首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grant RA  Rould MA  Klemm JD  Pabo CO 《Biochemistry》2000,39(28):8187-8192
We have determined the crystal structure of a complex containing the engrailed homeodomain Gln50 --> Ala variant (QA50) bound to the wild-type optimal DNA site (TAATTA) at 2.0 A resolution. Biochemical and genetic studies by other groups have suggested that residue 50 is an important determinant of differential DNA-binding specificity among homeodomains (distinguishing among various sites of the general form TAATNN). However, biochemical studies of the QA50 variant had revealed that it binds almost as tightly as the wild-type protein and with only modest changes in specificity. We have now determined the crystal structure of the QA50 variant to help understand the role of residue 50 in site-specific recognition. Our cocrystal structure shows some interesting changes in the water structure at the site of the substitution and shows some changes in the conformations of neighboring side chains. However, the structure, like the QA50 biochemical data, suggests that Gln50 plays a relatively modest role in determining the affinity and specificity of the engrailed homeodomain.  相似文献   

2.
We have converted the Drosophila engrailed homeodomain into a sequence-specific nuclease by linking the protein to the chemical nuclease 1,10-phenanthroline-copper (OP-Cu). Unique cysteines were introduced at six positions into the homeodomain by site-directed mutagenesis for the covalent attachment of OP-Cu. The varied DNA-binding affinity and specificity of these mutants and the DNA cleavage pattern of their OP-Cu derivatives allowed us to assess the crystal structure of the engrailed homeodomain-DNA complex. We have also achieved site-specific double-stranded DNA scission with one of the homeodomain mutants, E28C, which has the potential of being used to identify engrailed binding sites in the genome. Because the homeodomain is so well conserved among members of the homeodomain-containing protein family, other homeodomain proteins can be converted into nucleases by attaching OP-Cu at position 28 of their homeodomains.  相似文献   

3.
Chaney BA  Clark-Baldwin K  Dave V  Ma J  Rance M 《Biochemistry》2005,44(20):7497-7511
We have determined the solution structure of a complex containing the K50 class homeodomain Pituitary homeobox protein 2 (PITX2) bound to its consensus DNA site (TAATCC). Previous studies have suggested that residue 50 is an important determinant of differential DNA-binding specificity among homeodomains. Although structures of several homeodomain-DNA complexes have been determined, this is the first structure of a native K50 class homeodomain. The only K50 homeodomain structure determined previously is an X-ray crystal structure of an altered specificity mutant, Engrailed Q50K (EnQ50K). Analysis of the NMR structure of the PITX2 homeodomain indicates that the lysine at position 50 makes contacts with two guanines on the antisense strand of the DNA, adjacent to the TAAT core DNA sequence, consistent with the structure of EnQ50K. Our evidence suggests that this side chain may make fluctuating interactions with the DNA, which is complementary to the crystal data for EnQ50K. There are differences in the tertiary structure between the native K50 structure and that of EnQ50K, which may explain differences in affinity and specificity between these proteins. Mutations in the human PITX2 gene are responsible for Rieger syndrome, an autosomal dominant disorder. Analysis of the residues mutated in Rieger syndrome indicates that many of these residues are involved in DNA binding, while others are involved in formation of the hydrophobic core of the protein. Overall, the role of K50 in homeodomain recognition is further clarified, and the results indicate that native K50 homeodomains may exhibit differences from altered specificity mutants.  相似文献   

4.
5.
Homeodomains are one of the key families of eukaryotic DNA-binding motifs and provide an important model system for DNA recognition. We have determined a high-quality nuclear magnetic resonance (NMR) structure of the DNA-binding homeodomain of the insulin gene enhancer protein Isl-1 (Isl-1-HD). It forms the first solution structure of a homeodomain from the LIM family. It contains a well-defined inner core (residues 12-55) consisting of the classical three-helix structure observed in other homeodomains. The N terminus is unstructured up to residue 8, while the C terminus gradually becomes unstructured from residue 55 onwards. Some flexibility is evident in the loop parts of the inner core. Isl-1-HD has, despite its low sequence identity (23-34 %), a structure that is strikingly similar to that of the other homeodomains with known three-dimensional structures. Detailed analysis of Isl-1-HD and the other homeodomains rationalizes the differences in their temperature stability and explains the low stability of the Isl-1-HD in the free state (tm 22-30 degrees C). Upon DNA binding, a significant stabilization occurs (tm>55 degrees C). The low stability of Isl-1-HD (and other mammalian homeodomains) suggests that in vivo Isl-1-HD recognizes its cognate DNA from its unfolded state.  相似文献   

6.
The MAT alpha 2 homeodomain regulates the expression of cell type-specific genes in yeast. We have determined the 2.7 A resolution crystal structure of the alpha 2 homeodomain bound to a biologically relevant DNA sequence. The DNA in this complex is contacted primarily by the third of three alpha-helices, with additional contacts coming from an N-terminal arm. Comparison of the yeast alpha 2 and the Drosophila engrailed homeodomain-DNA complexes shows that the protein fold is highly conserved, despite a 3-residue insertion in alpha 2 and only 27% sequence identity between the two homeodomains. Moreover, the orientation of the recognition helix on the DNA is also conserved. This docking arrangement is maintained by side chain contacts with the DNA--primarily the sugar-phosphate backbone--that are identical in alpha 2 and engrailed. Since these residues are conserved among all homeodomains, we propose that the contacts with the DNA are also conserved and suggest a general model for homeodomain-DNA interactions.  相似文献   

7.
DNA-binding specificity of the S8 homeodomain.   总被引:4,自引:0,他引:4       下载免费PDF全文
The murine S8 homeobox gene is expressed in a mesenchyme-specific pattern in embryos, as well as in mesodermal cell lines. The S8 homeodomain is overall similar to paired type homeodomains, but at position 50, which is crucial for specific DNA recognition, it contains a Gln, as is found in Antennapedia (Antp)-type homeodomains. We determined the DNA-binding specificity of the purified S8 homeodomain by in vitro selection of random oligonucleotides. The resulting 11-bp consensus binding site, ANC/TC/TAATTAA/GC resembles, but subtly differs from, the recognition sequences of Antp-type homeodomains. Equilibrium binding constants of down to 6.0 x 10(-10) M were found for binding of the S8 homeodomain to selected oligonucleotides. Using specific antibodies and an oligonucleotide containing an S8-site, we detected by band-shift two abundant DNA binding activities in mesodermal cell lines that correspond to S8 and two more that correspond to its close relative MHox. These S8 protein forms are differentially expressed in retinoic acid-treated P19 EC cells.  相似文献   

8.
Molecular dynamics (MD) simulations were performed for investigating the role of Gln50 in the engrailed homeodomain-DNA recognition. Employing the crystal structure of free engrailed homeodomain and homeodomain-DNA complex as a starting structure, we carried out MD simulations of: (i) the complex between engrailed homeodomain and a 20 base-pair DNA containing TAATTA core sequence; (ii) the free engrailed homeodomain. The simulations show that homeodomain flexibility does not depend on its ligation state. The engrailed homeodomain shows similar flexibility, and the recognition helix-3 shows very similar characteristic of high rigidity and limited conformational space in two complexation states. At the same time, DNA structure has also no obvious conformational fluctuations. These results preclude the possibility of the side chain of Gln50 forming direct hydrogen bonds to the core DNA bases. MD simulations confirm a few well-conserved sites for water-mediated hydrogen bonds from protein to DNA are occupied by water molecules, and Gln50 interacts with corresponding core DNA bases through water-mediated hydrogen bonds. So Gln50 plays a relatively modest role in determining the affinity and specificity of the engrailed homeodomain. In addition, the electrostatic interaction between homeodomain and phosphate backbone of the DNA is a main factor for N- and C-terminal arm becoming ordered upon DNA binding.  相似文献   

9.
10.
Most homeodomains are unique within a genome, yet many are highly conserved across vast evolutionary distances, implying strong selection on their precise DNA-binding specificities. We determined the binding preferences of the majority (168) of mouse homeodomains to all possible 8-base sequences, revealing rich and complex patterns of sequence specificity and showing that there are at least 65 distinct homeodomain DNA-binding activities. We developed a computational system that successfully predicts binding sites for homeodomain proteins as distant from mouse as Drosophila and C. elegans, and we infer full 8-mer binding profiles for the majority of known animal homeodomains. Our results provide an unprecedented level of resolution in the analysis of this simple domain structure and suggest that variation in sequence recognition may be a factor in its functional diversity and evolutionary success.  相似文献   

11.
The polypeptide sequence predicted from the Pem oncofetal gene cDNA contains a homeodomain most closely related to the paired class. Pem, paired class member orthodenticle, and the bicoid maternal gene product homeodomains all have lysine residues at a recognition helix position implicated in DNA-binding specificity. The Pem recognition helix also has an isoleucine residue replacing an invariant asparagine residue and shares an asparagine residue at a third position with two other vertebrate homeoproteins, at least one of which binds to DNA only as a dimer.  相似文献   

12.
13.
Viola IL  Gonzalez DH 《Biochemistry》2007,46(25):7416-7425
HAT3.1 is a member of the PHD-finger homeodomain protein family. The HAT3.1 homeodomain is highly divergent in sequence even at positions that are almost invariable among homeodomains. In this work, we have applied the random oligonucleotide selection technique to investigate if the HAT3.1 homeodomain is able to recognize specific DNA sequences. Analysis of the selected molecules followed by hydroxyl radical footprinting experiments and yeast one-hybrid assays indicated that HAT3.1 shows a preference for the sequence T(A/G)(A/C)ACCA, different from those bound by other homeodomains. Binding was dependent on homeodomain residues located at positions 47, 50, 51, and 54, the same positions that usually participate in DNA binding in most homeodomains. The study of the interaction of mutants at these positions with DNA carrying nucleotide changes at specific sites suggested that H51 and K50 most likely interact with nucleotides 2 to 4 and 5 to 6, respectively, while W54 would establish contacts with position 4. The presence of H51 and W54 represents an innovation among homeodomain structures. The fact that the HAT3.1 homeodomain is able to interact with specific DNA sequences is evidence of the inherent plasticity of the homeodomain as a DNA binding unit.  相似文献   

14.
We report the isolation of nine rat cognates of mouse homeoboxes within the fourHox gene clusters and a rat homologue of mouseIPF1 homeobox,RHbox# 13A. The sequences of nine cloned homeoboxes are highly similar to those of the mouse and human homeoboxes in the Hox clusters. The restriction enzyme sites and map distances between each of the homeoboxes on the rat genome are nearly identical to those of mouse and human. Thus, we conclude that the isolated homeoboxes are the rat homologues of mouse homeoboxes within the four Hox clusters. A novel homeoboxRHbox# 13A is different from theDrosophila Antennapedia (Antp) sequence but is highly similar to theXlHbox8 (Xenopus laevis) andHtrA2 (Helobdella triserialis) homeoboxes. Forty-two amino acids of the last two-thirds of theRHbox# 13A, XlHbox8, and mouseIPF1 homeodomains completely matched. In addition, these four homeodomains contain a unique His residue in the recognition helix of a helix-turn-helix DNA-binding motif. This His residue is not found in any of the previously published mammalian homeodomain sequences except mouseIPF1.  相似文献   

15.
Crystal structure of the Msx-1 homeodomain/DNA complex   总被引:3,自引:0,他引:3  
Hovde S  Abate-Shen C  Geiger JH 《Biochemistry》2001,40(40):12013-12021
The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.  相似文献   

16.
17.
18.
Genes containing a homeobox can be divided into classes based on the distinctive peptide sequences of their diverged homeodomains. Many of these classes, including Antennapedia, engrailed and paired, are strongly conserved in higher multicellular animals, but have not previously been found in platyhelminths, the flatworms which represent the most primitive bilateral metazoans. We have screened cDNA libraries of the platyhelminth Schistosoma mansoni using a degenerate oligonucleotide derived from the third helix of the homeodomain, and have identified numerous schistosome homeobox-containing sequences, including members of the Antennapedia, engrailed and paired classes. The schistosome homeodomain sequences are more similar to the higher animals sequences in their respective classes than they are to each other, indicating that the establishment of these three distinctive classes is at least as ancient as the flatworms. Our data suggest that the ancestral functions of the Antennapedia, engrailed and paired classes involve fundamental features of all bilateral metazoan development. The putative full-length coding sequence of the S. mansoni en homologue is presented.  相似文献   

19.
20.
Homeodomain proteins are a highly conserved class of DNA-binding proteins that are found in virtually every eukaryotic organism. The conserved mechanism that these proteins use to bind DNA suggests that there may be at least a partial DNA recognition code for this class of proteins. To test this idea, we have investigated the sequence-specific requirements for DNA binding and repression by the yeast alpha2 homeodomain protein in association with its cofactors, Mcm1 and Mata1. We have determined the contribution for each residue in the alpha2 homeodomain that contacts the DNA in the co-crystal structures of the protein. We have also engineered mutants in the alpha2 homeodomain to alter the DNA-binding specificity of the protein. Although we were unable to change the specificity of alpha2 by making substitutions at residues 47, 54, and 55, we were able to alter the DNA-binding specificity by making substitutions at residue 50 in the homeodomain. Since other homeodomain proteins show similar changes in specificity with substitutions at residue 50, this suggests that there is at least a partial DNA recognition code at this position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号