roles of these interactions in transport. Thus, NTF2 binds to RanGDP sufficiently strongly for the complex to remain intact during transport through NPCs, but the interaction between NTF2 and FxFG nucleoporins is much more transient, which would enable NTF2 to move through the NPC by hopping from one repeat to another. An analogous nucleoporin hopping mechanism may also be used by carrier molecules of the importin-beta family to move through NPCs.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号