首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The cytotoxic effect of lymphotoxin (LT) and its modulation by interferon (IFN) was quantitatively assessed in uninfected and vesicular stomatitis virus (VSV)-infected cultured cells. Preparations of human LT, which were depleted of IFN, had a significant cytotoxic effect on VSV-infected HeLa, SV-80, WISH, and Vero cells. IFN, most notably IFN-gamma, further potentiated destruction of the infected cells by these LT preparations, when applied on the cells at sub-antiviral IFN concentrations. In contrast, no cytotoxic effect could be observed in any of the examined cells, when applying LT, IFN, or their combination, in the absence of viral infection. Infected cells in which VSV replication was suppressed by treatment with antiviral concentrations of IFN also resisted destruction by LT. These findings indicate that LT cytotoxicity can be selectively directed against virus-infected cells and that IFN can augment this cell-killing mechanism when failing to exert an antiviral effect.  相似文献   

2.
Natural killer cells mediate spontaneously secretory/necrotic killing against rare leukemia cell lines and a nonsecretory/apoptotic killing against a large variety of tumor cell lines. The molecules involved in nonsecretory/apoptotic killing are largely undefined. In the present study, freshly isolated, nonactivated, human NK cells were shown to express TNF, lymphotoxin (LT)-alpha, LT-beta, Fas ligand (L), CD27L, CD30L, OX40L, 4-1BBL, and TNF-related apoptosis-inducing ligand (TRAIL), but not CD40L or nerve growth factor. Complementary receptors were demonstrated to be expressed on the cell surface of solid tumor cell lines susceptible to apoptotic killing mediated by NK cells. Individually applied, antagonists of TNF, LT-alpha1beta2, or FasL fully inhibited NK cell-mediated apoptotic killing of tumor cells. On the other hand, recombinant TNF, LT-alpha1beta2, or FasL applied individually or as pairs were not cytotoxic. In contrast, a mixture of the three ligands mediated significant apoptosis in tumor cells. These findings demonstrate that human NK cells constitutively express several of the TNF family ligands and induce apoptosis in tumor cells by simultaneous engagement of at least three of these cytotoxic molecules.  相似文献   

3.
Although NK cells can kill both malignant cells and virus-infected cells without prior sensitization, it has remained unclear whether the mechanism by which an NK cell is activated in the presence of a tumor cell is similar to that induced by the presence of a virus-infected cell. In our experimental system using homogeneous populations of cloned human CD16+ NK cells, we found that HSV-infected target cells do not induce in the NK cells the same pharmacologically-active second messengers elicited by NK-sensitive tumor cells. Although phosphoinositide turnover and calcium signaling were generated in NK cells exposed to NK-sensitive tumor cells, the recognition of HSV-infected cells by NK cells did not result in similar transmembrane signaling. Furthermore, depending on the cell type infected by HSV, alternative mechanisms of cytotoxicity were employed. HSV-infected foreskin fibroblasts were rapidly and selectively killed by cloned NK cells without a requirement for IFN or accessory cells. In contrast to this direct cytotoxicity against HSV-infected foreskin fibroblasts, NK cell-mediated cytotoxicity against an HSV-infected fibrosarcoma cell line (1591) was dependent on IFN-alpha production by accessory cells. Importantly, in both systems of cytotoxicity, IFN-alpha activation of NK cells resulted in augmented killing against both infected and uninfected targets. These results suggest that NK cell activation induced during antiviral immunity is distinct from activation elicited during an antitumor response. These differences include the utilization of alternative forms of signal transduction and alternative mechanisms of cytotoxicity.  相似文献   

4.
CD27, a member of the TNF receptor superfamily, has been implicated in T cell activation, T cell development, and T cell-dependent Ab production by B cells. In the present study we examined the expression and function of CD27 on murine NK cells. Murine NK cells constitutively expressed CD27 on their surface. Stimulation with immobilized anti-CD27 mAb or murine CD27 ligand (CD70) transfectans solely could induce proliferation and IFN-gamma production of freshly isolated NK cells and enhanced the proliferation and IFN-gamma production of anti-NK1.1-sutimulated NK cells. Although NK cell cytotoxicity was not triggered by anti-CD27 mAb or against CD70 transfectants, prestimulation via CD27 enhanced the cytotoxic activity of NK cells in an IFN-gamma-dependent manner. These results suggest that CD27-mediated activation may be involved in the NK cell-mediated innate immunity against virus-infected or transformed cells expressing CD70.  相似文献   

5.
Highly purified populations of large granular lymphocytes (LGL) have been shown to mediate natural killer (NK) cell activity. The mechanism of target cell killing by NK cells is as yet undefined; however, it has been postulated that such killing may involve soluble cytotoxic factors produced and secreted by NK cells. The data presented show that NK-sensitive, but not NK-resistant, tumor cell lines induce highly purified populations of human LGL to produce factors with cytotoxic and/or cytostatic activities. We have identified one of these factors as tumor necrosis factor-alpha (TNF-alpha), and have shown that production of this factor is enhanced by recombinant human interferon-gamma (rHuIFN-gamma). We have also examined the role of TNF-alpha in the cytotoxic function of NK cells. The data show that although highly purified LGL populations produce low levels of TNF-alpha, the cytotoxic/cytostatic activity of this lymphokine on tumor target cells does not correlate with the cytotoxic activity of highly purified populations of LGL on tumor target cells. Furthermore, NK cell-mediated cytotoxicity is not reliably inhibited by antibodies directed against various epitopes of recombinant human TNF-alpha and/or recombinant TNF-beta (lymphotoxin) or rHuIFN-gamma. These data show that although TNF-alpha is produced by highly purified NK-containing LGL cell populations, this factor does not appear to be responsible for NK cell cytotoxicity against classical NK target cells such as Molt-4 or K562. We suggest that NK function can be attributed to a combination of factors rather than to a single factor alone, and that at least two major phenomena are involved in LGL function: the rapid cytotoxic events which lead to the cell lysis measured in classical in vitro NK assays such as against K562; and the release of factors such as TNF-alpha with cytotoxic/cytostatic activities which would inhibit the growth of invading tumor cells in vivo.  相似文献   

6.
NK cells play a key role in host defense against the beta-herpesvirus CMV through perforin-dependent cytolysis. In this study, we show that human NK cells can also control human CMV (HCMV) infection by a noncytolytic mechanism involving induction of IFN-beta in the virus-infected cell. Both IL-2-activated primary NK cells and an IL-2-dependent NK cell line (NK-92) exhibited potent, noncytolytic anti-HCMV activity at very low E:T cell ratios (<0.1:1). Activated NK cells expressed lymphotoxin (LT)alphabeta on their cell surface, and secreted LTalpha and TNF, all of which contributed to the NF-kappaB-dependent release of IFN-beta from infected fibroblasts. IFN-beta produced by fibroblasts and NK cell-produced IFN-gamma combined to inhibit HCMV replication after immediate early gene expression. These results highlight an efficient mechanism used by NK cells to activate IFN-beta expression in the infected target cell that contributes to the arrest of virion production and virus spread without cellular elimination.  相似文献   

7.
alpha-Galactosylceramide (alphaGalCer) stimulates NKT cells and has antitumor activity in mice. Murine NKT cells may directly kill tumor cells and induce NK cell cytotoxicity, but the mechanisms are not well defined. Newly developed human CD1d/alphaGalCer tetrameric complexes were used to obtain highly purified human alphaGalCer-reactive NKT cell lines (>99%), and the mechanisms of NKT cell cytotoxicity and activation of NK cells were investigated. Human NKT cells were cytotoxic against CD1d(-) neuroblastoma cells only when they were rendered CD1d(+) by transfection and pulsed with alphaGalCer. Four other CD1d(-) tumor cell lines of diverse origin were resistant to NKT cells, whereas Jurkat and U937 leukemia cell lines, which are constitutively CD1d(+), were killed. Killing of the latter was greatly augmented in the presence of alphaGalCer. Upon human CD1d/alphaGalCer recognition, NKT cells induced potent cytotoxicity of NK cells against CD1d(-) neuroblastoma cell lines that were not killed directly by NKT cells. NK cell activation depended upon NKT cell production of IL-2, and was enhanced by secretion of IFN-gamma. These data demonstrate that cytotoxicity of human NKT cells can be CD1d and ligand dependent, and that TCR-stimulated NKT cells produce IL-2 that is required to induce NK cell cytotoxicity. Thus, NKT cells can mediate potent antitumor activity both directly by targeting CD1d and indirectly by activating NK cells.  相似文献   

8.
NK cells are large granular lymphocytes capable of killing certain tumor cells and virally infected cells in a non-MHC-restricted manner. NK cells can also effect an antibody dependent cytotoxicity that is triggered by CD16, an FcR for IgG. In NK cells, CD16 is expressed in association with zeta, a signal transducing subunit of the TCR complex. Here we show that, just as T cell activation via the TCR complex results in tyrosine phosphorylation of zeta TCR, NK cell activation via CD16 results in tyrosine phosphorylation of zeta NK. Whereas antibody-dependent cytotoxicity also results in tyrosine phosphorylation of zeta, natural cytotoxicity does not. Our results indicate that zeta functions as a transducing element for antibody dependent, but not antibody independent killing by NK cells. Consequently, NK cells are likely to express at least two distinct receptor complexes capable of triggering cytolytic effector function.  相似文献   

9.
10.
Although BHK-21 cells persistently infected with wild-type vesicular stomatitis virus (VSV) are sensitive to natural killer (NK) cells and do not form tumors in athymic nude mice, BHK-21 cells persistently infected with a previously isolated mutant virus (VSV-P) are resistant to NK cells and form tumors in nude mice. We used this VSV-P mutant to persistently infect HeLa cells and mouse tumor cell lines. A mouse mastocytoma line (P815) persistently infected with VSV-P was similar to BHK-21 cells in that it was resistant to NK cell lysis and formed tumors in nude mice. However, neither HeLa cells nor mouse myeloma lines persistently infected with VSV-P were resistant to NK cell lysis in vitro, and neither formed tumors in nude mice. Rejection by nude mice of HeLa cells and mouse myeloma cell lines persistently infected with VSV-P could be ablated by rabbit antiserum to asialo-GM1, implicating NK cells in the in vivo rejection of these persistently infected tumors. These results suggest that NK cell recognition and killing of virus-infected cells in vivo and in vitro depend upon genetic contributions from both the virus and the host cell.  相似文献   

11.
We analyzed the cytotoxicity and characterized the phenotype of oncolytic bone marrow (BM) lymphocyte subsets generated in vitro by interleukin-2 (IL-2) and stimulator cells (SC). Two irradiated B-lymphoblastoid cell lines (Daudi and EBV-transformed BSM) and fresh human acute myelogenous leukemia (AML) were used as SC. Stimulation with Daudi and IL-2 resulted in a substantial increase in cytotoxic activity (100- to 1000-fold) against a broad range of tumor targets, and total cellular expansion was higher compared to stimulation with IL-2 alone. The most prominent increase was observed in the CD16+ and CD56+/CD3- natural killer (NK) cell subset; however, a significant increase was also observed in CD56+/CD3+ T cells. Functional analysis of Daudi- and IL-2-generated subsets using fluorescence-activated cell sorting (FACS) revealed that most of the lytic activity was mediated by NK cells. Significant potentiation of oncolytic activity and cell growth was also seen in the cultures stimulated with BSM or fresh AML and IL-2. The highest oncolytic activity in the latter cultures was mediated primarily by CD8+, CD3+, and CD56- T cells, although NK cells also participated in cytotoxic activity. The T cell-mediated cytotoxicity was restricted by the major histocompatibility complex (MHC), since most cytotoxicity could be blocked by HLA I antibodies. Additionally, we observed that optimum stimulation of cytotoxicity required effector cell-stimulator cell contact. These data indicate that depending on the tumor used for stimulation, different lymphocyte subsets may be generated in IL-2 cultures. These different approaches may be useful in both specific and nonspecific immunotherapy.  相似文献   

12.
Human natural killer (NK) cells show high cytotoxic activity against target cells infected with herpes simplex virus type 1 (HSV-1). Substantial amounts of interferon (IFN) were generated in co-cultures of NK effector cells and infected target cells; however, the cytotoxic activity seen against a specific infected cell target did not correlate with the amount of IFN induced. The production of IFN increased steadily from 4 to 18 hr of co-culture, as did NK activity; however, IFN production peaked 4 hr later than NK activity. Pretreatment of NK effector cells with exogenous IFN increased cytotoxic activity against all targets tested, but the differential pattern of reactivity against cells infected with wild type and mutant viruses was unaltered. When effector cells were treated with the RNA synthesis inhibitor actinomycin D before co-culture with virus-infected targets, IFN production was markedly reduced, without a concomitant reduction in cytotoxicity. Similarly, the addition of anti-IFN antiserum to co-cultures greatly decreased the available IFN present, but had no effect on NK activity. We conclude that the induction of cytotoxic activity in co-cultures of NK effector cells and HSV-1-infected target cells is independent of the induction of IFN.  相似文献   

13.
Noa Stanietsky 《FEBS letters》2010,584(24):4895-4900
Human natural killer (NK) cells possess an arsenal of receptors programmed to regulate the NK cell functions, once encountering a target cell. In general, the activating receptors mediate cytotoxicity when engaged by their tumor specific, stress induced, virally encoded, or rarely, self ligands. Whereas, the inhibitory receptors bind self molecules, mostly MHC class I, presented on all normal and healthy nucleated cells. However, NK cells also possess numerous, highly homologous, pairs of receptors that sometimes even share the same ligands but display divergent functions. In this review we describe the NK cell repertoire of paired receptors and discuss questions regarding their function and mode of action. We focus primarily on the three PVR-binding receptors; the co-stimulatory DNAM1 and CD96 and the inhibitory TIGIT.  相似文献   

14.
Lymphokine-activated killer (LAK) cells are cytotoxic for a variety of autologous and allogeneic tumor cells as well as modified autologous cells. It is assumed that LAK cells lyse their targets solely by direct cell to cell contact, possibly involving the degranulation and exocytosis of pore-forming elements, similar to that observed with cytotoxic T lymphocytes and NK cells. Reported here are studies demonstrating that LAK cells release factor(s) that are cytotoxic for a human breast carcinoma cell line, MCF-7, when stimulated with tumor cells. The factor(s) are slow acting and maximum cytotoxicity is observed only in a 72-h cytotoxic assay. The ability of LAK cells to secrete cytotoxic factor(s) is dependent on both the ratio of LAK cells to stimulating tumor cells as well as the length of their coincubation. A number of similarly slow acting cytokines that are cytostatic and/or cytotoxic for tumor cells have been described. We tested the ability of specific polyclonal antibodies directed against TNF, IFN-alpha, IFN-beta, and IFN-gamma to neutralize the cytotoxic supernatant activity. Only antibodies specific for IFN-gamma and TNF were neutralizing. We measured the amounts of IFN-gamma and TNF in the cytotoxic supernatants and determined that increased amounts of IFN-gamma and TNF were released after LAK cell-tumor cell interactions compared to supernatants of LAK cells alone or tumor cell alone. Comparable concentrations of human rIFN-gamma and rTNF resulted in similar levels (50 to 90%) of MCF-7 cell cytotoxicity as those observed with the stimulated LAK cell supernatants. We thus concluded that the majority of the cytotoxic activity released by LAK cells when stimulated with tumor cells was attributed to the synergistic activities of IFN-gamma and TNF. The significance of these observations in relation to the possible mechanisms by which LAK cells mediate cytolysis is discussed.  相似文献   

15.
NK cells are key components of the immune response to virally infected and tumor cells. Recognition of target cells initiates a series of events in NK cells that culminates in target destruction via directed secretion of lytic granules. Ral proteins are members of the Ras superfamily of small GTPases; they regulate vesicular trafficking and polarized granule secretion in several cell types. In this study, we address the role of Ral GTPases in cell-mediated cytotoxicity. Using a human NK cell line and human primary NK cells, we show that both Ral isoforms, RalA and RalB, are activated rapidly after target cell recognition. Furthermore, silencing of RalA and RalB impaired NK cell cytotoxicity. RalA regulated granule polarization toward the immunological synapse and the subsequent process of degranulation, whereas RalB regulated degranulation but not polarization of lytic granules. Analysis of the molecular mechanism indicated that Ral activation in NK cells leads to assembly of the exocyst, a protein complex involved in polarized secretion. This assembly is required for degranulation, as interference with expression of the exocyst component Sec5 led to reduced degranulation and impaired cytotoxicity in NK cells. Our results thus identify a role for Ral in cell-mediated cytotoxicity, implicating these GTPases in lymphocyte function.  相似文献   

16.
We examined the antigenic and functional characteristics of human peripheral blood lymphocytes that differentially express the CD16 (Leu-11) and Leu-19 (NKH-1) antigens. Leu-19 is a approximately 220,000 daltons protein expressed on approximately 15% of freshly isolated peripheral blood lymphocytes. Within the Leu-19+ subset, three distinct populations were identified: CD3-,CD16+,Leu-19+ cells; CD3+,CD16-,Leu-19+ cells; and CD3-,CD16-,Leu-19bright+ cells. Both the CD3+,CD16-,Leu-19+ and CD3-,CD16+,Leu-19+ populations mediated non-major histocompatibility complex (MHC)-restricted cytotoxicity against the NK-sensitive tumor cell K562 and were large granular lymphocytes. CD3-,CD16+,Leu-19+ NK cells were the most abundant (comprising approximately 10% of peripheral blood lymphocytes) and the most efficient cytotoxic effectors. The finding that CD3+,Leu 19+ lymphocytes mediated cytotoxicity against K562 unequivocally demonstrates that a unique subset of non-MHC-restricted cytotoxic CD3+ T lymphocytes are present in the peripheral blood of unprimed, normal individuals. However, CD3+,CD16-,Leu-19+ cells comprised less than 5% of peripheral blood lymphocytes, and the cytotoxic activity of this subset was significantly less than CD3-,CD16+,Leu-19+ NK cells. Most CD3+,Leu-19+ T cells co-expressed the CD2, CD8, and CD5 differentiation antigens. The antigenic and functional phenotype of peripheral blood CD3+,Leu-19+ cytotoxic T lymphocytes corresponds to the interleukin 2-dependent CD3+ cell lines that mediate non-MHC-restricted cytotoxicity against NK-sensitive tumor cell targets. A small population of Leu-19bright+ lymphocytes lacking both CD3 and CD16 was also observed. This population (comprising less than 2% of peripheral blood lymphocytes) contained both large agranular lymphocytes and large granular lymphocytes. CD3-,CD16-,Leu-19bright+ lymphocytes also mediate non-MHC-restricted cytotoxicity. The relationship of these CD3-CD16-,Leu-19bright+ lymphocytes to CD3+ T cells or CD16+ NK cells is unknown.  相似文献   

17.
NK cells mediate both direct cytotoxicity against a variety of tumor cells and indirect (FcR-dependent) cytotoxicity against antibody-coated targets. When cloned human NK cells (CD16+/CD3-) were exposed to NK-sensitive targets for 30 min, the level of inositol phosphates rose two to five times above background. The rise in inositol phosphates induced by NK-sensitive targets was paralleled by an increase in intracellular free calcium concentration ([Ca2+]i). A panel of tumor cells that were resistant to NK cell lysis did not stimulate significant levels of inositol phosphate production and did not induce an elevation of intracellular free calcium. Ligation of the FcR (CD16) with the mAb 3G8 also triggered phosphoinositide turnover. Kinetic experiments demonstrated that stimulation by either susceptible target cells or by FcR ligation led to rapid (less than 1 min) generation of the Ca2+-mobilizing second messenger, inositol trisphosphate, with slower accumulation of inositol bisphosphate and inositol monophosphate. Previous studies have demonstrated that activation of the cAMP-dependent second messenger pathway strongly inhibits NK cell-mediated cytotoxic functions. Treatment of NK effector cells with forskolin to elevate intracellular cAMP levels resulted in a concentration-dependent inhibition of phosphoinositide hydrolysis induced by both NK-sensitive targets and 3G8-mediated FcR ligation. These results suggest that phosphoinositide turnover represents a critical early event in the human NK cell cytolytic process. Moreover, the potent inhibitory effect of cAMP on NK cell cytotoxicity may be explained by the uncoupling of NK receptors from phospholipase C-mediated phosphoinositide hydrolysis.  相似文献   

18.
It has recently been shown that antiviral major histocompatibility complex class I-restricted cytotoxic T lymphocytes can recognize proteins that serve as internal viral structural components (influenza A virus nucleoprotein, vesicular stomatitis virus nucleocapsid protein). To further examine the role of internal viral proteins in cytotoxic T-lymphocyte recognition, we constructed recombinant vaccinia viruses containing individual influenza A virus genes encoding three viral polymerases (PB1, PB2, PA) and a protein not incorporated into virions (NS1). We found that cells infected with each of these recombinant vaccinia viruses could be lysed by anti-influenza cytotoxic T lymphocytes. Cytotoxic T-lymphocyte responsiveness to the individual viral antigens varied greatly between mouse strains. By using congenic mouse strains, responsiveness to PB1 and PB2 was found to cosegregate with major histocompatibility complex haplotype. These findings provide further evidence that internal antigens play a critical role in cytotoxic T-lymphocyte recognition of virus-infected cells. Additionally, they suggest that the cytotoxic T-lymphocyte response to viral antigens may often be restricted to only a fraction of the major histocompatibility complex class I repertoire.  相似文献   

19.
CD4(+) T cells directly participate in bacterial clearance through secretion of proinflammatory cytokines. Although viral clearance relies heavily on CD8(+) T cell functions, we sought to determine whether human CD4(+) T cells could also directly influence viral clearance through cytokine secretion. We found that IFN-gamma and TNF-alpha, secreted by IL-12-polarized Th1 cells, displayed potent antiviral effects against a variety of viruses. IFN-gamma and TNF-alpha acted directly to inhibit hepatitis C virus replication in an in vitro replicon system, and neutralization of both cytokines was required to block the antiviral activity that was secreted by Th1 cells. IFN-gamma and TNF-alpha also exerted antiviral effects against vesicular stomatitis virus infection, but in this case, functional type I IFN receptor activity was required. Thus, in cases of vesicular stomatitis virus infection, the combination of IFN-gamma and TNF-alpha secreted by human Th1 cells acted indirectly through the IFN-alpha/beta receptor. These results highlight the importance of CD4(+) T cells in directly regulating antiviral responses through proinflammatory cytokines acting in both a direct and indirect manner.  相似文献   

20.
Although the means by which NK cells may contribute to anti viral defense are still incompletely understood, various studies merge to a better comprehension of pathways that mediate NK cell activation (NK cell mediated cytotoxic activity and cytokine production) and their implications during the immune response towards a variety of viruses. Characterization of a specific expression pattern of ligands for NK receptors on virally infected cells and consequent modulation of NK cell activity have provided new insights in the field. A major break through to a direct evidence of a role for NK cells and NK cell receptors in immune protection against viral infection, was the recent implication of the murine activating Ly49H receptors in immune protection against MCMV infection. Although much remains to be learned concerning implication of NK cells in HIV infection, various reports have documented alteration in NK cell function and numbers during the course of HIV infection or treatment of AIDS. This review will focus on the current knowledge about the factors which might influence NK cell activation during various viral challenge and an emerging view of their alteration during HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号