首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frequency distributions of height (H), stem diameter (D) anddry weight (W) of Chenopodium album plants in even-aged monoculturesat the initial plant densities of 400, 800 and 1200 plants m-2(400-, 800- and 1200-plots) were compared. The height distributionsat the end of the growing season were bimodal for the 400-plotbut L-shaped for the 800- and 1200-plots. The distributionsof diameter and dry weight were L-shaped for all the plots.When the size measures were expressed on the log scale so asto eliminate effects of the differences in dimension, frequencydistributions of log W and log H for the 400-plot were bimodal.In contrast, the log D distributions were bell-shaped for allthe plots. To elucidate factors responsible for the differences in frequencydistributions among log size measures, we examined allometricrelationships between log size measures. They were all non-linearall non-linear mainly because the allometric relationships weremarkedly different between the plants forming the upper-mostleaf layer ('upper' plants) and the suppressed plants ('lower'plants). A striking feature was that the heights of the 'upper'plants were almost uniform in spite of their varied diameters.Continuous monitoring of growth of the individual plants inthe stand revealed that the height of the 'upper' plants becameuniform just after the canopy closure, at about 30 d after emergence,and that uniform growth in height of these plants continuedfor about 70 d until the end of the growing season. On the otherhand, growth of the suppressed 'lower' plants terminated atvarious stages before flowering. The 'height convergence' ofthe 'upper' plants was thus identified as a key factor for thesegregation of the plants into the two groups of distinctlydifferent allometries. Since the segregation of the plants into 'upper' and 'lower'plants was reflected in their dry weights, frequency distributionsof log W were similar to those of log H. The bell-shaped distributionsof log D were attributed to the overlapping of the diametersof slender 'upper' plants with those of larger 'lower' plants.Significance of 'height convergence' is discussed.Copyright1995, 1999 Academic Press Chenopodium album L., fat hen, height, size structure, bimodal distribution, L-shaped distribution, allometry, growth  相似文献   

2.
Patterns of above-ground biomass allocation and light captureby plants growing in dense stands or in isolation were studiedin relation to their height. A canopy model was developed tocalculate light absorption by individual plants. This modelwas combined with data on canopy structure and patterns of biomassallocation for solitary plants and for plants of different heightsin dense mono-specific stands of the dicotyledonous annualXanthiumcanadenseMill. There were four stands, and stand height increasedwith age and nutrient availability. The allometric relationshipbetween height and mass differed considerably between plantsin stands and those growing in isolation and also between plantsof different heights within stands. The proportion of shootmass in leaf laminae (LMR) decreased with increasing plant height,but solitary plants had a higher LMR than competing plants ofthe same height. Thus, in contrast to previous assumptions,LMR of competing plants is not strictly determined by biomechanicalconstraints but results from a plastic shift in biomass allocationin response to competition. Average leaf area per unit leafmass (SLA) decreased with increasing photosynthetic photon fluxdensity (PPFD) independent of nutrient availability. Consequently,taller, more dominant plants in stands had a lower leaf arearatio (LAR: LAR=LMRxSLA) than shorter, more subordinate plants.Dominant plants absorbed more light both per unit leaf area(  相似文献   

3.
The canopy structure of a stand of vegetation is determined by the growth patterns of the individual plants within the stand and the competitive interactions among them. We analyzed the carbon gain of individuals in two dense monospecific stands of Xanthium canadense and evaluated the consequences for intra-specific competition and whole-stand canopy structure. The stands differed in productivity, and this was associated with differences in nitrogen availability. Canopy structure, aboveground mass, and nitrogen contents per unit leaf area (Narea) were determined for individuals, and leaf photosynthesis was measured as a function of Narea. These data were used to calculate the daily carbon gain of individuals. Within stands, photosynthesis per unit aboveground mass (Pmass) of individual plants increased with plant height, despite the lower leaf area ratios of taller plants. The differences in Pmass between the tallest most dominant and shortest most subordinate plants were greater in the high-nitrogen than in the low-nitrogen stand. This indicated that competition was asymmetric and that this asymmetry increased with nitrogen availability. In the high-nitrogen stand, taller plants had a higher Pmass than shorter ones, because they captured more light per unit mass and because they had higher photosynthesis per unit of absorbed light. Conversely, in the low-nitrogen stand, the differences in Pmass between plants of different heights resulted only from differences in their light capture per unit mass. Sensitivity analyses revealed that an increase in Narea, keeping leaf area of plants constant, increased whole-plant carbon gain for the taller more dominant plants but reduced carbon gain in the shorter more subordinate ones, which implies that the Narea values of shorter plants were greater than the optimal values for maximum photosynthesis. On the other hand, the carbon gain of all individual plants, keeping their total canopy N constant, was positively related to an increase in their individual leaf area. At the same time, however, increasing the leaf area for all plants simultaneously reduced the carbon gain of the whole stand. This result shows that the optimal leaf area index (LAI), which maximizes photosynthesis of a stand, is not evolutionarily stable because at this LAI, any individual can increase its carbon gain by increasing its leaf area.  相似文献   

4.
Height-growth of individual plants of Chenopodium album in even-agedmonospecific stands with initial densities of 400, 800, and3600 plants m-2 was followed from emergence to fruit maturationto elucidate the factors responsible for size hierarchy formation.Many individuals stopped growing rather abruptly at relativelyearly stages in the vegetative phase and some of them eventuallydied. The other plants grew until fruit maturation and attainedlarge final heights. Depending on whether they terminated orcontinued height-growth during the vegetative phase, the plantswere called 'lower' and 'upper' plants. The numbers of the 'upper' plants per unit area were about 100plants m-2 irrespective of the initial plant densities, andthus the number of 'lower' plants increased with the increasein the plant density. However, there was an upper limit to thenumber of the surviving 'lower' plants (400-700 plants m-2).The shapes of the final frequency distributions of plant heightwere largely determined by the ratio of the number of 'upper'plants to that of surviving 'lower' plants, and were bimodalfor the 400 plants m-2 plot and L-shaped for the 800 and 3600plants m-2 plots. From these, it is concluded that the segregationof the plants into 'upper' and 'lower' plants is an essentialfactor responsible for the size hierarchy formation. The presentresults also indicate that both bimodal and L-shaped distributionscan result from one-sided competition for light, depending onthe initial plant densities.Copyright 1995, 1999 Academic Press Chenopodium album L., fat hen, height-growth, height-size structure, bimodal distribution, L-shaped distribution, one-sided competition  相似文献   

5.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

6.
Shoot Growth and Mortality Patterns of Urtica dioica, a Clonal Forb   总被引:1,自引:0,他引:1  
The growth and mortality patterns of the clonal forb Urticadioica were investigated at the level of the individual shootin two growing seasons, 1991 and 1992, in a natural stand. Shootheight and diameter at ground level of each shoot tagged inspring were measured repeatedly five times during the growingseason. Dry weights of these repeatedly measured shoots wereestimated using an allometric relationship between dry weight,height and diameter of harvested shoots. A large decrease inshoot density occurred with stand development from the beginningof the growing season in both the years: (1) shoot survivalrate was about 30% at the end of the growing season; (2) shootmortality rate per 10 x 10 cm subplot between censuses was positivelydependent on shoot density per subplot; (3) the mortality rateof individual shoots was negatively dependent on shoot size(height, diameter and weight) at each growing stage, suggestingone-sided competition between living and dying shoots; (4) shootsize (height, diameter and weight) variability in terms of thecoefficient of variation and skewness decreased in accordancewith shoot mortality. Symmetric competition between living shootswas detected by regression analysis based on a model for individualshoot growth considering the degree of competitive asymmetry.However, the competitive effect on individual shoot growth wasvery small (nearly absent). The mortality pattern of Urticadioica indicates that shoot self-thinning occurred from theearly growing stage as in non-clonal crowded monospecific stands,and contrasts with many clonal plants where shoot self-thinningrarely occurs or, if any, is confined only to a short periodof the later growing stage. The pattern of growth and competitionbetween living shoots of Urtica dioica contrasts with non-clonalcrowded plants undergoing intense competition (usually asymmetric)between individuals, but is a common feature of many clonalplants where shoot competition is supposed to be reduced by'physiological integration' between shoots. These form a newpattern not reported yet for clonal plants. It is pointed outthat clonal plants show a wider spectrum of the growth, competitionand mortality patterns of shoots than non-clonals. Some possiblemechanisms for the pattern of Urtica dioica are discussed.Copyright1995, 1999 Academic Press Shoot competition, diffusion model, individual shoot growth, shoot self-thinning, shoot size variability, Urtica dioica L  相似文献   

7.
Growth and production of the temperate C4 species Cyperus longusL. was measured throughout a growing season in an establishedplot in Eastern Ireland. The maximum standing live biomass reachedwas 2·5 kg m–2. Estimates of unit leaf rate (ULR)and leaf area index (LAI) were made. The product of these quantitiesgave the crop growth rate (CGR) each week. C. longus was foundto maintain high values of LAI throughout the summer, with amaximum value of about 13 in early August. CGR reached a peakin early July. The optimum LAI was 11·6. Temperaturesat five levels in the plant canopy, and the amount of solarradiation intercepted by the canopy were measured continuouslyduring the summer. The mean daily rate of leaf extension waspositively correlated with the mean daily air temperature abovethe canopy but the temperature coefficient of the process waslow compared with other temperate species. The percentage ofsolar radiation intercepted by the canopy increased rapidlyin early summer, and canopy closure had occurred by mid-June.Rates of net photosynthesis were measured on young and old leafmaterial in situ at the time of peak LAI. In young leaves themaximum rates of net photosynthesis were higher than those publishedfor a range of temperate C3 species, but similar to those foundin another temperate C4 species, Spartina townsendii. Key words: C4 photosynthesis, leaf growth, productivity  相似文献   

8.
The relationships between vertical foliage profile of an individualplant, competition between individuals, size structure and allocationpattern between stem diameter (D) and plant height (H) wereinvestigated using canopy photosynthesis and two-dimensionalcontinuity equation models including D and H as two independentvariables. Broad-leaved type plants (more foliage mass in theupper layer than in the lower layer of the canopy of an individualwhen grown in isolation) showed curvilinear D-H relationshipand bimodal H distribution, and underwent more asymmetric competitionthan coniferous type plants (more foliage mass in the lowerlayer than in the upper layer of the canopy of an individualwhen grown in isolation) under crowded conditions. Coniferoustype plants showed almost linear D-H relationship (i.e. simpleallometry) and unimodal H distribution, and underwent more symmetriccompetition than broad-leaved type plants under crowded conditions.However, in both the cases D distributions were unimodal. Allocationpatterns between D and H affected these features only a little.These simulation results can explain many actual data alreadypublished. The value of  相似文献   

9.
H2O2 is an essential signal in absicic acid (ABA)-induced stomatalclosure. It can be synthesized by several enzymes in plants.In this study, the roles of copper amine oxidase (CuAO) in H2O2production and stomatal closure were investigated. ExogenousABA stimulated apoplast CuAO activity, increased H2O2 productionand [Ca2+]cyt levels in Vicia faba guard cells, and inducedstomatal closure. These processes were impaired by CuAO inhibitor(s).In the metabolized products of CuAO, only H2O2 could inducestomatal closure. By the analysis of enzyme kinetics and polyaminecontents in leaves, putrescine was regarded as a substrate ofCuAO. Putrescine showed similar effects with ABA on the regulationof H2O2 production, [Ca2+]cyt levels, as well as stomatal closure.The results suggest that CuAO in V. faba guard cells is an essentialenzymatic source for H2O2 production in ABA-induced stomatalclosure via the degradation of putrescine. Calcium messengeris an important intermediate in this process. Key words: Abscisic acid, calcium, copper amine oxidase, hydrogen peroxide, putrescine, stomatal closure, Vicia faba Received 13 October 2007; Revised 16 December 2007 Accepted 20 December 2007  相似文献   

10.

Background and Aims

Although being tall is advantageous in light competition, plant height growth is often similar among dominant plants in crowded stands (height convergence). Previous theoretical studies have suggested that plants should not overtop neighbours because greater allocation to supporting tissues is necessary in taller plants, which in turn lowers leaf mass fraction and thus carbon gain. However, this model assumes that a competitor has the same potential of height growth as their neighbours, which does not necessarily account for the fact that height convergence occurs even among individuals with various biomass.

Methods

Stands of individually potted plants of Chenopodium album were established, where target plants were lifted to overtop neighbours or lowered to be overtopped. Lifted plants were expected to keep overtopping because they intercept more light without increased allocation to stems, or to regulate their height to similar levels of neighbours, saving biomass allocation to the supporting organ. Lowered plants were expected to be suppressed due to the low light availability or to increase height growth so as to have similar height to the neighbours.

Key Results

Lifted plants reduced height growth in spite of the fact that they received higher irradiance than others. Lowered plants, on the other hand, increased the rate of stem elongation despite the reduced irradiance. Consequently, lifted and lowered plants converged to the same height. In contrast to the expectation, lifted plants did not increase allocation to leaf mass despite the decreased stem length. Rather, they allocated more biomass to roots, which might contribute to improvement of mechanical stability or water status. It is suggested that decreased leaf mass fraction is not the sole cost of overtopping neighbours. Wind blowing, which may enhance transpiration and drag force, might constrain growth of overtopping plants.

Conclusions

The results show that plants in crowded stands regulate their height growth to maintain similar height to neighbours even when they have potential advantages in height growth. This might contribute to avoidance of stresses caused by wind blowing.  相似文献   

11.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

12.
Hansen, A. P. and Pate, J. S. 1987. Comparative growth and symbioticperformance of seedlings of Acacia spp. in defined pot cultureor as natural understorey components of a eucalypt forest ecosystemin S.W. Australia.—J. exp. Bot. 38: 13–25 Growth, nitrogen accumulation, nodulation and nitrogenase activity(C2H2 reduction activity) were monitored in a dense stand ofseedlings of Acacia pulchella R.Br. and A. alata R.Br. duringtwo growing seasons after fire at a jarrah (Eucalyptus marginataDonn ex Sm.) forest site at Illawarra, 35 km south-east of Perth.Nitrogen fixation, estimated by a previously calibrated C2H2reduction assay, was essentially restricted to the winter andspring months (July to October) and was estimated to contribute37% and 9% respectively of the total N accumulated by A. pulchelladuring the first and second seasons of growth. Comparable valuesfor A. alata were 29% and 2%. Comparisons with fully symbioticplants raised in a glasshouse in supposedly non-limiting growthconditions in minus nitrogen sand culture indicated that waterstress rather than high temperatures was responsible for lossof nodules, cessation of symbiotic activity and attenuationof growth during summer in the field. By 19 months glasshouseplants had gained 130–230 times the dry weight and accumulated110–160 times the total N of similarly aged, field grownplants. Growth, nodulation and N2 fixation of symbiotically-dependentsand cultured plants of A. pulchella and A. alata respondedmarkedly to phosphate, and additions of water and nutrientsto 3-year plants of A. pulchella during a winter growing seasonin the field indicated that periods of reduced soil moistureand low availability of nutrients, particularly phosphorus,might limit symbiotic performance under natural conditions. Key words: Seasonal nitrogen fixation, Acacia spp  相似文献   

13.
干旱胁迫下藜的光合特性研究   总被引:3,自引:1,他引:2  
通过人工控制水分模拟干旱来研究生长期的藜对干旱胁迫的生理生化反应,以期望为干旱农业的高效生产提供理论依据。以盆栽的藜为材料,用称重控制浇水的方法,研究了干旱胁迫对藜叶片的光合特性。结果表明:干旱胁迫下藜的光合日变化呈双峰型,有“午休”现象(13:00)且受气孔限制;最大净光合速率出现在上午8:00。与正常条件下生长的藜相比,干旱胁迫下藜的光饱和点(LSP)、最大净光合速率(Pn)、表观量子效率(AQY)、二氧化碳饱和点(CSP)和羧化效率(CE)均降低,分别为1 200 μmolphoton·m-2·s-1、8.01 μmol CO2·m-2·s-1、0.016 1 μmol CO2·mol-1 photons、1 200 μmol CO2·mol-1、0.017 6 μmol CO2·m-2·s-1;光补偿点(LCP)、二氧化碳补偿点(CCP)升高,分别达到44.88 μmol photon·m-2·s-1、和46 μmol CO2·mol-1,干旱使藜的光合能力下降。干旱胁迫下藜的光合能力虽有所下降,但与其它C3植物相比仍具有较强的CO2同化能力。藜是一种耐旱力较强的植物。  相似文献   

14.
竞争和非生物胁迫影响处于地理分布边界的红树植物的个体大小 关于红树植物竞争的研究大多局限于幼苗和人工林。我们首次对天然红树林中成年红树的种内竞争进行了控制实验研究,旨在检验竞争和非生物因子在决定红树植物个体大小中的相对重要性。研究样 地位于靠近红树林地理分布边界的美国德克萨斯州阿兰萨斯港(Port Aransas)附近区域。该区域的红树林由“灌丛”状的黑红树(萌芽白骨壤,Avicennia germinans)单一物种组成。我们对10个样方中原生红树 林进行疏伐,形成系列红树林覆盖度梯度,在2013–2019年期间观测各样方中红树植物的生长指标,量化分析红树林覆盖度对红树植物生长的影响;并于2019年调查了红树林的冠层高度。研究结果表明,在该研究期间,红树植物的相对生长速率随着红树林覆盖度的增加而降低,100%红树林覆盖度样方中的红 树植物大小几乎没有增长,说明它们已经达到了该红树林密度条件下的最大尺寸。在红树林覆盖度降低 的样方中,株高明显增加,在红树林覆盖度为11%的样方中,红树植物株高增加了约52%。对比临水岸 边和林内两种生境中的样方,处于临水岸边生境的红树林冠层高度比处于林内生境的高约30%,且这两 种生境的红树林冠层高度均随红树林覆盖度的增加而降低。叶片叶绿素含量和冠层光截留量的测定数据 显示,该区域红树植物的生长也受到氮限制的影响。由此表明,处于地理分布边界的“灌丛”状红树林一 方面受到营养的限制,另一方面红树植物种内个体间仍存在较为强烈的竞争,且种内竞争对红树植物生长的影响较该红树林内非生物生境因子更为重要。  相似文献   

15.
Patterns of survival and spatial arrangement of tillers of Spartinaalterniflora were examined in natural and in artificially producedbare areas, and in pure stands of adult S. alterniflora in aNew England salt marsh. Seedling growth and survival were highin naturally occurring bare patches and in artificial patches,whether created by continual clipping of adult plants to groundlevel throughout the growing season or by providing bare substrateafter removal of adult plants. Seedling growth and survivorshipincreased with increasing size of bare area. S. alternifloraseedlings were also common in areas dominated by adult plants,but no seedlings survived a whole first growing season underthe mature canopy, probably because of competition from adultplants. In large bare areas, S. alterniflora seedlings grew non-directionally,reaching heights of 0.5 m, and producing as many as 36 tillersin one growing season. Examination of leaf area ratios suggestedthat the production of tillers increased photosynthetic capacityin seedlings with several tillers in contrast to seedlings withouttillers. Thus, seedlings can apparently tiller and colonizefree space radially without a loss of photosynthetic capacity. These results suggest that while seedling success is generallylimited by adult plants in monocultures of S. alterniflora,in disturbed spaces seedling success is high and results ina rapid non-directional proliferation of sexually generatedclones that ultimately preclude the successful invasion of futureseedlings. Clones, directional growth, leaf area ratio, salt marsh cordgrass, seedling survivorship, Spartina alterniflora Loisel  相似文献   

16.
Understanding temporal niche separation between C3 and C4 species(e.g. C3 species flourishing in a cool spring and autumn whileC4 species being more active in a hot summer) is essential forexploring the mechanism for their co-existence. Two parallelpot experiments were conducted, with one focusing on water andthe other on nitrogen (N), to examine growth responses to wateror nitrogen (N) seasonality and competition of two co-existingspecies Leymus chinensis (C3 grass) and Chloris virgata (C4grass) in a grassland. The two species were planted in eithermonoculture (two individuals of one species per pot) or a mixture(two individuals including one L. chinensis and one C. virgataper pot) under three different water or N seasonality regimes,i.e. the average model (AM) with water or N evenly distributedover the growing season, the one-peak model (OPM) with morewater or N in the summer than in the spring and autumn, andthe two-peak model (TPM) with more water or N in the springand autumn than in the summer. Seasonal water regimes significantlyaffected biomass in L. chinensis but not in C. virgata, whileN seasonality impacted biomass and relative growth rate of bothspecies over the growing season. L. chinensis accumulated morebiomass under the AM and TPM than OPM water or N treatments.Final biomass of C. virgata was less impacted by water and Nseasonality than that of L. chinensis. Interspecific competitionsignificantly decreased final biomass in L. chinensis but notin C. virgata, suggesting an asymmetric competition betweenthe two species. The magnitude of interspecific competitionvaried with water and N seasonality. Changes in productivityand competition balance of L. chinensis and C. virgata undershifting seasonal water and N availabilities suggest a contributionof seasonal variability in precipitation and N to the temporalniche separation between C3 and C4 species. Key words: Chloris virgata, competition, growth, Leymus chinensis, nitrogen seasonality, water seasonality Received 19 November 2007; Revised 29 January 2008 Accepted 4 February 2008  相似文献   

17.
The response of leaf area expansion to atmospheric saturationdeficit (SD) and soil moisture deficit was examined in termsof leaf water potential (1) and turgor potential (p), as partof a wider study of the effects of SD on groundnut growth. Standsof plants were grown at four levels of SD and without irrigationin controlled environment glasshouses. A fifth stand was grownat low SD on soil kept irrigated to field capacity. Large saturation deficits accelerated the depletion of soilmoisture reserves in the unirrigated stands and greatly reducedleaf area index, particularly in the driest treatment. Leafnumber per plant and leaf size both decreased as SD increased,but the effect on leaf size was greater than on number. SD hadless effect than soil water deficit on leaf production. Turgorpotential and leaf extension rate (R) were both reduced at highsaturation deficits and R was linearly related to p between0900 and 1600 h. However, leaf extension rate and turgor potentialwere poorly correlated between 0400 and 0700 h in the driesttreatment. Arachis hypogaea L., groundnut, saturation deficit, leaf growth, canopy development  相似文献   

18.
An enzyme assay was developed to measure the initial and Mg2+–CO2activated forms of Ribulose 1,5-bisphosphate Carboxylase/Oxygenase(Rubisco) in rose leaves. The assay was verified by co-extractionof the leaflets with partially purified spinach Rubisco andthrough correlation with net photosynthetic rates of individualleaflets (r2=0.7324). Changes in activities were measured asa function of depth of leaves in the canopy for two cultivarsof greenhouse hybrid tea roses. Initial Rubisco activity declinedwith increasing canopy depth for both cultivars. The activatedform of the enzyme, however, remained constant with canopy depthfor cv. Red Success; but increased with canopy depth, then declinedafter mid-canopy in the cv. Royalty. Rubisco activities werealso measured in the cv. Red Success grown in CO2 enriched environments(100 mm3 dm–3) at three humidity levels. The activitieswere not significantly affected by humidity treatment. However,there was a trend for plants grown at lower humidity to havehigher activated activities. Key words: Humidity, Rubisco, Rosa ? hybrida, Royalty, Red Success  相似文献   

19.
Effects of atmospheric CO2 enrichment to a level above 600 parts10–6 on leaf and canopy gas exchange characteristics wereinvestigated in Trifolium repens, using an open system for gasexchange measurement. The cuvettes of the system served as growthchambers, allowing continuous measurement in a semi-controlledenvironment of ±350 and ±600 parts 10–6CO2, respectively. Carbon balance data were compared with cropyield and effects on the canopy level were compared with measuredleaf responses of photosynthesis and stomatal behaviour. Photosyntheticstimulation by high CO2 was stronger at the canopy level (103%on average) than for leaves (90% in full light), as a consequenceof accelerated foliage area development. The latter increasedabsolute water consumption by 16%, despite strong stomatal closure.The overall result was a 63% improvement in canopy water useefficiency (WUE), while leaf WVE increased almost 3-fold insaturating light. The stomatal response was such that, whilethe internal CO2 concentration in the leaf, ch increased withrising atmospherical CO2 concentration, ca, ci/ca was somewhatdecreased. Total canopy resistance, Rc, was generally lowerat high CO2 levels, despite higher leaf resistance. Higher canopyCO2 loss at night and faster light extinction in a larger-sizedhigh CO2 canopy were major drawbacks which prevented a furtherincrease in dry matter production (the harvest index was increasedby a factor 1.83). Key words: CO2 enrichment, canopy CO2 exchange, carbon balance, water use efficiency, leaf and canopy resistance  相似文献   

20.
A dynamic model for growth and mortality of individual plantsin a stand was developed, based on the process of canopy photosynthesis,and assuming an allometric relationship between plant heightand weight, i.e. allocation growth pattern of plant height andstem diameter. Functions G(t, x), for the mean growth rate ofindividuals of size x at time t, and M(t,x), for the mortalityrate of individuals of size x at time t, were developed fromthis model and used in simulations. The dynamics of size structurewere simulated, combining the continuity equation model, a simpleversion of the diffusion model, with these functions. Simulationsreproduced several well-documented phenomena: (1) size variabilityin terms of coefficient of variation and skewness of plant weightincreases at first with stand development and then stabilisesor decreases with an onset of intensive self-thinning; (2) duringthe course of self-thinning, there is a power relationship betweendensity and biomass per unit ground area, irrespective of theinitial density and of the allocation-growth pattern in termsof the allometric parameter relating plant height and weight.The following were further shown by simulation: (a) competitionbetween individuals in a crowded stand is never completely one-sidedbut always asymmetrically two-sided, even though competitionis only for light; (b) plants of ‘height-growth’type exhibit a greater asymmetry in competition than plantsof ‘diameter-growth’ type, (c) the effect of competitionon the growth of individuals in a crowded stand converges toa stationary state, even when the stand structure still changesgreatly. All of these theoretical results can explain recentempirical results obtained from several natural plant communities.Finally, a new, general functional form for G(t, x) in a crowdedstand is proposed based on these theoretical results, insteadof a priori or empirical growth and competition functions. Canopy photosynthesis, competition mode, continuity equation, self-thinning, simulation, size distribution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号