首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method to separate [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 in tissue extracts is described. It is based on the selective metabolism of Ins(1,3,4)P3 by a crude cerebral supernatant in a Mg2+-free buffer followed by separation of [3H]inositol trisphosphates using conventional anion-exchange chromatography. Evaluation of the assay was performed using [3H]Ins(1,3,4)P3 standards and tissue extracts containing different proportions of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3. Parallel h.p.l.c. separations of extracts established the selective and complete metabolism of [3H]Ins(1,3,4)P3 under the above conditions and demonstrated that the enzymic method provides an accurate estimate of the trisphosphate isomers in rat cerebral cortex, parotid gland and bovine tracheal smooth muscle.  相似文献   

2.
A recently developed sensitive assay based on the binding reaction of IP3 to bovine adrenal preparations has been utilized for determining the level of endogenous inositol-1,4,5 trisphosphate (IP3) in maize roots and coleoptiles. The amount of IP3 found in these tissues ranges from 0.1 to 1.0 nmol g-1 fresh weight. Reproducible results were obtained with extracts of tissues from a same harvest, while they showed a 2-3 fold variation when different batches of plantlets were compared. The fungal phytotoxin fusicoccin (FC) known to affect several physiological processes in higher plants, increases the level of IP3 in coleoptiles. This observation suggests that IP3 might be involved in the transduction of the FC encoded signal from its receptors at the plasmalemma level to the cell machinery.  相似文献   

3.
Phospholipase C beta (PLC-beta)-coupled G protein-coupled receptor (GPCR) activities traditionally are assessed by measuring Ca2+ triggered by D-myo-inositol 1,4,5-trisphosphate (IP3), a PLC-beta hydrolysis product, or by measuring the production of inositol phosphate using cumbersome radioactive assays. A specific detection of IP3 production was also established using IP3 binding proteins. The short lifetime of IP3 makes this detection very challenging in measuring GPCR responses. Indeed, this IP3 rapidly enters the metabolic inositol phosphate cascade. It has been known for decades that lithium chloride (LiCl) leads to D-myo-inositol 1-phosphate accumulation on GPCR activation by inhibiting inositol monophosphatase, the final enzyme of the IP3 metabolic cascade. We show here that IP1 can be used as a surrogate of IP3 to monitor GPCR activation. We developed a novel homogeneous time-resolved fluorescence (HTRF) assay that correlates perfectly with existing methods and is easily amenable to high-throughput screening. The IP-One assay was validated on various GPCR models. It has the advantage over the traditional Ca2+ assay of allowing the measurement of inverse agonist activity as well as the analysis of PLC-beta activity in any nontransfected primary cultures. Finally, the high assay specificity for D-myo-inositol 1 monophosphate (IP1(1)) opens new possibilities in developing selective assays to study the functional roles of the various isoforms of inositol phosphates.  相似文献   

4.
A Sensitive and Reliable Assay for Dopamine (β-Hydroxylase in Tissue   总被引:3,自引:3,他引:0  
A new assay procedure for dopamine β-hydroxylase (DBH) in tissue extracts is described. Solubilized DBH was adsorbed from crude extracts on Concanavalin A-Sepharose (Con A-Sepharose), resulting in enrichment of the enzyme as well as removal of endogenous catecholamines and inhibitory substances. The enzymatic assay was carried out with DBH still adsorbed to Con A-Sepharose. The adsorption of the DBH to Con A-Sepharose offers three advantages over previous assay procedures. (1) Because of removal of the endogenous inhibitory substances, a single Cu2+ concentration can be used for the determination of DBH activity, regardless of the tissue dilution or inhibitor content of the analysed sample. Using this procedure, the optimal Cu2+ concentration for DBH of bovine adrenal gland extracts was 3 μM and for rat brain 10 μM. (2) Because of removal of endogenous catecholamines, dopamine, the main physiological substrate of DBH in noradrenergic neurons, can be used for the assay. The enzymatic reaction product, noradrenaline, was determined by high performance liquid chromatography and electrochemical detection (hplc-ec). This procedure resulted in an approx. 10-fold increase in sensitivity of the assay compared with other procedures, e.g., the radioenzymatic assay. (3) Direct determination of the immediate product of the enzymatic reaction (noradrenaline) permits kinetic analysis. It was found that the Michaelis constants for the substrate (dopamine) and co-factor (ascorbic acid) (2 mM and 0.65 mM, respectively) determined in bovine adrenal tissue extracts by the described procedure were identical with the values for the purified DBH preparation.  相似文献   

5.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are ubiquitous intracellular Ca(2+) release channels whose functional characterization by transfection has proved difficult due to the background contribution of endogenous channels. In order to develop a functional assay to measure recombinant channels, we transiently transfected the rat type I IP(3)R into COS-7 cells. Saponin-permeabilized COS cells transfected with type I IP(3)R showed a 50% increase in inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release at saturating [IP(3)] (10 micrometer) but no enhancement at subsaturating [IP(3)] (300 nm). However, cotransfection of the IP(3)R and human sarco/endoplasmic reticulum ATPase (SERCA)-2b ATPase cDNA resulted in 60 and 110% increases in Ca(2+) release at subsaturating and saturating doses of IP(3), respectively. IP(3) or adenophostin A failed to release (45)Ca(2+) from microsomal vesicles prepared from cells expressing either type I IP(3)R or SERCA cDNAs alone. However, microsomal vesicles prepared from cells doubly transfected with IP(3)R and SERCA cDNAs released 33.0 +/- 0.04% of the A23187-sensitive pool within 30 s of 1 micrometer adenophostin A addition. Similarly, the initial rate of (45)Ca(2+) influx into oxalate-loaded microsomal vesicles was inhibited by IP(3) only when the microsomes were prepared from COS cells doubly transfected with SERCA-2b and IP(3)R DNA. The absence of a functional contribution from endogenous IP(3)Rs has enabled the use of this assay to measure the Ca(2+) sensitivities of IP(3)-mediated (45)Ca(2+) fluxes through recombinant neuronal type I (SII(+)), peripheral type I (SII(-)), and type III IP(3)Rs. All three channels displayed a biphasic dependence upon [Ca(2+)](cyt). Introduction of mutations D2550A and D2550N in the putative pore-forming region of the type I IP(3)R inhibited IP(3)-mediated (45)Ca(2+) fluxes, whereas the conservative substitution D2550E was without effect. This assay therefore provides a useful tool for studying the regulatory properties of individual IP(3)R isoforms as well as for screening pore mutations prior to more detailed electrophysiological analyses.  相似文献   

6.
The phosphatidylinositol turnover assay is used widely to measure activation, and inhibition, of G(q)-linked G-protein-coupled receptors. Cells expressing the receptor of interest are labeled by feeding with tritiated myo-inositol. The label is incorporated into cellular phosphatidylinositol 4,5-bisphosphate, which, upon agonist binding to the receptor, is hydrolyzed by phospholipase C to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol. In the presence of Li(+), dephosphorylation of IP(3) to inositol is blocked, and the mass of soluble inositol phosphates is a quantitative readout of receptor activation. Current protocols for this assay all involve an anion-exchange chromatography step to separate radiolabeled inositol phosphates from radiolabeled inositol, making the assay cumbersome and difficult to automate. We now describe a scintillation proximity assay to measure soluble inositol phosphate mass in cell extracts, thus obviating the need for the standard chromatography step. The method uses positively charged yttrium silicate beads that bind inositol phosphates, but not inositol. We have used this assay to measure activation of recombinant and endogenous muscarinic acetylcholine receptors and activation of recombinant neuropeptide FF2 receptor coupled to IP(3) production by coexpression of a chimeric G protein. Further, we demonstrate the use and functional validity of this assay in a semiautomated, 384-well format, by characterizing the muscarinic receptor antagonists pirenzepine and atropine.  相似文献   

7.
1. The characterization of a radioreceptor assay for determining Ins(1,4,5)P3 concentration in tissue extracts is described which utilizes the binding of [3H]Ins(1,4,5)P3 to an adrenal-cortex membrane fraction. 2. Analysis of [3H]Ins(1,4,5)P3 binding by isotope dilution demonstrated an apparent single population of binding sites (KD 3.65 +/- 0.18 nM, Bmax. 872 +/- 70 fmol/mg of protein). Specific binding of [3H]Ins(1,4,5)P3 was enhanced at alkaline pH values (maximum at pH 8.5), with complete loss of specific binding at pH less than 6. These binding sites displayed strict stereo- and positional specificity for Ins(1,4,5)P3, with L-Ins(1,4,5)P3, Ins(1,3,4)P3 and DL-Ins(1,3,4,5)P4 causing 50% displacement of specific [3H]Ins(1,4,5)P3 binding (IC50 values) at concentrations of 14 +/- 3 microM, 3.0 +/- 0.3 microM and 0.53 +/- 0.03 microM respectively. 3. Kinetic analysis of binding data, however, revealed a high-affinity [3H]Ins(1,4,5)P3 binding site (KD 0.052 nM) in addition to the lower-affinity site (KD 2.53 nM) already demonstrated in displacement studies. 4. It is shown that the presence of the high-affinity site can be exploited to increase the sensitivity of the [3H]Ins(1,4,5)P3 radioreceptor assay, allowing accurate detection of 20 fmol of Ins(1,4,5)P3 in 300 microliters of tissue extract. 5. Further validation of the specificity of the above assay for Ins(1,4,5)P3 was provided by incubating tissue extracts with either a 5-phosphatase or 3-kinase preparation. It was shown that identical loss occurred of both Ins(1,4,5)P3 mass and [3H]Ins(1,4,5)P3, added to parallel incubations. 6. The ability of the assay to measure basal and agonist-stimulated increases in Ins(1,4,5)P3 concentration has been demonstrated with rat cerebral cortex and bovine tracheal smooth-muscle slices and a range of cultured and isolated cell preparations.  相似文献   

8.
Mobilization of intracellular calcium is an indispensable step of fertilization-induced egg activation. Recently, this process has been shown to require the sequential activation of Src family tyrosine kinases, phospholipase Cgamma (PLCgamma), and inositol-1,4,5-trisphosphate (IP3)-dependent receptor of endoplasmic reticulum. In the present study, we made an attempt to recapitulate the early events of egg activation by stimulating Src kinase activity in the cell-free extracts of Xenopus eggs. We found that enhanced Src kinase activity can initiate calcium response of low magnitude in cytostatic factor (CSF)-arrested mitotic extracts without releasing them into interphase. The addition of catalytically active recombinant Src kinase, as well as the activation of endogenous Xenopus Src family kinase by hydrogen peroxide (H2O2), increased total tyrosine phosphorylation, tyrosine phosphorylation of PLCgamma, and IP3 production in the extracts. The treatment with the Src family kinase-specific inhibitor, PP1, or PLC inhibitor, U73122, or IP3 receptor antagonist, heparin, prevented calcium release in the extracts. We conclude, therefore, that possible mechanism of Src/H2O2 action in the extracts might involve tyrosine phosphorylation and activation of PLCgamma, accompanied by the increase in IP3 content and subsequent calcium release from IP3-regulated calcium stores. These results also suggest that monitoring calcium signals induced in the Xenopus egg extracts by various components of signaling pathways may provide a particularly useful approach to investigating their role in the signal transduction.  相似文献   

9.
Inositol phosphates (IPs), such as 1,4,5-inositol-trisphosphate (IP(3)), comprise a ubiquitous intracellular signaling cascade initiated in response to G protein-coupled receptor-mediated activation of phospholipase C. Classical methods for measuring intracellular accumulation of these molecules include time-consuming high-performance liquid chromatography (HPLC) separation or large-volume, gravity-fed anion-exchange column chromatography. More recent approaches, such as radio-receptor and AlphaScreen assays, offer higher throughput. However, these techniques rely on measurement of IP(3) itself, rather than its accumulation with other downstream IPs, and often suffer from poor signal-to-noise ratios due to the transient nature of IP(3). The authors have developed a miniaturized, anion-exchange chromatography method for measuring inositol phosphate accumulation in cells that takes advantage of signal amplification achieved through measuring IP(3) and downstream IPs. This assay uses centrifugation of 96-well-formatted anion-exchange mini-columns for the isolation of radiolabeled inositol phosphates from cell extracts, followed by low-background dry-scintillation counting. This improved assay method measures receptor-mediated IP accumulation with signal-to-noise and pharmacological values comparable to the classical large-volume, column-based methods. Assay validation data for recombinant muscarinic receptor 1, galanin receptor 2, and rat astrocyte metabotropic glutamate receptor 5 are presented. This miniaturized protocol reduces reagent usage and assay time as compared to large-column methods and is compatible with standard 96-well scintillation counters.  相似文献   

10.
The inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) channels on intracellular Ca(2+) stores. Herein, we report a novel protein, termed IRBIT (IP(3)R binding protein released with inositol 1,4,5-trisphosphate), which interacts with type 1 IP(3)R (IP(3)R1) and was released upon IP(3) binding to IP(3)R1. IRBIT was purified from a high salt extract of crude rat brain microsomes with IP(3) elution using an affinity column with the huge immobilized N-terminal cytoplasmic region of IP(3)R1 (residues 1-2217). IRBIT, consisting of 530 amino acids, has a domain homologous to S-adenosylhomocysteine hydrolase in the C-terminal and in the N-terminal, a 104 amino acid appendage containing multiple potential phosphorylation sites. In vitro binding experiments showed the N-terminal region of IRBIT to be essential for interaction, and the IRBIT binding region of IP(3)R1 was mapped to the IP(3) binding core. IP(3) dissociated IRBIT from IP(3)R1 with an EC(50) of approximately 0.5 microm, i.e. it was 50 times more potent than other inositol polyphosphates. Moreover, alkaline phosphatase treatment abolished the interaction, suggesting that the interaction was dualistically regulated by IP(3) and phosphorylation. Immunohistochemical studies and co-immunoprecipitation assays showed the relevance of the interaction in a physiological context. These results suggest that IRBIT is released from activated IP(3)R, raising the possibility that IRBIT acts as a signaling molecule downstream from IP(3)R.  相似文献   

11.
Microtubule-associated protein tau is a naturally unfolded protein that can modulate a vast array of physiological processes through direct or indirect binding with molecular partners. Aberrant tau homeostasis has been implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer’s disease. In this study, we performed an unbiased high-content protein profiling assay by incubating recombinant human tau on microarrays containing thousands of human polypeptides. Among the putative tau-binding partners, we identify SAH hydrolase–like protein 1/inositol 1,4,5-trisphosphate receptor (IP3R)–binding protein (AHCYL1/IRBIT), a member of the SAH hydrolase family and a previously described modulator of IP3R activity. Using coimmunoprecipitation assays, we show that endogenous as well as overexpressed tau can physically interact with AHCYL1/IRBIT in brain tissues and cultured cells. Proximity ligation assay experiments demonstrate that tau overexpression may modify the close localization of AHCYL1/IRBIT to IP3R at the endoplasmic reticulum. Together, our experimental evidence indicates that tau interacts with AHCYL1/IRBIT and potentially modulates AHCYL1/IRBIT function.  相似文献   

12.
The inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-gated intracellular Ca2+ channels. We previously identified an IP3R binding protein, IRBIT, which binds to the IP3 binding domain of IP3R and is dissociated from IP3R in the presence of IP3. In the present study, we showed that IRBIT suppresses the activation of IP3R by competing with IP3 by [3H]IP3 binding assays, in vitro Ca2+ release assays, and Ca2+ imaging of intact cells. Multiserine phosphorylation of IRBIT was essential for the binding, and 10 of the 12 key amino acids in IP3R for IP3 recognition participated in binding to IRBIT. We propose a unique mode of IP3R regulation in which IP3 sensitivity is regulated by IRBIT acting as an endogenous "pseudoligand" whose inhibitory activity can be modulated by its phosphorylation status.  相似文献   

13.
Inositol 1,4,5-trisphosphate (IP(3)) receptors form tetrameric channels in endoplasmic reticulum membranes of mammalian cells and mediate IP(3)-induced calcium mobilization. In response to various extracellular stimuli that persistently elevate IP(3) levels, IP(3) receptors are also ubiquitinated and then degraded by the proteasome. Here, for endogenous type 1 IP(3) receptor (IP(3)R1) activated by endogenous signaling pathways and processed by endogenous enzymes, we sought to determine the sites of ubiquitination and the composition of attached ubiquitin conjugates. Our findings are (i) that at least 11 of the 167 lysines in IP(3)R1 can be ubiquitinated and that these are clustered in the regulatory domain and are found in surface regions, (ii) that at least approximately 40% of the IP(3)R1-associated ubiquitin is monoubiquitin, (iii) that both Lys(48) and Lys(63) linkages are abundant in attached ubiquitin chains, and (iv) that Lys(63) linkages accumulate most rapidly. Additionally, we find that not all IP(3)R1 subunits in a tetramer are ubiquitinated and that nontetrameric IP(3)R1 complexes form as degradation proceeds, suggesting that ubiquitinated subunits may be selectively extracted and degraded. Overall, these data show that endogenous IP(3)R1 is tagged with an array of ubiquitin conjugates at multiple sites and that both IP(3)R1 ubiquitination and degradation are highly complex processes.  相似文献   

14.
15.
Metabolism of synthetic inositol trisphosphate analogs   总被引:2,自引:0,他引:2  
A series of synthetic analogs was employed to explore structure-activity relationships in the metabolism of the second messenger inositol trisphosphate (IP3) in vascular tissue. Cytosolic IP3-5-phosphatase activity was purified approximately 240-fold from bovine aorta. All synthetic analogs tested were apparent competitive inhibitors of the 5-phosphatase activity. The order of potency was DL-1,3,4,5-IP3 greater than D-1,4,5-IP3 greater than DL-1,3,4-IP3 greater than L-1,4,5-IP3 greater than 1,3,5-IP3 greater than DL-6-methoxy-1,4,5-IP3 greater than DL-2,4,5-IP3 greater than DL-1,2,4-cyclohexane-P3. The least potent analogs had Ki values only 11 times higher than the apparent Km of the substrate D-1,4,5-[3H]IP3. However, only three synthetic compounds, DL-1,3,4,5-IP4, D-1,4,5-IP3, and DL-2,4,5-IP3, could serve as substrates for the 5-phosphatase. IP3 kinase activity in the same tissue exhibited considerably more selectivity with respect to inhibition by IP3 analogs. D-1,4,5-IP3 was about 30 times more potent than DL-1,3,4,5-IP4 and 100-1000 times more potent than the other compounds tested. The function of the IP3 receptor was evaluated by measuring labeled calcium mobilization in permeabilized bovine aortic smooth muscle cells in culture. While all analogs tested were full agonists, vast differences in potency were observed. D-1,4,5-IP3 was about 30 times more potent than DL-2,4,5-IP3 and 100-2000 times more potent than the other analogs tested. The results suggest that IP3-5-phosphatase activity is relatively nonselective in the binding of inositol polyphosphates, while IP3 kinase activity and the IP3 receptor exhibit great selectivity in the recognition of these compounds.  相似文献   

16.
A synthetic peptide substrate for selective assay of protein kinase C.   总被引:24,自引:0,他引:24  
Among various phosphate acceptor proteins and peptides so far tested, a synthetic peptide having the sequence surrounding Ser(8) of myelin basic protein, Gln-Lys-Arg-Pro-Ser(8)-Gln-Arg-Ser-Lys-Tyr-Leu, (MBP4-14), is the most specific and convenient substrate which can be used for selective assay of protein kinase C. This peptide is not phosphorylated by cyclic AMP-dependent protein kinase, casein kinases I and II, Ca2+/calmodulin-dependent protein kinase II, or phosphorylase kinase, and can be routinely used for the assay of protein kinase C with low background in the crude tissue extracts. The Km value is considerably low (7 microM) with a Vmax value of twice as much as that for H1 histone.  相似文献   

17.
The analysis of inositol phosphates by anion-exchange HPLC is described. The method employs a citrate buffer gradient to resolve several inositol phosphates including inositol 1-phosphate, inositol 1,4-bisphosphate (IP2), and inositol 1,4,5-trisphosphate (IP3), as well as some of the isomers of these compounds. Since the buffer system does not contain any phosphate, we can use a phosphate assay to examine the chromatographic behavior of phosphate-containing compounds. The method shows good resolution and recovery (greater than 95% for IP2 and IP3). Total analysis time, including reequilibration, is about 90 min. In addition, an isocratic system that can rapidly (less than 10 min) measure IP3 is described. The HPLC system was used to characterize inositol phosphate turnover in thrombin-stimulated platelets and formylmethionyl-leucyl-phenylalanine-stimulated HL-60 cells.  相似文献   

18.
When segments of rat tail artery were labeled with [3H]inositol and then stimulated with norepinephrine (NE), the inositol phosphates produced were primarily IP and IP2, together with a small but significant amount of Ins(1,4,5)P3 and a very small amount of Ins(1,3,4,5)P4. It has been unclear in many studies whether or not the relatively large levels of IP and IP2 produced in [3H]inositol-labeled tissue represent indirect products of phosphatidyl inositol(4,5)bis phosphate breakdown (through Ins(1,4,5)P3) or direct products of phosphatidyl inositol 4 monophosphate and phosphatidyl inositol breakdown. In order to answer this question tail artery segments were prelabeled with [3H]inositol and then permeabilized with beta escin and stimulated with norepinephrine and GTP gamma S, so that increases in IP, IP2, and Ins(1,4,5)P3 were still observed. If these permeable segments were stimulated with agonist in the presence of compounds known to inhibit Ins(1,4,5)P3 5-phosphatase, such as glucose 6P, (2,3)diphosphoglycerate, or Ins(1,4,5)P3, the levels of labeled Ins(1,4,5)P3 and labeled IP2 were increased, while the level of stimulated labeled IP was unchanged. This indicated that some of the IP2 and IP formed in these cells was produced from PIP2 but that some of these compounds might be formed from PIP or PI. When the isomers of inositol monophosphate, Ins 1P and Ins 4P, were separated by HPLC, it was shown that after prelabeled tail artery was stimulated by norepinephrine for periods of 1-2 min, the predominant isomer formed was Ins 4P, indicating either PIP2 or PIP as the source. However, after 5-20 min stimulation, both Ins 1P and Ins 4P were formed in equal amounts, suggesting that during sustained stimulation of smooth muscle PI itself was broken down directly. Therefore it appears that within 1-2 min of norepinephrine addition to vascular smooth muscle the bulk of the IP and IP2 produced are derived from PIP2 via IP3, while after 20 min of norepinephrine treatment much of the IP comes directly from PI. This suggests that the regulation of PLC in this tissue is more complicated than has been previously believed.  相似文献   

19.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) 3-kinases (IP(3)Ks) are a group of calmodulin-regulated inositol polyphosphate kinases (IPKs) that convert the second messenger Ins(1,4,5)P(3) into inositol 1,3,4,5-tetrakisphosphate. However, what they contribute to the complexities of Ca(2+) signaling, and how, is still not fully understood. In this study, we have used a simple Ca(2+) imaging assay to compare the abilities of various Ins (1,4,5)P(3)-metabolizing enzymes to regulate a maximal histamine-stimulated Ca(2+) signal in HeLa cells. Using transient transfection, we overexpressed green fluorescent protein-tagged versions of all three mammalian IP(3)K isoforms, including mutants with disrupted cellular localization or calmodulin regulation, and then imaged the Ca(2+) release stimulated by 100 microm histamine. Both localization to the F-actin cytoskeleton and calmodulin regulation enhance the efficiency of mammalian IP(3)Ks to dampen the Ins (1,4,5)P(3)-mediated Ca(2+) signals. We also compared the effects of the these IP(3)Ks with other enzymes that metabolize Ins(1,4,5)P(3), including the Type I Ins(1,4,5)P(3) 5-phosphatase, in both membrane-targeted and soluble forms, the human inositol polyphosphate multikinase, and the two isoforms of IP(3)K found in Drosophila. All reduce the Ca(2+) signal but to varying degrees. We demonstrate that the activity of only one of two IP(3)K isoforms from Drosophila is positively regulated by calmodulin and that neither isoform associates with the cytoskeleton. Together the data suggest that IP(3)Ks evolved to regulate kinetic and spatial aspects of Ins (1,4,5)P(3) signals in increasingly complex ways in vertebrates, consistent with their probable roles in the regulation of higher brain and immune function.  相似文献   

20.
In saponin-permeabilized mouse lacrimal acinar cells, glycerophosphoryl-myo-inositol 4,5-bisphosphate (GPIP2) activated the release of sequestered Ca2+ to the same extent as inositol 1,4,5-trisphosphate ((1,4,5)IP3) but with a potency about 1/10 that of (1,4,5)IP3. In lacrimal gland homogenates, [3H]GPIP2 was metabolized to two compounds which upon anion exchange high performance liquid chromatography eluted at positions indicating that they were [3H]GPIP and [3H]GPIP3. The rate of metabolism of [3H]GPIP2 was much slower than that of [3H](1,4,5)IP3, and its rate of phosphorylation was less than 1% of that of [3H] (1,4,5)IP3. In intact lacrimal cells, photolysis of a microinjected "caged" derivative of GPIP2, 1-(alpha-glycerophosphoryl)-myo-inositol 4,5-bisphosphate P4(5)-1-(2-nitrophenyl)ethyl ester, resulted in sustained activation of Ca2+ signaling; i.e. intracellular Ca2+ release followed by increased entry of Ca2+ across the plasma membrane. These findings indicate that caged GPIP2 should provide a useful tool for producing photolytically initiated, sustained activation of intracellular (1,4,5)IP3 receptors. They also provide strong support for the idea that sustained Ca2+ signaling can be achieved in lacrimal acinar cells by activation of intracellular receptors for (1,4,5)IP3 in the absence of stimulated production of inositol 1,3,4,5-tetrakisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号