首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The amino acid analysis of UDP-glucose dehydrogenase is reported. 2. N-Terminal-group analysis indicates only one type of N-terminal amino acid, methionine, to be present. 3. Peptide ;mapping' in conjunction with the amino acid analysis indicates that the subunits of the enzyme are similar if not identical. 4. The various kinetic classes of thiol group were investigated by reaction with 5,5'-dithiobis-(2-nitrobenzoate). 5. NAD(+), UDP-glucose and UDP-xylose protect the two rapidly reacting thiol groups of the hexameric enzyme. 6. Inactivation of the enzyme with 5,5'-dithiobis-(2-nitrobenzoate) indicates the involvement of six thiol groups in the maintenance of enzymic activity. 7. The pH-dependence of UDP-xylose inhibition of the enzyme was investigated. 8. The group involved in the binding of UDP-xylose to the protein has a heat of ionization of about 33kJ/mol and a pK of 8.4-8.6. 9. It is suggested that UDP-xylose has a cooperative homotropic effect on the enzyme.  相似文献   

2.
The properties of two carnitine acyltransferases (CPT) purified from bovine liver are compared to confirm that they are different proteins. The soluble CPT and the inner CPT from mitochondria differ in subunit Mr, native Mr, pI and reactivity with thiol reagents. All eight free thiol groups in soluble CPT react with 5,5'-dithiobis-(2-nitrobenzoate) in the absence of any unfolding reagent, and activity is gradually lost. The inner CPT activity is completely stable in the presence of 5,5'-dithiobis-(2-nitrobenzoate), and only one thiol group per molecule of subunit is modified in the native enzyme. Antisera to each enzyme inhibit that enzyme, but do not cross-react. CPT activity in subcellular fractions can now be identified by titration with these antibodies. The soluble CPT from bovine liver is probably peroxisomal in origin, but, although antigenically similar, it differs from the peroxisomal carnitine octanoyltransferase found in rat and mouse liver in its specificity for the longer-chain acyl-CoA substrates.  相似文献   

3.
Reaction of 5-enolpyruvylshikimate-3-phosphate synthase of Escherichia coli with the thiol reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) leads to a modification of only 2 of the 6 cysteines of the enzyme, with a significant loss of its enzymatic activity. Under denaturing conditions, however, all 6 cysteines of 5-enolpyruvylshikimate-3-phosphate synthase react with DTNB, indicating the absence of disulfide bridges in the native protein. In the presence of shikimate 3-phosphate and glyphosate, only 1 of the 2 cysteines reacts with the reagent, with no loss of activity, suggesting that only 1 of these cysteines is at or near the active site of the enzyme. Cyanolysis of the DTNB-inactivated enzyme with KCN leads to elimination of 5-thio-2-nitrobenzoate, with formation of the thiocyano-enzyme. The thiocyano-enzyme is fully active; it exhibits a small increase in its I50 for glyphosate (6-fold) and apparent Km for phosphoenolpyruvate (4-fold) compared to the unmodified enzyme. Its apparent Km for shikimate 3-phosphate is, however, unaltered. These results clearly establish the nonessentiality of the active site-reactive cysteine of E. coli 5-enolpyruvylshikimate-3-phosphate synthase for either catalysis or substrate binding. Perturbations in the kinetic constants for phosphoenolpyruvate and glyphosate suggest that the cysteine thiol is proximal to the binding site for these ligands. By N-[14C]ethylmaleimide labeling, tryptic mapping, and N-terminal sequencing, the 2 reactive cysteines have been identified as Cys408 and Cys288. The cysteine residue protected by glyphosate and shikimate 3-phosphate from its reaction with DTNB was found to be Cys408.  相似文献   

4.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited by stoicheiometric concentrations of diethyl pyrocarbonate. The inhibition is due to the acylation of a single histidine residue/monomer (mol.wt. 36000). 2. Alcohol dehydrogenase is also inhibited by stoicheiometric amounts of 5,5'-dithiobis-(2-nitrobenzoate), owing to the modification of a single cysteine residue/monomer. 3. Native alcohol dehydrogenase binds two molecules of reduced coenzyme/molecule of enzyme (mol.wt. 144000). 4. Modification of a single histidine residue/monomer by treatment with diethyl pyrocarbonate prevents the binding of acetamide in the ternary complex, enzyme-NADH-acetamede, but does not prevent the binding of NADH to the enzyme. 5. Modification of a single cysteine residue/monomer does not prevent the binding of acetamide to the ternary complex. After the modification of two thiol groups/monomer by treatment with 5,5'-dithiobis-(2-nitrobenzoate), the capacity of enzyme to bind coenzyme in the ternary complex was virtually abolished. 6. From the results presented in this paper we conclude that at least one histidine and one cysteine residue are closely associated in the substrate-binding site of alcohol dehydrogenase.  相似文献   

5.
Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents.  相似文献   

6.
Steady-state kinetic studies including initial velocity for mannitol oxidation and fructose reduction and product inhibition for mannitol oxidation using fructose and reduced nicotinamide adenine dinucleotide (NADH) are in accord with a reaction mechanism best described as ordered Bi-Bi with NAD+ and NADH designated as the first substrate, last product, respectively at pH 8.8. All replots of slopes and intercepts from product inhibition studies were linear. Dead-end inhibition studies using mannitol 1-phosphate gave slope-parabolic, intercept-linear noncompetitive inhibition for both NAD+ and mannitol as substrates. The dead-end inhibitor is capable of binding multiply to the E, EA, and EQ forms of the enzyme to an extent that is controlled by the concentration of substrates. The EQ complex is inferred to undergo a conformational change, E'Q equilibrium EQ, since (V1/E1) greater than (KiqV2)/(KqE1), and no evidence for dead-end complex formation with NADH can be adduced. This is interpreted to mean that the release of fructose from the central complex is faster than the isomerization of the E-NADH complex. When mannitol is saturating, the noncompetitive inhibition against NAD+, as the variable substrate, becomes parabolic uncompetitive. A replot of the slopes of the parabola against mannitol 1-phosphate remains concave upward. This situation could arise if the conformational change we infer in the EQ complex opens up additional sites on the protein which can interact with the dead-end inhibitor.  相似文献   

7.
Cytoplasmic alpha-glycerol-3-phosphate dehydrogenase from fruit-bat-breast muscle was purified by ion-exchange and affinity chromatography. The specific activity of the purified enzyme was approximately 120 units/mg of protein. The apparent molecular weight of the native enzyme, as determined by gel filtration on Sephadex G-100 was 59,500 +/- 650 daltons; its subunit size was estimated to be 35,700 +/- 140 by SDS-polyacrylamide gel electrophoresis. The true Michaelis-Menten constants for all substrates at pH 7.5 were 3.9 +/- 0.7 mM, 0.65 +/- 0.05 mM, 0.26 +/- 0.06 mM, and 0.005 +/- 0.0004 mM for L-glycerol-3-phosphate, NAD(+), DHAP, and NADH, respectively. The true Michaelis-Menten constants at pH 10.0 were 2.30 +/- 0.21 mM and 0.20 +/- 0.01 mM for L-glycerol-3-phosphate and NAD(+), respectively. The turnover number, k(cat), of the forward reaction was 1.9 +/- 0.2 x 10(4)s(-1). The treatment of the enzyme with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) under denaturing conditions indicated that there were a total of eight cysteine residues, while only two of these residues were reactive towards DTNB in the native enzyme. The overall results of the in vitro experiments suggest that alpha-glycerol-3-phosphate dehydrogenase of the fruit bat preferentially catalyses the reduction of dihydroxyacetone phosphate to glycerol-3-phosphate.  相似文献   

8.
Although the enzyme UDP-glucose dehydrogenase from beef liver (E.C. 1.1.1.22) is known to abstract the pro-R hydrogen stereospecifically at carbon 6 of the glucose moiety of the substrate by a reversible step in converting UDP-glucose to UDP-alpha-D-gluco-hexodialdose (UDP-Glc-6-CHO), prolonged incubation of the enzyme with UDP-glucose and tritium-labeled NADH, under conditions favoring hydrogen exchange between the two, results in equivalent labeling of both hydrogens at carbon 6. This shows that the pro-S hydrogen at carbon 6 is also abstracted by a reversible process which must then involve a derivative of the carboxyl group of UDP-glucuronic acid (UDP-GlcUA) that is capable of reversible hydrogenation-dehydrogenation. It is the hydrolysis of this derivative that accounts for the well known irreversibility of the overall reaction. Derivatization of the enzyme's essential thiol group with 5,5'-dithiobis-(2-nitrobenzoate) eliminates the ability of the enzyme to either oxidize or reduce UDP-Glc-6-CHO. Replacement of the 5-thio-2-nitrobenzoate group with cyanide fully restores the enzyme's capacity to reduce UDP-Glc-6-CHO but has no effect on the inhibition of the oxidation to UDP-GlcUA. This indicates that the essential thiol group is involved in the second reversible dehydrogenation step and serves to form a thiol ester with the carboxyl of the product, UDP-GlcUA. It is suggested that thiol ester intermediates are a general characteristic of all 4-electron NAD-linked dehydrogenase reactions.  相似文献   

9.
1L-Inositol 1-phosphate synthase (EC 5.5.1.4) devoid of bound NAD+ was isolated from mature pollen of Lilium longiflorum ( Easter lily ). The enzyme has a molecular weight of 157,000 +/- 15,000 and a subunit weight of 61,000 +/- 5,000. Kinetic studies of the uninhibited reaction and of inhibition by 2-deoxy-D-glucose 6-phosphate and NADH show the reaction to be ordered sequential with NAD+ adding first. The Michaelis constants for NAD+ and D-glucose 6-phosphate are 2.4 and 65 microM, respectively. The Ki for 2-deoxy-D-glucose 6-phosphate was 8.7 and 2.0 microM, respectively, when D-glucose 6-phosphate or NAD+ was varied. The Ki for NADH and variable NAD+ was 4.7 microM and, for NADH and variable D-glucose 6-phosphate, 3.9 microM.  相似文献   

10.
gamma-Glutamylcysteine synthetase (isolated from rat kidney) has one sulfhydryl group that reacts with 5,5'-dithiobis-(2-nitrobenzoate). This single exposed sulfhydryl group is not required for enzyme activity. The enzyme is potently inactivated by cystamine, which apparently interacts with a sulfhydryl group at the active site to form a mixed disulfide. 5,5'-Dithiobis-(2-nitrobenzoate) does not interact with the sulfhydryl group that reacts with cystamine. After the enzyme was 90% inactivated by reaction with cystamine, 3.4 mol of 5,5'-dithiobis-(2-nitrobenzoate) reacted per mol of enzyme, indicating that binding of cystamine exposes sulfhydryl groups which are apparently buried or unreactive in the native enzyme. L-Glutamate (but not D-glutamate or L-alpha-aminobutyrate) protected against inactivation by cystamine. In contrast, ATP enhanced the rate of inactivation by cystamine, and the apparent Km value for this effect is similar to that for ATP in the catalytic reaction. Studies on the structural features of cystamine that facilitate its interaction with the enzyme showed that selenocystamine, monodansylcystamine, and N-[2[2-aminoethyl)-dithio)ethyl]-4-azido-2-nitrobenzeneamine are also good inhibitors. Whereas S-(S-methyl)cysteamine-Sepharose does not interact with the enzyme (Seelig, G. F., and Meister, A. (1982) J. Biol. Chem. 257, 5092-5096), S-(S-methyl)cysteamine is a potent inhibitor; 1 mol of this compound completely inactivated 1 mol of enzyme. In the course of this work, a useful modification of the method for isolating this enzyme from kidney was developed.  相似文献   

11.
The reactivity of thiol groups and the subunit structure of aldolase   总被引:7,自引:6,他引:1  
1. Seven unique carboxymethylcysteine-containing peptides have been isolated from tryptic digests of rabbit muscle aldolase carboxymethylated with iodo[2-(14)C]acetic acid in 8m-urea. These peptides have been characterized by amino acid and end-group analysis and their location within the cyanogen bromide cleavage fragments of the enzyme has been determined. 2. Reaction of native aldolase with 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide and N-ethylmaleimide showed that a total of three cysteine residues per subunit of mol.wt. 40000 were reactive towards these reagents, and that the modification of these residues was accompanied by loss in enzymic activity. Chemical analysis of the modified enzymes demonstrated that the same three thiol groups are involved in the reaction with all these reagents but that the observed reactivity of a given thiol group varies with the reagent used. 3. One reactive thiol group per subunit could be protected when the modification of the enzyme was carried out in the presence of substrate, fructose 1,6-diphosphate, under which conditions enzymic activity was retained. This thiol group has been identified chemically and is possibly at or near the active site. Limiting the exposure of the native enzyme to iodoacetamide also served to restrict alkylation to two thiol groups and left the enzymic activity unimpaired. The thiol group left unmodified is the same as that protected by substrate during more rigorous alkylation, although it is now more reactive towards 5,5'-dithiobis-(2-nitrobenzoic acid) than in the native enzyme. 4. Conversely, prolonged incubation of the enzyme with fructose 1,6-diphosphate, which was subsequently removed by dialysis, caused an irreversible fall in enzymic activity and in thiol group reactivity measured with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. It is concluded that the aldolase tetramer contains at least 28 cysteine residues. Each subunit appears to be identical with respect to number, location and reactivity of thiol groups.  相似文献   

12.
Sheep liver cytoplasmic aldehyde dehydrogenase was purified to homogeneity to give a sample with a specific activity of 380 nmol NADH min(-1) mg(-1). An amino acid analysis of the enzyme gave results similar to those reported for aldehyde dehydrogenases from other sources. The isoelectric point was at pH 5.25 and the enzyme contained no significant amounts of metal ions. On the binding of NADH to the enzyme there is a shift in absorption maximum of NADH to 344 nm, and a 5.6-fold enhancement of nucleotide fluorescence. The protein fluorescence (lambdaexcit = 290 nm, lambdaemisson = 340 nm) is quenched on the binding of NAD+ and NADH. The enhancement of nucleotide fluorescence on the binding of NADH has been utilised to determine the dissociation constant for the enzyme . NADH complex (Kd = 1.2 +/- 0.2 muM). A Hill plot of the data gave a straight line with a slope of 1.0 +/- 0.3 indicating the absence of co-operative effects. Ellman's reagent reacted only slowly with the enzyme but in the presence of sodium dodecylsulphate complete reaction occurred within a few minutes to an extent corresponding to 36 thiol groups/enzyme. Molecular weights were determined for both cytoplasmic and mitochondrial aldehyde dehydrogenases and were 212 000 +/- 8 000 and 205 000 respectively. Each enzyme consisted of four subunits with molecular weight of 53 000 +/- 2 000. Properties of the cytoplasmic and mitochondrial aldehyde dehydrogenases from sheep liver were compared with other mammalian liver aldehyde dehydrogenases.  相似文献   

13.
Hydrogenosomal ATP:AMP phosphotransferase of Trichomonas vaginalis   总被引:2,自引:0,他引:2  
1. ATP:AMP phosphotransferase (adenylate kinase) is present in Trichomonas vaginalis, primarily with hydrogenosomal localization. 2. Adenylate kinase has been purified from hydrogenosome-enriched fractions by solubilization with Triton X-100 and KCl followed by affinity chromatography and gel filtration. 3. The enzyme has a Mr = 28,000, a broad pH optimum of pH 7-9, requirement for Mg2+ and specificity for adenine and deoxyadenine nucleotides. 4. The activity is competetively inhibited by P1,P5-di(adenosine-5') pentaphosphate (Ki 200 nM) and reversibly inactivated by 5,5'-dithiobis-(2-nitrobenzoate). 5. Catalytic properties of this enzyme are similar to those of enzymes from other organisms. Other properties indicate its uniqueness, however, since its molecular mass and Ki for P1,P5-di(adenosine-5'-)-pentaphosphate bring it closer to the mitochrondrial isoenzyme, while it shares a requirement for reduced thiol groups with the cytosolic isoenzyme.  相似文献   

14.
Chicken liver fatty acid synthase is inhibited by the thiol-modifying reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetamide. Total inactivation of the activity for fatty acid synthesis requires the modification of about 8 of the nearly 50 freely accessible thiol groups per molecule. The differential binding of iodo[14C]acetamide to phenylmethylsulphonyl fluoride-modified enzyme in the absence and in the presence of excess acetyl-CoA shows complete modification of one cysteine-SH site of the condensing enzyme and partial modification of the pantetheine-SH site for a total of approx. 1.4 mol of iodoacetamide bound per mol of enzyme. The reaction of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) generates disulphide cross-links for each molecule of the reagent added, but 95% of these cross-links are intrasubunit. Both the iodoacetamide- and 5,5'-dithiobis-(2-nitrobenzoic acid)-modified species catalyse all the component partial reactions of fatty acid synthesis except the condensation reaction. The results obtained with iodoacetamide show that in the dimeric fatty acid synthase modification of one cysteine-SH condensing site and/or one pantetheine-SH site per dimer is sufficient to affect inhibition of condensing activity and the activity for fatty acid synthesis, and are in accord with a recently proposed model for the mechanism of action of animal fatty acid synthases [Kumar (1982) J. Theor. Biol. 95, 263-283].  相似文献   

15.
A mannitol:mannose 1-oxidoreductase was isolated from celeriac (Apium graveolens var. rapaceum) root tips by fractionation with (NH4)2SO4, followed by chromatography on a Fractogel DEAE column and then concentration with (NH4)2SO4. This newly discovered mannitol dehydrogenase catalyzes the NAD-dependent oxidation of mannitol to mannose, not mannitol to fructose. The sugar product of the enzyme reaction was identified by three independent HPLC systems and by an enzymatically linked system as being mannose and not fructose or glucose. Normal Michaelis--Menten kinetics were exhibited for both mannitol and NAD with Km values of 72 and 0.26 mM, respectively, at pH 9.0. The Vmax was 40.14 mumol/h/mg protein for mannitol synthesis and 0.8 mumol/h/mg protein for mannose synthesis at pH 9.0. In the polyol oxidizing reaction, the enzyme was very specific for mannitol with a low rate of oxidation of sorbitol. In the reverse reaction, the enzyme was specific for mannose. The enzyme was strongly inhibited by NADH and sensitive to alterations of NAD/NADH ratio. The enzyme is of physiological importance in that it is mainly localized in root tips (sink tissue) where it functions to convert mannitol into hexoses which are utilized to support root growth. Product determination and kinetic characterization were carried out on an enzyme preparation with a specific activity (SA) of 30.44 mumol/h/mg protein. Subsequently, the enzyme was further purified to a SA of 201 mumol/h/mg protein using an NAD affinity column. This paper apparently represents the first evidence of the existence of a mannitol:mannose 1-oxidoreductase and also the first evidence of the presence of a mannitol dehydrogenase in vascular plants.  相似文献   

16.
Limited proteolysis of high molecular weight kininogen by kallikrein resulted in the generation of an inactive heavy chain of Mr = 64,000 and active light chains of Mr = 64,000 and 51,000 when analyzed by sodium dodecyl sulfate (SDS)-gel electrophoresis under reducing conditions. Starting with kininogen from outdated plasma, a light chain with an apparent molecular weight of 51,000 on 7.5% SDS gels was purified and characterized. Molecular weights of 28,900 +/- 1,100 and 30,500 +/- 1,600 were obtained by gel filtration of the reduced and alkylated protein in 6 M guanidine HCl and equilibrium sedimentation under nondenaturing conditions in the air-driven ultracentrifuge, respectively. The light chain stained positively with periodic acid-Schiff reagent on SDS gels indicating that covalently attached carbohydrate may be responsible for the anomalously high molecular weight estimated by SDS-gel electrophoresis. A single light chain thiol group reacted with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) in the presence and absence of 6 M guanidine HCl. Specific fluorescent labeling of the thiol group with 5-(iodoacetamido)fluorescein (IAF) occurred without loss of clotting activity. Addition of purified human plasma prekallikrein to the IAF-light chain resulted in a maximum increase in fluorescence anisotropy of 0.041 +/- 0.001 and no change in the fluorescence intensity. Fluorescence anisotropy measurements of the equilibrium binding of prekallikrein to the IAF-light chain yielded an average Kd of 17.3 +/- 2.5 nM and stoichiometry of 1.07 +/- 0.07 mol of prekallikrein/mol of IAF-light chain. Measurements of the interaction of prekallikrein with iodoacetamide-alkylated light chain using the IAF-light chain as a probe gave an average Kd of 16 +/- 4 nM and stoichiometry of 1.0 +/- 0.2 indicating indistinguishable affinities for prekallikrein.  相似文献   

17.
1. Citrate synthase has been purified from Escherichia coli and shown to exist at an equilibrium between three forms: monomer (mol.wt. 57000), tetramer (mol.wt. 230000) and, possibly, octamer. Modification of the enzyme by photo-oxidation and by treatment with specific chemical reagents has been carried out to gain information on the amino acid residues involved in enzymic activity and in the inhibition of activity by NADH and alpha-oxoglutarate. 2. Several photo-oxidizable amino acids appear to be involved in activity. The nature of the pH-dependence of their rates of photo-oxidation with Methylene Blue suggests that these are histidines, a conclusion supported by the greater rate of photo-inactivation with Rose Bengal and the destruction of activity by diethyl pyrocarbonate. 3. The participation of histidine at the alpha-oxoglutarate effector site is indicated by photo-oxidation and the participation of cysteine at the NADH effector site suggested by photo-oxidation is confirmed by the desensitization to NADH produced by treatment with 5,5'-dithiobis-(2-nitrobenzoate). Inactivation of the enzyme after modification with this reagent suggests the additional involvement of cysteine in catalytic activity. 4. Amino acid analyses of native and photo-oxidized enzyme are consistent with these conclusions. 5. Modification with 2-hydroxy-5-nitrobenzyl bromide indicates the participation of tryptophan in the activity of the enzyme.  相似文献   

18.
Glutamine-dependent carbamyl phosphate synthetase (from Escherichia coli) was previously shown to be composed of a light subunit (molecular weight similar to 42,000) which has the binding site for glutamine and a heavy subunit (molecular weight similar to 130,000) which has binding sites for the other reactants and allosteric effectors. The subunits may be separated with retention of catalytic activities; only the separated light subunit exhibits glutaminase activity. The previous finding that storage of the native enzyme at pH 9 at 0 degrees increased its glutaminase activity by about 25-fold was further investigated; such storage markedly decreased the glutamine- and ammonia-dependent synthetase activities of the enzyme. Treatment of the enzyme with p-hydroxymercuribenzoate led to transient increase of glutaminase activity followed by inhibition. When the enzyme was treated with N-ethylmaleimide or with 5,5'-dithiobis-(2-nitrobenzoate), the glutaminase activity was increased by about 250-fold with concomitant loss of synthetase activities. The enhancement of glutaminase produced by storage of the enzyme at pH 9 was associated with intermolecular disulfide bond formation and aggregation of the enzyme. Aggregation also was observed after extensive treatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoate) or N-ethylmaleimide. However, a moderate increase of glutaminase activity (about 30-fold) was observed without aggregation under conditions in which one sulfhydryl group on the light subunit reacted with either reagent. The findings suggest that the increased glutaminase activities observed here are associated with structural changes in the enzyme in which the intersubunit relationship is altered so as to uncouple the catalytic functions of the enzyme and to facilitate access of water to the glutamine binding site on the light subunit.  相似文献   

19.
The human pathogenic fungus Aspergillus fumigatus accumulates large amounts of intracellular mannitol to enhance its resistance against defense strategies of the infected host. To explore their currently unknown roles in mannitol metabolism, we studied A. fumigatus mannitol-1-phosphate 5-dehydrogenase (AfM1PDH) and mannitol 2-dehydrogenase (AfM2DH), each recombinantly produced in Escherichia coli, and performed a detailed steady-state kinetic characterization of the two enzymes at 25 °C and pH 7.1. Primary kinetic isotope effects resulting from deuteration of alcohol substrate or NADH showed that, for AfM1PDH, binding of D-mannitol 1-phosphate and NAD(+) is random, whereas D-fructose 6-phosphate binds only after NADH has bound to the enzyme. Binding of substrate and NAD(H) by AfM2DH is random for both D-mannitol oxidation and D-fructose reduction. Hydride transfer is rate-determining for D-mannitol 1-phosphate oxidation by AfM1PDH (k(cat) = 10.6 s(-1)) as well as D-fructose reduction by AfM2DH (k(cat) = 94 s(-1)). Product release steps control the maximum rates in the other direction of the two enzymatic reactions. Free energy profiles for the enzymatic reaction under physiological boundary conditions suggest that AfM1PDH primarily functions as a D-fructose-6-phosphate reductase, whereas AfM2DH acts in D-mannitol oxidation, thus establishing distinct routes for production and mobilization of mannitol in A. fumigatus. ATP, ADP and AMP do not affect the activity of AfM1PDH, suggesting the absence of flux control by cellular energy charge at the level of D-fructose 6-phosphate reduction. AfM1PDH is remarkably resistant to inactivation by heat (half-life at 40 °C of 20 h), consistent with the idea that formation of mannitol is an essential component of the temperature stress response of A. fumigatus. Inhibition of AfM1PDH might be a useful target for therapy of A. fumigatus infections.  相似文献   

20.
The liver, kidney and spleen of the mouse and rat and the kidney and spleen of the ox express a monomeric form of biliverdin reductase (Mr 34,000), which in the case of the ox kidney enzyme exists in two forms (pI 5.4 and 5.2) that are probably charge isomers. The livers of the mouse and rats express, in addition, a protein (Mr 46,000) that cross-reacts with antibodies raised against the ox kidney enzyme and may be related to form 2 described by Frydman, Tomaro, Awruch & Frydman [(1983) Biochim. Biophys. Acta 759, 257-263]. Higher-Mr forms appear to exist in the guinea pig and hamster. The ox kidney enzyme has three thiol groups, of which two are accessible to 5,5'-dithiobis-(2-nitrobenzoate) in the native enzyme. Immunocytochemical analysis reveals that biliverdin reductase is localized in proximal tubules of the inner cortex of the rat kidney. Biliverdin reductase antiserum also stains proximal tubules in human and ox kidney. The staining of podocytes in glomeruli of ox kidney with antiserum to aldose reductase is particularly prominent. The localization of biliverdin reductase in the inner cortical zone of rat kidney is similar to that described for glutathione S-transferase YfYf, and it is suggested that one function of this 'intracellular binding protein' may be to maintain a low free concentration of biliverdin to allow biliverdin reductase to operate efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号