首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diploid Saccharomyces cerevisiae cells heterozygous for the mating type locus (MATa/MAT alpha) undergo meiosis and sporulation when starved for nitrogen in the presence of a poor carbon source such as potassium acetate. Diploid yeast adenine auxotrophs sporulated well at high cell density (10(7) cells per ml) under these conditions but failed to differentiate at low cell density (10(5) cells per ml). The conditional sporulation-deficient phenotype of adenine auxotrophs could be complemented by wild-type yeast cells, by medium from cultures that sporulate at high cell density, or by exogenously added adenine (or hypoxanthine with some mutants). Adenine and hypoxanthine in addition to guanine, adenosine, and numerous nucleotides were secreted into the medium, each in its unique temporal pattern, by sporulating auxotrophic and prototrophic yeast strains. The major source of these compounds was degradation of RNA. The data indicated that differentiating yeast cells cooperate during sporulation in maintaining sufficiently high concentrations of extracellular purines which are absolutely required for sporulation of adenine auxotrophs. Yeast prototrophs, which also sporulated less efficiently at low cell density (10(3) cells per ml), reutilized secreted purines in preference to de novo-made purine nucleotides whose synthesis was in fact inhibited during sporulation at high cell density. Adenine enhanced sporulation of yeast prototrophs at low cell density. The behavior of adenine auxotrophs bearing additional mutations in purine salvage pathway genes (ade apt1, ade aah1 apt1, ade hpt1) supports a model in which secretion of degradation products, uptake, and reutilization of these products is a signal between cells synchronizing the sporulation process.  相似文献   

2.
Yeast cells inhibited by benzimidazole accumulate hypoxanthine with associated efflux of xanthine. Unlike control cells, inhibited cells contain no detectable free UMP and CMP. Benzimidazole decreases uptake of [8-14C]hypoxanthine into the intracellular pool of hypoxanthine and xanthine but causes radioactive xanthine to accumulate in the medium. In inhibited cultures there is a threefold increase in incorporation of [8-14C]hypoxanthine into the total (intracellular plus extracellular) xanthine. Uptake of [8-14C]hypoxanthine into free nucleotides and into bound adenine and guanine was inhibited by 70%. Uptake of [U-14C]glycine into IMP, AMP, GMP, DNA and RNA was also substantially decreased. Incorporation of [2-14C]uracil into the intracellular uracil pool was inhibited by 30% and into free uridine and cytidine by over 90%. Benzimidazole inhibited incorporation of [8-3H]IMP into AMP and GMP, and decreased substantially the activity of glutamine-amidophosphoribosyltransferase (EC 2.4.2.14). Yeast cultures were shown to N-ribotylate benzimidazole. Results are consistent with benzimidazole inhibiting yeast growth by competing for P-rib-PP and so depriving other ribotylation processes such as the 'salvage' pathways and de novo synthesis of purines and pyrimidines.  相似文献   

3.
1. The activities of the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8) in purine-analogue-resistant mutants of Schizosaccharomyces pombe were checked. An 8-azathioxanthine-resistant mutant lacked hypoxanthine phosphoribosyltransferase, xanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities (EC 2.4.2.8) and appeared to carry a single mutation. Two 2,6-diaminopurine-resistant mutants retained these activities but lacked adenine phosphoribosyltransferase activity (EC 2.4.2.7). This evidence, together with data on purification and heat-inactivation patterns of phosphoribosyltransferase activities towards the various purines, strongly suggests that there are two phosphoribosyltransferase enzymes for purine bases in Schiz. pombe, one active with adenine, the other with hypoxanthine, xanthine and guanine. 2. Neither growth-medium supplements of purines nor mutations on genes involved in the pathway for new biosynthesis of purine have any influence on the amount of hypoxanthine-xanthine-guanine phosphoribosyltransferase produced by this organism.  相似文献   

4.
Clones of cells resistant to 2,6-diaminopurine were detected in skin fibroblast cultures derived from 13 of 21 normal humans of both sexes from 17 unrelated families. Almost all of the cultures that yielded mutants were chosen for further study from among a total of 83 surveyed because they displayed a slight resistance to low concentrations of diaminopurine. The incidences of mutant colonies ranged between about 10(-5) and 10(-4) per cell surviving prior mutagenic treatment with MNNG. The incidences of spontaneous mutants were about 10(-7) to 10(-5) in three unrelated cultures. Most independent mutants had distinctly reduced activity of adenine phosphoribosyltransferase but some had apparently normal amounts of activity. Two mutants from unrelated boys had little or no detectable enzyme activity and were unable to effectively use exogenous adenine for growth when purine biosynthesis was blocked with azaserine. Most mutants could utilize exogenous adenine, just as most azaguanine-resistant fibroblast mutants can utilize exogenous hypoxanthine, even when their hypoxanthine-guanine phosphoribosyltransferase activity is reduced. Diverse genetic changes conferred diaminopurine resistance but their specific natures are still undefined. Gross numerical or structural chromosome abnormalities were not observed in the mutants examined so far. Since at least one gene responsible for adenine phosphoribosyltransferase activity is on autosome No. 16 our results suggest that at least some of the cultures yielding mutants were heterozygous and that alleles conferring diaminopurine resistance may be frequent enough to comprise a polymorphism.  相似文献   

5.
Yeast cells inhibited by benzimidazole accumulate hypoxanthine with an associated efflux of xanthine. Unlike control cells, inhibited cells contain no detectable free UMP and CMP. Benzimidazole decreases uptake of [8-14C]-hypoxanthine into the intracellular pool of hypoxanthine and xanthine but causes radioactive xanthine to accumulate in the medium. In inhibited cultures there is a threefold increase in incorporation of [8-14C]hypoxanthine into the total (intracellular plus extracellular) xanthine. Uptake of [8-14C]hypoxanthine into free nucleotides and into bound adenine and guanine was inhibited by 70%. Uptake of [U-14C]glycine into IMP, AMP, GMP, DNA and RNA was also substantially decreased. Incorporation of [2-14C]uracil into the intracellular uracil pool was inhibited by 30% and into free uridine and cytidine by over 90%. Benzimidazole inhibited incorporation of [8-3H]IMP into AMP and GMP, and decreased substantially the activity of glutamine-amidophosphoribosyltransferase (EC 2.4.2.14). Yeast cultures were shown to N-ribotylate benzimidazole. Results are consistent with benzimidazole inhibiting yeast growth by competing for P-rib-PP and so depriving other ribotylation processes such as the ‘salvage’ pathways and de novo synthesis of purines and pyrimidines.  相似文献   

6.
Bacillus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosyltransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively.  相似文献   

7.
The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines.  相似文献   

8.
Salvage synthesis of purine nucleotides by Helicobacter pylori   总被引:1,自引:0,他引:1  
G.L. MENDZ, B.M. JIMENEZ, S.L. HAZELL, A.M. GERO AND W.J. O'SULLIVAN. 1994. The incorporation of purine nucleotide precursors into Helicobacter pylori and the activities of enzymes involved in nucleotide salvage biosynthetic pathways were investigated by radioactive tracer analysis and nuclear magnetic resonance spectroscopy. The organism took up the nucleobases adenine, guanine and hypoxanthine, and the nucleosides adenosine, guanosine and deoxyadenosine. Any incorporation of deoxyguanosine by the cells was below the detection limits of the methods employed. The activities of adenine-, guanine- and hypoxanthine-phosphoribosyl transferases were established. The bacterium showed high levels of adenosine and guanosine nucleosidase activities and lesser activity for deoxyadenosine; no hydrolysis of deoxyguanosine was detected. Phosphorylase activities were not observed with any of the nucleosides. Phosphotransferase activities with similar rates were demonstrated for adenosine, guanosine and deoxyadenosine; and a weaker activity was detected for deoxyguanosine. No nucleoside kinase activities were observed with any of the nucleosides. The presence of adenylate kinase was established, but no guanylate kinase activity was observed. The study provided evidence for the presence in H. pylori of salvage pathways for the biosynthesis of purine nucleotides.  相似文献   

9.
Purine nucleotide synthesis and interconversion were examined over a range of purine base and nucleoside concentrations in intact N4 and N4TG (hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient) neuroblastoma cells. Adenosine was a better nucleotide precursor than adenine, hypoxanthine or guanine at concentrations greater than 100 μM. With hypoxanthine or guanine, N4TG cells had less than 2% the rate of nucleotide synthesis of N4 cells. At substrate concentrations greater than 100 μM the rates for deamination of adenosine and phosphorolysis of guanosine exceeded those for any reaction of nucleotide synthesis. Labelled inosine and guanosine accumulated from hypoxanthine and guanine, respectively, in HGPRT-deficient cells and the nucleosides accumulated to a greater extent in N4 cells indicating dephosphorylation of newly synthesized IMP and GMP to be quantitatively significant. A deficiency of xanthine oxidase, guanine deaminase and guanosine kinase activities was found in neuroblastoma cells. Hypoxanthine was a source for both adenine and guanine nucleotides, whereas adenine or guanine were principally sources for adenine (>85%) or guanine (>90%) nucleotides, respectively. The rate of [14C]formate incorporation into ATP, GTP and nucleic acid purines was essentially equivalent for both N4 and N4TG cells. Purine nucleotide pools were also comparable in both cell lines, but the concentration of UDP-sugars was 1.5 times greater in N4TG than N4 cells.  相似文献   

10.
Changes during growth in the activity of several enzymes involved in purine "salvage", adenine phosphoribosyltransferase (EC 2.4.2.7), guanine phosphoribosyl-transferase (EC 2.4.2.8), hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) and adenosine kinase (EC 2.7.1.20), the enzymes which catalyze the conversion of nucleoside monophosphate to triphosphate, nucleoside monophosphate kinase (EC 2.7.4.4) and nucleoside diphosphate kinase (EC 2.7.4.6), and several degradation enzymes, deoxyribonucleae(s), ribonuclease(s). phosphatase(s), nucleosidase (EC 3.2.2.1), 3'-nucleotidase (EC 3.1.3.6) and 5'-nucleotidase (EC 3.1.3.5) were examined in cells of Catharanthus roseus (L.) G. Don cultured in suspension. In addition, the incorporation of [8-14C] adenine, [8-14C] adenine, [8-14C]hypoxanthine. [8-14C] adenosine and [8-14C]inosine into nucleotides and nucleic acids was also determined using intact cells.
The activities of all purine "salvage" enzymes examined and those of nucleoside monophosphate and diphosphate kinases increased rapidly during the lag phase and decreased during the following cell division and cell expansion phases. The rate of incorporation of adenine, guanine, hypoxanthine, and adenosine into nucleotides and nucleic acids was higher in the lag phase cells than during the following three phases. The highest rate of [8-14C]inosine incorporation was observed in the stationary phase cells. The activity of all degradation enzymes examined decreased when the stationary phase cells were transferred to a new medium.
These results indicated that the increased activity of purine "salvage" enzymes observed in the lag phase cells may contribute to an active purine "salvage" which is required to initiate a subsequent cell division.  相似文献   

11.
Enzyme activities of purine catabolism and salvage, the concentrations of high-energy phosphates and the reutilisation of purine bases and purine nucleosides were studied in rat heart myoblasts and myocytes. Rat heart myoblasts H9c2(2-1) were grown in Dulbecco's modified Eagle's minimum essential medium supplemented with 10% fetal calf serum. Reduction of fetal calf serum to 2% for 1 week resulted in a differentiation into myocytes with respect to their morphological features and their enzyme pattern. In differentiated myocytes, activity of 5'-nucleotidase was increased more than 2-fold, and AMP deaminase and creatine kinase activities were more than 10-fold elevated. The concentration of creatine phosphate in differentiated myocytes was doubled compared to that in myoblasts. The uptake into myoblasts and myocytes and the incorporation into adenine nucleotides was highest using adenosine, inosine and adenine uptake rates were intermediate, and hypoxanthine was utilised least. Differentiation of myoblasts into myocytes resulted in a slightly lower overall uptake of adenosine and adenine, whereas about 40% more inosine and hypoxanthine were utilised by myocytes. Increasing the phosphate concentration in the incubation medium up to 50 mmol/l resulted in a stimulation of uptake of all purine compounds tested. This stimulation was more pronounced in myoblasts.  相似文献   

12.
The isolation and characterization of a new mutant of Chinese ovary cells (CHO-K1) is described. This mutant, Ade-H, has the following properties: (1) it forms a new genetic complementation group; (2) it specifically requires adenine for growth and will not grow on aminoimidazole carboxamide (AIC) or hypoxanthine; (3) it accumulates IMP; (4) it cannot synthesize adenine nucleotides; (5) its phenotype can be mimicked by treatment of CHO-K1 (the wild type parental strain) with hadacidin, an inhibitor of adenylosuccinate synthetase (E.C.6.3.4.4). Thus, the site of the defect in this mutant is presumed to involve the step in adenylate biosynthesis catalyzed by this enzyme. The usefulness of Ade-H for the study of regulation of purine biosynthesis in mammalian cells is discussed.  相似文献   

13.
Abstract Competition experiments revealed that adenine and guanine were transported by a purine permease in both Candida glabrata 4 and a C. glabrata 4 cytosine permease negative mutant. The C. glabrata 4 cytosine permease negative mutant was isolated using 5-fluorocytosine selection. This mutant no longer transported cytosine, but transported adenine and guanine. A transport system for hypoxanthine was not detected. Hence, in addition to the cytosine permease, a purine permease exists in C. glabrata . This differs from the purine cytosine permeases in Saccharomyces cereuisiae and Candida albicans which transport adenine, cytosine, guanine and hypoxanthine.  相似文献   

14.
Mammalian cells have enzymes that deaminate adenosine to inosine, which can readily be phosphorolysed to hypoxanthine. They do not, however, possess enzymes to form adenine by the cleavage of adenosine. For this reason, the release of adenine from adenosine by mammalian cell cultures has usually been interpreted as indicating the presence of mycoplasma, a frequent microbial contaminant that contains high levels of adenosine phosphorylase. We found that some human lymphoblast cultures free of mycoplasma showed high levels of adenosine cleavage and that this activity resulted from adenosine phosphorylase in the bovine serum used as the culture growth supplement. A survey of 13 serum supplements disclosed that fetal bovine serum (six lots) contains the highest adenosine phosphorylase activity, ranging from 9 to 648 nmol adenine produced per hour per ml serum; newborn calf serum (four lots) has much less activity, ranging from 0 to 5 nmol adenine produced per hour per ml serum; and donor horse serum (three lots) contains no detectable activity. These results suggest that mycoplasma tests dependent on the presence of adenosine phosphorylase or other enzyme activities may give false-positives with cultures containing fetal bovine serum supplements.  相似文献   

15.
Primary rat cardiomyocyte cultures were utilized as a model for the study of purine nucleotide metabolism in the heart muscle, especially in connection with the mechanisms operating for the conservation of adenine nucleotides. The cultures exhibited capacity to produce purine nucleotides from nonpurine molecules (de novo synthesis), as well as from preformed purines (salvage synthesis). The conversion of adenosine to AMP, catalyzed by adenosine kinase, appears to be the most important physiological salvage pathway of adenine nucleotide synthesis in the cardiomyocytes. The study of the metabolic fate of IMP formed from [14C]formate or [14C]hypoxanthine and that of AMP formed from [14C]adenine or [14C]adenosine revealed that in the cardiomyocyte the main flow in the nucleotide interconversion pathways is from IMP to AMP, whereas the flux from AMP to IMP appeared to be markedly slower. Following synthesis from labeled precursors by either de novo or salvage pathways, most of the radioactivity in purine nucleotides accumulated in adenine nucleotides, and only a small proportion of it resided in IMP. The results suggest that the main pathway of AMP degradation in the cardiomyocyte proceeds through adenosine rather than through IMP. About 90% of the total radioactivity in purines effluxed from the cells during de novo synthesis from [14C]formate or following prelabeling of adenine nucleotides with [14C]adenine were found to reside in hypoxanthine. The activities in cell extracts of AMP 5'-nucleotidase and IMP 5'-nucleotidase, which catalyze nucleotide degradation, and of AMP deaminase, a key enzyme in the purine nucleotide cycle, were low. The nucleotidase activity resembles, and that of the AMP deaminase contrasts the respective enzyme activities in extracts of cultured skeletal-muscle myotubes. The results indicate that in the cardiomyocyte, in contrast to the myotube, the main mechanism operating for conservation of nucleotides is prompt phosphorylation of AMP, rather than operation of the purine nucleotide cycle. The primary cardiomyocyte cultures are a plausible model for the study of purine nucleotide metabolism in the heart muscle.  相似文献   

16.
A tritium-adenine suicide procedure was used to select for mutants with reduced uptake of adenine from a population of Chinese hamster V79 cells mutagenized with ethyl methane sulfonate. In one of the mutant lines isolated, designated KC62, the uptake of adenine, hypoxanthine, and guanine was reduced by approximately 70%. The specific activities, Km values, and Vmax values of adenine phosphoribosyltransferase and of hypoxanthine phosphoribosyltransferase were the same in extracts from KC62 and from the parental cell line. Metabolic fate studies of incorporated [3H]adenine and 3[H]hypoxanthine revealed a metabolic block at the level of phosphoribosylation. Determination of phosphoribosylpyrophosphate pool size showed that the mutant contained only 25% of the phosphoribosylpyrophosphate found in the parent. Its reduced availability in KC62 appears to result in a decreased ability to salvage adenine, hypoxanthine, and guaninine via phosphoribosylation. Phosphoribosylpyrophosphate synthetase from KC62 was shown to have an increased sensitivity to inhibition by a variety of nucleotides.  相似文献   

17.
1. The hypoxanthine/guanine and adenine phosphoribosyltransferase activities in a wide variety of human tissues were studied during their growth and development from foetal life onward. A wide range of activities develop after birth, with especially high values in the central nervous system and testes. 2. Postnatal development of hypoxanthine/guanine phosphoribosyltransferase was also defined in the rat. Although there were increases in the central nervous system and testes, there was also a rise in activity in the liver, which was less marked in man. 3. A sensitive radiochemical assay method, using dTTP to inhibit 5'-nucleotidase activity, suitable for tissue extracts, was developed. 4. No definite evidence of the existence of tissue-specific isoenzymes of hypoxanthine/guanine or adenine phosphoribosyltransferase was found. Hypoxanthine/guanine phosphoribosyltransferase in testes, however, had a significantly different thermal-denaturation rate constant. 5. The findings are discussed in an attempt to relate activity of hypoxanthine/guanine phosphoribosyltransferase to biological function. Growth as well as some developmental changes appear to be related to increase in the activity of this enzyme.  相似文献   

18.
Summary The range of incidences of azaguanine-resistant colonies in cultures of fibroblasts from 16 unrelated humans was 0.4×10-6 to 19×10-6 and the mean value was 4.1×10-6. A fluctuation test showed that most or all of the mutant colonies derived from mutations that occurred during in vitro proliferation of the fibroblasts and before exposure to azaguanine. The estimated rate of spontaneous mutation was 0.45×10-6 to 1.8×10-6 per cell generation. At least ten independent mutants, comprising two general classes, were studied. Class I mutants were a minority and resembled cells from boys having the Lesch-Nyhan syndrome: they had very little HG-PRT activity, showed maximum resistance to azaguanine and could not utilize hypoxanthine for growth. At least 90% of the mutants were in Class II: their apparent HG-PRT activities ranged between normal and Lesch-Nyhan amounts, they were partially sensitive to azaguanine and they could utilize hypoxanthine. Some Class II mutants resembled cells cultured from a family having an X-chromosomal mutant gene that does not cause the Lesch-Nyhan syndrome but does confer resistance to azaguanine, although the quantity of HG-PRT activity is apparently normal and hypoxanthine can be utilized. Electrophoretic differences between the HG-PRT activities of normal and mutant strains were not detected but other qualitative alterations were observed in some mutants.Paper No. 1558 from the Laboratory of Genetics.Supported by N.I.H. Grants GM-06983 and GM-15422 and by a grant from the Food Research Institute of The University of Wisconsin, Madison, Wisconsin.Supported by Grant He 753-1 from Die Deutsche Forschungsgemeinschaft.  相似文献   

19.
Genetic deficiencies in the nucleoside transport function markedly altered the abilities of cultured mutant S49 T lymphoblasts to transport, incorporate, and salvage exogenous hypoxanthine. The concentrations of exogenous hypoxanthine required to reverse azaserine toxicity and replenish azaserine-depleted nucleoside triphosphate pools in AE1 cells, a nucleoside transport-deficient clone, were about 10-fold higher than those required for wild type cells. In a similar fashion, guanine could reverse mycophenolic acid toxicity in wild type but not in AE1 cells. Surprisingly, a second nucleoside transport-deficient clone, 80-5D2, which had lost 80-90% of its ability to transport nucleosides, required lower hypoxanthine concentrations than the wild type parent to reverse these azaserine-mediated effects. The addition of submicromolar concentrations of either p-nitrobenzylthioinosine or dipyridamole, two potent inhibitors of nucleoside transport, to wild type cells mimicked the phenotype of the AE1 cells with respect to hypoxanthine. AE1 cells or p-nitrobenzylthioinosine-treated wild type cells could only transport hypoxanthine at 10-25% the rate of untreated wild type cells, whereas 80-5D2 cells could transport hypoxanthine more efficiently. Adenine transport was also diminished in AE1 and FURD-80-3-6 cells, but not to sufficiently low levels to interfere with their ability to salvage adenine to overcome azaserine toxicity. These studies on S49 cells altered in their nucleoside transport capacity provide powerful genetic evidence that purine nucleobases share a common transport function with nucleosides in these mammalian T lymphoblasts.  相似文献   

20.
We examined in vivo the influence of testosterone on purine synthetis de nov, in the levator ani and gastrocnemius muscles of the rat. The hypoxanthine, adenine and guanine contents and the rate of incorporation of [14C]formate into these purine bases were determined in castrated adult and prepubertal rats (groups 1 and 2) both before and after orchiectomy and, in the second case, at different times after testosterone treatment. Substantially similar behavior was found in both groups, with some specific differences. The results showed an increase in the basal levels after castration (except for a dramatic decrease in adenine and a rise in the Gua/Ade molar ratio in prepubertal rats) and a return to basal levels after hormone administration, which was also accompanied by variations in the Gua/Ade molar ratio. The kinetics of purine nucleotide synthesis de novo and, spefically, of the overall reactions: IMP formation from PRib-PP, IMP → AMP and IMP → GMP, were followed by evaluating the incorporation curves of [14C]formate into hypoxanthine, adenine and guanine. Our results show that testosterone administration enhanced the incorporation rate and gave characteristic patterns: a diphasic cyclic oscillation of the Ade values in adult castrated rats, and single peaks having a specific shape in the other cases. The Gua/Ade labeling ratio was unchaned in castrated rats and increased in both groups during ther first 5 days after testosterone treatment, after which values even fell below normal; in most cases, values overlapped the pattern of the Gua/Ade molar ratio. The specific profile of the curves indicated that testosterone initially accelerated the turnover of guanylic acid and in the second phase re-established the normal behavior and ratio of AMP and GMP formation. These results indicate that the ‘inosinic branch point’ was subject to regulation by testosterone. The profiles of the incorporation curves and of the Gua/Ade ratio were indicative of a primary and secondary response to hormone action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号