首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The present study examines the interaction of Na+ and K+ with the binding of the cocaine analogue 3β-(4-[125I]iodophenyl)tropane-2β-carboxylic acid isopropyl ester to dopamine transporters (DATs) in rat striatal synaptosomal membranes at 37°C. The binding increases with [Na+] from 10 to 100 mM and decreases with higher [Na+]. The presence of K+ reduces the maximal stimulatory effect of Na+ and causes a nonlinear EC50 shift for Na+. K+ strongly inhibits the binding at low [Na+]. Increasing [Na+] produces a linear IC50 shift for K+. Saturation analysis indicates a single binding site changing its affinity for the radioligand depending on [K+]/[Na+] ratio in the assay buffer. A reduced Bmax was observed in the presence of 10 mM Na+ and 30 mM K+. Both high [Na+] and high [K+] accelerate the dissociation of the binding, and K+-induced acceleration was abolished by increasing [Na+]. Least squares model fitting of equilibrium data and kinetic analysis of dissociation rates reveal competitive interactions between Na+ and K+ at two sites allosterically linked on the DAT: One site mediates the stimulatory effect of Na+, and the other site involves the radioligand binding and the inhibitory effect of cations on the binding. Various uptake blockers and substrates, dopamine in particular, display reduced potency in inhibiting the binding at a higher [K+]/[Na+] ratio.  相似文献   

2.
R D Blake  P V Haydock 《Biopolymers》1979,18(12):3089-3109
A series of high-resolution melting curves were obtained by the continuous direct-derivative method [Blake, R. D. & Lefoley, S. G. (1978) Biochim. Biophys. Acta 518 , 233–246] on lambda DNA (cI857S7 strain) under varying conditions of [Na+]. Examination of the denaturation patterns at close intervals of [Na+] indicates that frequent changes in mechanism occur below 0.04M Na+, while almost none occurs above 0.1M Na+. Changes at low [Na+] generally occur in an abrupt fashion, in most cases within a 3 mM change in [Na+], and in at least one case within 0.6 mM, indicating the balance between alternative mechanisms is frequently quite delicate. These changes involve segments of between 900 and 1500 or more base pairs in length and are therefore not insignificant. Changes at low [Na+] reflect a perturbation of the energetic balance between competing mechanisms by weakly screened long-range electrostatic forces. Some perturbation probably also arises from variations in the linear charge density of the double helix induced by the proximity of premelted loop segments; however, this contribution cannot be evaluated without a detailed denaturation map. At high [Na+] the mechanism of melting is more conserved, permitting the dependence of subtrasitional melting temperature tm(i) on [Na+] to be examined for almost all 34 ± 2 subtransitions. The G + C composition of segments responsible for each subtransition was determined by a quantitative spectral method. Analysis according to the Manning-Record expression [Manning, G. (1972) Biopolymers 11 , 937–949; Record, M. T., Jr., Anderson, C. F. & Lohman, T. M. (1978) Q. Rev. Biophysics 11 , 103–178] relating ΔHm and dtm(i)/d log[Na+] to the fraction of Na+ released during melting, appears to indicate almost 40% more Na+ is bound to the single-stranded G and/or C residues than to A and T residues. This is consistent with a much shorter mean axial spacing and higher charge density in the former, particularly single-stranded G residues, which have an extraordinary tendency to stack.  相似文献   

3.
Abstract: The effect of oxidative stress induced by the oxidant pair ascorbate/Fe2+ on the activity of ionotropic glutamate receptors was studied in cultured chick retina cells. The release of [3H]GABA and the increase of the intracellular free Na+ concentration ([Na+]i), evoked by glutamate receptor agonists, were used as functional assays for the activity of the receptors. The results show that the maximal release of [3H]GABA evoked by kainate (KA; ~20% of the total) or AMPA (~11% of the total) was not different in control and peroxidized cells, whereas the EC50 values determined for peroxidized cells (33.6 ± 1.7 and 8.0 ± 2.0 µM for KA and AMPA, respectively) were significantly lower than those determined under control conditions (54.1 ± 6.6 and 13.0 ± 2.2 µM for KA and AMPA, respectively). The maximal release of [3H]GABA evoked by NMDA under K+ depolarization was significantly higher in peroxidized cells (7.5 ± 0.5% of the total) as compared with control cells (4.0 ± 0.2% of the total), and the effect of oxidative stress was significantly reduced by a phospholipase A2 inhibitor or by fatty acid-free bovine serum albumin. The change in the intracellular [Na+]i evoked by saturating concentrations of NMDA under depolarizing conditions was significantly higher in peroxidized cells (8.9 ± 0.6 mM) than in control cells (5.9 ± 1.0 mM). KA, used at a subsaturating concentration (35 µM), evoked significantly greater increases of the [Na+]i in peroxidized cells (11.8 ± 1.7 mM) than in control cells (7.1 ± 0.8 mM). A saturating concentration (150 µM) of this agonist triggered similar increases of the [Na+]i in control and peroxidized cells. Accordingly, the maximal number of binding sites for (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) was increased after peroxidation, whereas the maximal number of binding sites for [3H]KA was not affected by oxidative stress. These data suggest that under oxidative stress the activity of the ionotropic glutamate receptors is increased, with the NMDA receptor being the most affected by peroxidation.  相似文献   

4.
5.
The intrinsic viscosity and sedimentation coefficient, of native and single-stranded T7 DNA have been determined at 25°C as a function of ionic strength in neutral and alkaline NaCl. The relationship between [η] and S,w is well represented by the Mandelkern-Flory equation over the entire range of conditions between 0.0013 and 1M Na+. An apparent discrepancy between the two methods at moderate to high ionic strengths is probably due to a change in V with ionic strength. It appears that [η] is a more sensitive and reliable measure of molecular expansion for native DNA, S,w but is a better index of conformational change in single strands, since [η] becomes too small to measure conveniently at high ionic strengths. At moderate to high ionic strengths, denaturation leads to a decrease in [η], although unfolded single strands retain considerable viscosity. At sufficiently low ionic strength, the intrinsic viscosity of the single strands becomes higher than that of native DNA, and the effective volume of a single strand approaches that of the native molecule.  相似文献   

6.
Abstract: Electron probe x-ray microanalysis (EPMA) was used to measure water content (percent water) and dry weight elemental concentrations (in millimoles per kilogram) of Na, K, Cl, and Ca in axoplasm and mitochondria of rat optic and tibial nerve myelinated axons. Myelin and cytoplasm of glial cells were also analyzed. Each anatomical compartment exhibited characteristic water contents and distributions of dry weight elements, which were used to calculate respective ionized concentrations. Free axoplasmic [K+] ranged from ≈155 mM in large PNS and CNS axons to ≈120–130 mM in smaller fibers. Free [Na+] was ≈15–17 mM in larger fibers compared with 20–25 mM in smaller axons, whereas free [Cl?] was found to be 30–55 mM in all axons. Because intracellular Ca is largely bound, ionized concentrations were not estimated. However, calculations of total (free plus bound) aqueous concentrations of this element showed that axoplasm of large CNS and PNS axons contained ≈0.7 mM Ca, whereas small fibers contained 0.1–0.2 mM. Calculated ionic equilibrium potentials were as follows (in mV): in large CNS and PNS axons, EK = ?105, ENa = 60, and ECl = ?28; in Schwann cells, EK = ?107, ENa = 33, and ECl = ?33; and in CNS glia, EK = ?99, ENa = 36, and ECl = ?44. Calculated resting membrane potentials were as follows (in mV, including the contribution of the Na+,K+-ATPase): large axons, about ?80; small axons, about ?72 to ?78; and CNS glia, ?91. ECl is more positive than resting membrane potential in PNS and CNS axons and glia, indicating active accumulation. Direct EPMA measurement of elemental concentrations and subsequent calculation of ionized fractions in axons and glia offer fundamental neurophysiological information that has been previously unattainable.  相似文献   

7.
The effect of magnesium ions on the parameters of the DNA helix-coil transition has been studied for the concentration range 10?6–10?1M at the ionic strengths of 10?3M Na+. Special attention has been given to the region of low ion concentrations and to the effect of polyvalent metallic impurities present in DNA. It has been shown that binding with Mg++ increases the DNA stability, the effect being observed mainly in the concentration range 10?6–10?4M. At[Mg++]>10?2M the thermal stability of DNA starts to decrease. The melting range extends to concentrations ~10?5M and then decreases to 7–8°C at the ion content of 10?3M. Asymmetry of the melting curves is observed at low ionic strengths ([Na+] = 10?3M) and [Mg++] ? 10?5M. The results, analyzed in terms of the statistical thermodynamic theory of double-stranded homopolymers melting in the presence of ligands, suggest that the effects observed might be due to the ion redistribution from denatured to native DNA. An experimental DNA–Mg++ phase diagram has been obtained which is in good agreement with the theory. It has been shown that thermal denaturation of the system may be an efficient method for determining the ion-binding constants for both native and denatured DNA.  相似文献   

8.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

9.
Condensation of 3,6-dichloropyridazine with 3,5-dimethylpyrazole in 1:1 ratio yielded one side substituted pyrazolylpyridazine ligand 3-chloro-6-(3,5-dimethylpyrazolyl)pyridazine (L) while condensation of 3,6-dichloropyridazine with substituted pyrazoles in 1:2 ratio yielded both side substituted pyrazolylpyridazine ligands such as 3,6-bis(pyrazolyl)pyridazine (L1), 3,6-bis(3-methylpyrazolyl)pyridazine (L2) and 3,6-bis(3,5-dimethylpyrazolyl)pyridazine (L3). A new series of cationic mononuclear complexes of the type [(η5-Cp)Ma(L)(PPh3)]PF6, [(η5-Cp*)Mb(L)Cl]PF6, [(η5-Cp*)Ru(L′)(PPh3)]PF6 and [(η5-Cp*)Mb(L′)Cl]+ (where Ma = Ru, Os; Mb = Rh, Ir and L′ = L1, L2, L3) bearing pyrazolylpyridazine and η5-cyclopentadienyl ligands are reported. The complexes have been completely characterized by spectral studies. The molecular structures of representative complexes have been determined by single crystal X-ray crystallography.  相似文献   

10.
At 0°C, when Na+ was the only cation present in the incubation medium, increasing the Na+ concentration from 3 to 10 mM enhanced the affinity of [3H]l-[2-(di-phenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) for the specific binding site present in rat striatal membranes without affecting the 5max. For higher Na+ concentrations, specific binding values plateaued and then slightly decreased at 130 mM Na+. In a 10 mM Na+ medium, the KD and the Bmax were, respectively, 0.23 nM and 12.9 pmol/mg of protein. In the presence of 0.4 nM [3H]GBR 12783, the half-maximal specific binding occurred at 5 mM Na+. A similar Na+ dependence was observed at 20°C. Scatchard plots indicated that K+, Ca2+, Mg2+, and Tris+ acted like competitive inhibitors of the specific binding of [3H]GBR 12783. The inhibitory potency of various cations (K+, Ca2+, Mg2+, Tris+, Li+ and choline) was enhanced when the Na+ concentration was decreased from 130 to 10 mM. In a 10 mM Na+ medium, the rank order of inhibitory potency was Ca2+ (0.13 mM) > Mg2+ > Tris+ > K+ (15 mM). The requirement for Na+ was rather specific, because none of the other cations acted as a substitute for Na+. No anionic requirement was found: Cl-, Br-, and F- were equipotent. These results suggest that low Na+ concentrations are required for maximal binding; higher Na+ concentrations protect the specific binding site against the inhibitory effect of other cations.  相似文献   

11.
Salinity causes changes in cytosolic Ca2+, [Ca2+]cyt, Na+, [Na+]cyt and pH, pHcyt, which induce specific reactions and signals. Reactions causing a rebalancing of the physiological homeostasis of the cytosol could result in plant resistance and growth. Two wheat cultivars, Triticum aestivum, Seds1 and Vinjett, were grown in nutrient solution for 7 days under moderate salinity (0 and 50 mM NaCl) with and without extra addition of 5 mM CaSO4 to investigate the seedling‐ion homeostasis under salinity. In the leaf protoplasts [Ca2+]cyt, [Na+]cyt and pHcyt were detected using acetoxymethyl esters of the ion‐specific dyes, Fura 2, SBFI and BCECF, respectively, and fluorescence microscopy. In addition, both cultivars were grown for 3 weeks at 0, 50 and 125 mM NaCl with, or without, extra addition of 5 mM CaSO4 to detect overall Na+ and Ca2+ concentrations in leaves and salinity effects on dry weights. In both cultivars, salinity decreased [Ca2+]cyt, while at extra Ca2+ supplied, [Ca2+]cyt increased. The [Ca2+]cyt increase was accompanied by increase in the overall Ca2+ concentrations in leaves and decrease in the overall Na+ concentration. Moreover, irrespective of Ca2+ treatment under salinity, the cultivars reacted in different ways; [Na+]cyt significantly increased only in cv. Vinjett, while pHcyt increased only in cv. Seds1. Even at rather high total Na+ concentrations, the cytosolic concentrations were kept low in both cultivars. It is discussed whether the increase of [Ca2+]cyt and pHcyt can contribute to salt tolerance and if the cytosolic changes are due to changes in overall Ca2+ and Na+ concentrations.  相似文献   

12.
Abstract: The mechanism of recovery from an acid load in primary cultures of rabbit choroid plexus epithelium (CPE) was examined, with emphasis on Na+-dependent antiports. Cells were incubated in saline solutions buffered to pH 7.38 with either HEPES or HCO3? plus 95% O2/5% CO2. Intracellular pH (pHi) was determined from the steady-state distribution of [14C]benzoate. Recovery after acidification with NH4Cl was rapid (t1/2= 5 min) and was dependent on external Na+ (EC50= 12 mM). Hexamethyleneamiloride and ethylisopropylamiloride, potent inhibitors of the Na+/H+ antiport, blocked 80% of recovery when [Na+] was 5 mM with IC50 values of 100 nM. However, neither drug blocked recovery in normal [Na+]. 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), an inhibitor of Cl?/HCO3? antiports, blocked recovery of pHi in a dose-related fashion in the presence of bicarbonate, but not in the presence of HEPES. No inhibition occurred with benzamil, an amiloride congener with high affinity for the Na+ channel, nor with dimethylbenzamil, an inhibitor of Na+/Ca2+ exchange. The carbonic anhydrase inhibitor acetazolamide also did not alter recovery from acidification. In CPE that had been pH-clamped with nigericin and KCl, the initial rate of 22Na+ uptake was very rapid (227 pmol/μg of DNA/min at pH 6.2), was dependent on external [Na+] with an EC50 value of 8 mM, and was inversely related to the pH of the medium. The maximal inhibition of 22Na+ uptake by hexamethyleneamiloride was 60% with an IC50 value of 76 nM. We conclude that both the Na+/H+ antiport and a DIDS-sensitive bicarbonate-dependent antiport are important mechanisms of regulation of the internal pH of rabbit CPE under acidifying conditions. Further, our data suggest that the rabbit choroid plexus Na+/H+ exchanger can be classified as amiloride insensitive, suggesting that this antiport may play a greater role in controlling transport mechanisms than does the pH of the CNS.  相似文献   

13.
Abstract: Synaptosomes can be loaded with mag-fura-2 without significant perturbation of their ATP content by incubation for 10 min at 37°C with 10 µM mag-fura-2 acetoxymethyl ester in Hanks'-HEPES buffer (pH 7.45). The intrasynaptosomal free Mg2+ concentration ([Mg2+]i) was found to be dependent on external Mg2+ concentration, increasing from 0.8 to 1.25 mM when the concentration of Mg2+ in the incubation medium increased from 1 to 8 mM. Dissipation of the Na+ gradient across the plasma membrane of synaptosomes by treatment with the Na+ ionophore monensin (0.2 mM) or with veratridine (0.2 mM) and ouabain (0.6 mM) produced a moderate increase of [Mg2+]i, from 1.0 to 1.2–1.3 mM in an incubation medium containing 5 mM Mg2+. Plasma membrane depolarization by incubation of synaptosomes in a medium containing 68 mM KCl and 68 mM NaCl had no effect on [Mg2+]i. Reversal of the Na+ gradient by incubation of synaptosomes in a medium in which external Na+ was replaced by choline increased [Mg2+]i up to 1.6 and 2.2 mM for extrasynaptosomal Mg2+ concentrations of 1 and 8 mM, respectively. We conclude that a Na+/Mg2+ exchange operates in the plasma membrane of synaptosomes. In the presence of Mg2+ in the incubation medium, extrasynaptosomal ATP, but not ADP or adenosine, increased [Mg2+]i from 1.1 ± 0.1 up to 1.6 ± 0.1 mM. The nonhydrolyzable ATP analogue adenosine 5′-(βγ-imido)triphosphate antagonized the effect of ATP, but had no effect by itself on [Mg2+]i. It is concluded that Mg2+ transport across the plasma membrane of synaptosomes is modulated by the activity of an ecto-ATPase or an ecto-protein kinase.  相似文献   

14.
Salinity tolerance in wild (Glendale) and hatchery (Quinsam) pink salmon Oncorhynchus gorbuscha (average mass 0·2 g) was assessed by measuring whole body [Na+] and [Cl?] after 24 or 72 h exposures to fresh water (FW) and 33, 66 or 100% sea water (SW). Gill Na+, K+‐ATPase activity was measured following exposure to FW and 100% SW and increased significantly in both populations after a 24 h exposure to 100% SW. Whole body [Na+] and whole body [Cl?] increased significantly in both populations after 24 h in 33, 66 and 100% SW, where whole body [Cl?] differed significantly between Quinsam and Glendale populations. Extending the seawater exposure to 72 h resulted in no further increases in whole body [Na+] and whole body [Cl?] at any salinity, but there was more variability among the responses of the two populations. Per cent whole body water (c. 81%) was maintained in all groups of fish regardless of salinity exposure or population, indicating that the increase in whole body ion levels may have been related to maintaining water balance as no mortality was observed in this study. Thus, both wild and hatchery juvenile O. gorbuscha tolerated abrupt salinity changes, which triggered an increase in gill Na+, K+‐ATPase within 24 h. These results are discussed in terms of the preparedness of emerging O. gorbuscha for the marine phase of their life cycle.  相似文献   

15.
Sergio de la Fuente 《BBA》2010,1797(10):1727-1735
We have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400 μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200 μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5-10 mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7 μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7 μM, but its effect was hardly appreciable at 10 μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range.  相似文献   

16.
Thermal transitions in E. coli +RNA fMet and two of its molecular fragments   总被引:1,自引:0,他引:1  
Melting curves of tRNAfMet and two fragments derived from this molecule by limited ribonuclease T1 digestion (i.e., the anticodon arm and loop [K fragment] and the larger fragment representing three-fourths of the tRNA chain from the 3′ terminus including two potential limbs of the cloverleaf structure [L fragment]) are presented. The profiles observed are consistent with the presence of base paired structures in all those molecules. At low salt concentration (0.02M Na+) the stabilities of these molecules measured by the apparent midpoints of the denaturation profiles are in the order K > L > tRNA. The relative stabilities approach each other at 0.2M Na+ (the tRNA profile being biphasic), while at high salt (2M) the L fragment seems to be more stable than either K or t-RNA fMet. Estimation of the enthalpy of denaturing the K structure in 0.02M Na+ gives a value of 40 ± 3 kcal/mole corresponding to an enthalpy per effective G.C. base pair disrupted of 10 ± 1 kcal/mole.  相似文献   

17.
Complexation of M+=Li+, Na+, Ag+ and TI+ by the cryptands 4, 7, 13, 18-tetraoxa-l, 10-diazabicyclo[8.5.5]eicosane (C211) and 4,7,13-trioxa-1,10-diazabicyclo[8.5.5]eicosane (C21C5) to form the cryptates [M.C211]+ and [M.C21C5]+ has been studied in trimethyl phosphate by potentiometric titration and 7Li and 23Na NMR spectroscopy. For [M.C211]+ the logarithm of the apparent stability constants, log K (dm3 mol-1)=6.98±0.05, 5.38±0.05, 9.82±0.02 and 3.95±0.02 for M+ =Li+, Na+, Ag+ and TI+, respectively; and for [M.C21C5]+ log K (dm3 mol-1)=2.40±0.10, 1.90±0.05, 6.04±0.02 and 2.42±0.10 for M+=Li+, Na+, Ag+ and Tl+, respectively. The decomplexation kinetic parameters for [Na.C211]+ are: kd (298.2 K)=6.924±0.50 s-l, ΔHd≠=62.2±0.9 kJ mol-1, and ΔSd≠= -20.3±2.7 J K-1 mol-1; and those for [Li.C21C5]+ are: kd (298.2 K)=23.3±0.4 s-1, ΔHd≠ =61.2±1.1 kJ mol-1, and ΔSd≠= -13.6±3.6 J K-1 mol-1. Metal ion exchange on [Li.C211]+ is in the very slow extreme of the NMR timescale up to 390 K and kd « 4 s-1 at 298.2 K, while in contrast exchange on [Na.C21C5]+ is in the fast extreme of the NMR timescale at 298.2 K (kd≈ 104 s-1). These data are compared with those obtained in other solvents.  相似文献   

18.
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets.  相似文献   

19.
Summary The possible role of extracellular calcium ([Ca+2]e) in cryopreservation-induced cytotoxicity was tested using Madin-Darby canine kidney (MDCK) cells and a fluorescent multiple endpoint assay. MDCK cells maintained in 2 mM [Ca+2]e and treated with the calcium ionophore, ionomycin, increased their intracellular calcium ([Ca+2]i) as revealed by the calcium indicator dye, Fluo3 and the bottom-reading spectrofluorometer, CytoFluor 2300. The addition of 10 mM [ethylene bis (oxyethylenenitrilo)]-tetraacetic acid (EGTA) to the extracellular medium before treatment with ionomycin blocked this ionomycin-dependent increase in [Ca+2]i. A number of site and activity-specific fluorescent probes were surveyed to determine which indicator dye might best reveal the ionomycin-induced cytotoxic events during this increase in [Ca+2]i. Although most dyes changed their emission profiles in response to calcium, neutral red was found to best reflect the loss of [Ca+2]i homeostasis. The NR50 for a 15-min exposure to ionomycin in the presence of 2 mM [Ca+2]e was approximately 2μM ionomycin, but ionomycin had little apparent effect on neutral red retention when 10 mM EGTA was added to the extracellular medium. Thus it was clear that an increase in [Ca+2]i could be cytotoxic to MDCK cells and that neutral red could monitor this cytotoxic episode. To test if [Ca+2]e was similarly cytotoxic during cryopreservation, MDCK cells were subjected to cryopreservation in the presence of dimethylsulfoxide (DMSO). In contrast to previous studies, plasma membrane integrity, not lysosomal function, seemed to best correlate with cell survival subsequent to cryopreservation. In addition, decreasing [Ca+2]e had no discernable effect on the retention of plasma membrane indicator dyes, neutral red, or cell survival. It is concluded that a) plasma membrane indicator dyes, not neutral red, might be better indicators of cytotoxicity occurring during cryopreservation; b) DMSO might be toxic to lysosomes during cryopreservation of cultured cells; and c) although [Ca+2]e can contribute to cytotoxicity, the presence of [Ca+2]e might not influence cryopreservation-induced cytotoxicity.  相似文献   

20.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号