首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David S. Hibbett   《Mycological Research》2007,111(9):1001-1018
Mushroom-forming fungi (Agaricomycetes, approx. syn.: Homobasidiomycetes) produce a diverse array of fruiting bodies, ranging from simple crust-like forms to complex, developmentally integrated forms, such as stinkhorns and veiled agarics. The 19th century Friesian system divided the mushroom-forming fungi according to macromorphology. The Friesian taxonomy has long been regarded as artificial, but it continues to influence the language of mycology and perceptions of fungal diversity. Throughout the 20th century, the phylogenetic significance of anatomical features was elucidated, and classifications that departed strongly from the Friesian system were proposed. However, the anatomical studies left many questions and controversies unresolved, due in part to the paucity of characters, as well as the general absence of explicit phylogenetic analyses. Problems in fruiting body evolution were among the first to be addressed when molecular characters became readily accessible in the late 1980s. Today, GenBank contains about 108,000 nucleotide sequences of ‘homobasidiomycetes’, filed under 7300 unique names. Analyses of these data are providing an increasingly detailed and robust view of the phylogeny and the distribution of different fruiting body forms across the 14 major clades that make up the agaricomycetes. However, it would be wrong to suggest that all the important questions about fruiting body evolution have been resolved. Recent studies focusing on resupinate forms suggest that there may still be undetected major clades of agaricomycetes, which could have a significant impact on our estimates of the ancestral forms in this morphologically diverse group. Modern approaches, including comparative phylogenetic analyses and developmental studies, have the potential to yield novel insights into both the macroevolutionary processes and cellular mechanisms of fungal morphological evolution.  相似文献   

2.
《Mycological Research》2007,111(9):999-1000
Molecular phylogenetic studies have made it evident that similar fruit body types, formerly the cornerstone of the classification of ascomycete and basidiomycete fungi, including those that form lichens, are often a result of convergent evolution. This commentary provides an introduction to this special issue of Mycological Research, which is based on papers presented at a one-day joint meeting of the British Mycological Society and the Natural History Museum held in London on 3 December 2005. The nine papers included address this issue in relation to its impact on classification, and also draw attention to the over-emphasis in fungal classification of ascus types and, in the case of lichen fungi, thallus form.  相似文献   

3.
The universe of cellular forms has received scarce attention by mainstream neo-Darwinian views. The possibility that a fundamental trait of biological order may consist upon, or be guided by, developmental processes not completely amenable to natural selection was more akin to previous epochs of biological thought, i.e. the “bauplan” discussion. Thirty years ago, however, Lynn and Tucker studied the biological mechanisms responsible for defining organelles position inside cells. The fact that differentiated structures performing a specific function within the eukaryotic cell (i.e. mitochondrion, vacuole, or chloroplast) were occupying specific positions in the protoplasm was the observational and experimental support of the ‘morphogenetic field’ notion at the cellular level. In the present paper we study the morphogenetic field evolution yielding from an initial population of undifferentiated cells to diversified unicellular organisms as well as specialized eukaryotic cell types. The cells are represented as Julia sets and Pickover biomorphs, simulating the effect of Darwinian natural selection with a simple genetic algorithm. The morphogenetic field “defines” the locations where cells are differentiated or sub-cellular components (or organelles) become organized. It may be realized by different possibilities, one of them by diffusing chemicals along the Turing model. We found that Pickover cells show a higher diversity of size and form than those populations evolved as Julia sets. Another novelty is the way that cellular organelles and cell nucleus fill in the cell, always in dependence on the previous cell definition as Julia set or Pickover biomorph. Our findings support the existence of specific attractors representing the functional and stable form of a differentiated cell—genuine cellular bauplans. The configuration of the morphogenetic field is “attracted” towards one or another attractor depending on the environmental influences as modeled by a particular fitness function. The model promotes the classical discussions of D’Arcy Thompson and the more recent views of Waddington, Goodwin and others that consider organisms as dynamical systems that evolve through a ‘master plan’ of transformations, amenable to natural selection. Intriguingly, the model also connects with current developments on mechanobiology, highlighting the informational–developmental role that cytoskeletons may play.  相似文献   

4.
Poplar cuttings of a resistant clone, Populus ‘Grandis’, and susceptible clones, Populus nigra ‘Italica’ and Populus ‘Robusta’, were infected with the pathogenic fungus Dothichiza populea alone, or with the pathogen and one of five strains of epiphytes antagonistic towards it (in vitro), isolated from poplar bark. The extent of injury was examined for 28 days after infection by determining the length of necrotic patches and their area as expressed in per cent of the total area of a cutting or the area of necrotic injuries caused by the pathogen alone.All the poplar cuttings of both the resistant and susceptible clones became diseased when infected with the pathogen alone. Surprisingly enough, however, the least affected clone was the susceptible P. ‘Robusta’, in which necrotic injuries covered 28% of the total area, as against 40% and 70% in the resistant P. ‘Grandis’ and the susceptible P. nigra ‘Italica’, respectively.When the cuttings were infected simultaneously with Dothichiza populea and its antagonistic epiphytes, the diseased area in the resistant clone diminished by as much as two-thirds, and in the susceptible P. nigra ‘Italica’, by one-third in comparison with the area affected by the pathogen alone. In turn, in the susceptible P. ‘Robusta’ the introduction of three out of five epiphytes stimulated the growth of the pathogenic fungus producing on average a double increase in the necrotic area. The differences in the response of the pathogen to the presence of epiphytes recorded in the susceptible clones indicate a marked influence of the plant on the nature of interactions between its epiphytic microflora and the pathogen.  相似文献   

5.
Traditional classifications of agaric fungi involve gross morphology of their fruit bodies and meiospore print-colour. However, the phylogeny of these fungi and the evolution of their morphological and ecological traits are poorly understood. Phylogenetic analyses have already demonstrated that characters used in traditional classifications of basidiomycetes may be heavily affected by homoplasy, and that non-gilled taxa evolved within the agarics several times. By integrating molecular phylogenetic analyses including domains D1–D3 and D7–D8 of nucLSU rDNA and domains A–C of the RPB1 gene with morphological and chemical data from representative species of 88 genera, we were able to resolve higher groups of agarics. We found that the species with thick-walled and pigmented basidiospores constitute a derived group, and hypothesize that this specific combination of characters represents an evolutionary advantage by increasing the tolerance of the basidiospores to dehydration and solar radiation and so opened up new ecological niches, e.g. the colonization of dung substrates by enabling basidiospores to survive gut passages through herbivores. Our results confirm the validity of basidiospore morphology as a phylogenetic marker in the agarics.  相似文献   

6.
No less than 3 different parasitical lichens were found on the corticolous lichenCaloplaca polycarpoides in Afghanistan. Partly, they also grow on closely allied species of the sect.Xanthoriella. Lecania triseptata begins and ends as a typical parasite, and does not form a thallus outside of its host.L. diplococca andRinodina afghanica, both described as new species, have a similar appearance; they are parasitic in the beginning, but form their own thalli outside the host later on. The 3 species are members of the small group of parasitical lichens growing on corticolous hosts. Possibly, the slow degeneration of cortices under the arid climatical conditions, has allowed the evolution of parasitic lichens of this rare type in Central Asia.
Dedicated to Hofrat Univ.-Prof. DrK. H. Rechinger on the occasion of his 80th birthday. Flechten aus Afghanistan III; Beitrag II in Nova Hedwigia42, 213–236 (1986).  相似文献   

7.
The Devonian Hunsrück Slate fossil Devonohexapodus bocksbergensis Haas, Waloszek & Hartenberger, 2003 has been interpreted as a stem-lineage representative of the Hexapoda, implying their marine origin and independent terrestrialisation within the ‘Atelocerata’. Devonohexapodus bocksbergensis was based on a single specimen embedded in a lateral position. Reinvestigation of that holotype and of all known specimens of the Hunsrück Slate arthropod Wingertshellicus backesi Briggs & Bartels, 2001 demonstrates that all this material represents a single species. The latter is redescribed, its taxonomic diagnosis is emended, and the name Devonohexapodus bocksbergensis is treated as a junior synonym of Wingertshellicus backesi. The phylogenetic position of W. backesi neither is that of a stem-lineage representative of Hexapoda, nor does it fall within the crown group Mandibulata. The Hunsrück Slate provides no evidence of an independent terrestrialisation within the ‘Atelocerata’ or of a marine origin of the Hexapoda.  相似文献   

8.
The 5S rRNA gene family organization among 87 species and varieties of Pythium was investigated to assess evolutionary stability of the two patterns detected and to determine which pattern is likely the ancestral state in the genus. Species with filamentous sporangia (Groups A-C according to the ITS phylogenetic tree for Pythium) had 5S genes linked to the rDNA repeat that were predominantly coded for on the DNA strand opposite to the one with the other rRNA genes (‘inverted’ orientation). A small group of species with contiguous sporangia (Group D) is related to Groups A-C but had unlinked 5S genes. The main group of species with spherical zoosporangia (Groups E-J) generally had unlinked 5S genes in tandem arrays. The six species in Group K, although they also have spherical sporangia, had linked genes on the same strand as the other rRNA genes ‘non-inverted’ and most of them had pairs of tandem 5S genes. The evolutionary stability of 5S sequence organization was compared with the stability of morphological characters as interpreted from a phylogeny based on ITS sequence analysis. Features of 5S sequence organization were found to be just as consistent within groups as were the morphological characters. To determine the ancestral type of 5S family organization, a survey of Phytophthora strains was conducted to supply an outgroup reference. The most parsimonious interpretation of the data in this survey yielded the tentative conclusion that the linked condition of the 5S sequences was ancestral.  相似文献   

9.
Indole-diterpenes are a structurally diverse group of secondary metabolites with a common cyclic diterpene backbone derived from geranylgeranyl diphosphate and an indole group derived from indole-3-glycerol phosphate. Different types and patterns of ring substitutions and ring stereochemistry generate this structural diversity. This group of compounds is best known for their neurotoxic effects in mammals, causing syndromes such as ‘ryegrass staggers’ in sheep and cattle. Because many of the fungi that synthesise these compounds form symbiotic relationships with plants, insects, and other fungi, the synthesis of these compounds may confer an ecological advantage to these associations. Considerable recent progress has been made on understanding indole-diterpene biosynthesis in filamentous fungi, principally through the cloning and characterisation of the genes and gene products for paxilline biosynthesis in Penicillium paxilli. Important insights into how the indole-diterpene backbone is synthesised and decorated have been obtained using P. paxilli mutants in this pathway. This review provides an overview of these recent developments.  相似文献   

10.
Two alphaproteobacterial Neisser negative ‘Nostocoida limicola’ morphotypes differing slightly in their trichome diameter and filament regularity were dominant populations in the Bendigo, Victoria, Australia activated sludge community removing phosphorus (P). Neither responded to the FISH probes available for any of the other alphaproteobacterial ‘N. limicola’ morphotypes. Instead both fluoresced with the DF988 FISH probe designed originally to target alphaproteobacterial cluster II Defluviicoccus tetrad forming organisms. A 16S rRNA based clone library from this biomass revealed that the alphaproteobacterial clones grouped closely with CandidatusMonilibacter batavus’ and Defluviicoccus clones in a cluster separate from the existing cluster I and II Defluviicoccus. When a FISH probe was designed against these, it only hybridized to the thinner and less abundant ‘N. limicola’ morphotype. Micromanipulation–RT-PCR was used to selectively recover the main ‘N. limicola’ morphotype and a FISH probe designed against the 16S rRNA clones generated from it showed only this filament fluoresced. From FISH based surveys, both ‘N. limicola’ variants occurred frequently in phosphorus removal activated sludge systems in Australia treating domestic waste. The data suggest that they represent two new strains of CandidatusMonilibacter’, which on this evidence are filamentous members of the genus Defluviicoccus, a potential competitor for the polyphosphate accumulating organisms in these communities.  相似文献   

11.
Soredia of the cyanobacterial lichenPeltigera didactyla were cultivated on soil substratum in the natural environment. Various developmental stages (germination, formation of a soredia field, differentiation of thallus lobes with soralia and fruiting bodies) were attained during a cultivation period of 6–7 months. Our field experiments revealed that the ephemeral pioneer lichenPeltigera didactyla has a short life cycle. Thus this lichen is a well-suited object for further investigations on thallus morphogenesis of lichens with cyanobionts.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday.  相似文献   

12.
Many insects undergo katatrepsis, essential reorganization by the extraembryonic membranes that repositions the embryo. Knockdown of the zen gene by RNA interference (RNAi) prevents katatrepsis in the milkweed bug Oncopeltus fasciatus. However, the precise morphogenetic defect has been uncertain, and katatrepsis itself has not been characterized in detail. The dynamics of wild type and zenRNAi eggs were analyzed from time-lapse movies, supplemented by analysis of fixed specimens. These investigations identify three zenRNAi defects. First, a reduced degree of tissue contraction implies a role for zen in baseline compression prior to katatrepsis. Subsequently, a characteristic ‘bouncing’ activity commences, leading to the initiation of katatrepsis in wild type eggs. The second zenRNAi defect is a delay in this activity, suggesting that a temporal window of opportunity is missed after zen knockdown. Ultimately, the extraembryonic membranes fail to rupture in zenRNAi eggs: the third defect. Nevertheless, the outer serosal membrane manages to contract, albeit in an aberrant fashion with additional phenotypic consequences for the embryo. These data identify a novel epithelial morphogenetic event – rupture of the ‘serosal window’ structure – as the ultimate site of defect. Overall, Oncopeltus zen seems to have a role in coordinating a number of pre-katatreptic events during mid embryogenesis.  相似文献   

13.
The composite thalli produced by lichen fungi in symbiosis with algae often show structural convergences with plants. Similar overall thallus forms and branching patterns may arise in lichens with very different anatomical construction, indicating the autonomy of the morphological level of organization. Fungal and algal growth and division may be highly integrated within meristem-like morphogenetic zones in many lichens, whereas in others the symbionts may contribute in a less synchronized fashion to the construction of the thallus. Although thallus-level morphology and morphogenesis may be compared with those of plants, ontogeny of the lichen thallus differs fundamentally. Observations of lichen ontogeny illustrate the formation of the thallus by unification of autonomous, primary cellular elements in co-ordinated growth. In land plants and many algae, by contrast, the plant body is the primary structure, the cellular elements of which represent secondary subdivisions. The convergences in form are based on a common mode of nutrition in combination with cell-wall building materials that impart similar structural potential. The photosynthetic apparatus forming the basis of this mode of nutrition is not a convergent feature, however, but a homologous structure that originated in the cyanobacteria and subsequently passed laterally into diverse biological lineages by repeated endosymbioses. With consolidation of these symbioses as eukaryotic algae and plants, the organismal level of organization was repeatedly re-established with increasing degrees of complexity, and morphological convergences were expressed at these new levels. In lichens, by contrast, the symbiosis is not organismally consolidated; morphological expression instead emerges at the superorganismal level.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 89–99.  相似文献   

14.
Fruit bodies of hypogeous fungi are an important food source for many small mammals and are consumed by larger mammals as well. A controversial hypothesis that prescribed burning increases fruiting of certain hypogeous fungi based on observations in Tasmania was tested in the Australian Capital Territory to determine if it applied in a quite different habitat. Ten pairs of plots, burnt and nonburnt, were established at each of two sites prescribe-burnt in May 1999. When sampled in early July, after autumn rains had initiated the fungal fruiting season, species richness and numbers of fruit bodies on the burnt plots were extremely low: most plots produced none at all. Both species richness and fruit body numbers were simultaneously high on nonburnt plots. One of the sites was resampled a year after the initial sampling. At that time species richness and fruit body abundance were still significantly less on burnt plots than on nonburnt, but a strong trend towards fungal recovery on the burnt plots was evident. This was particularly so when numbers of fruit bodies of one species, the hypogeous agaric Dermocybe globuliformis, were removed from the analysis. This species strongly dominated the nonburnt plots but was absent from burnt plots in both years. The trend towards recovery of fruit body abundance in the burnt plots one year after the burn was much more pronounced with exclusion of the Dermocybe data. The Tasmanian-based hypothesis was based mostly on the fruiting of two fire-adapted species in the Mesophelliaceae. Neither species occurred on our plots. Accordingly, the results and conclusions of the Tasmanian study cannot be extrapolated to other habitats without extensive additional study. Implications for management of habitat for fungi and the animals that rely on the fungi as a food source are discussed.  相似文献   

15.
Although there is only negligible rainfall, frequent nocturnal fog, dew and high air humidity support a luxurious lichen vegetation in the coastal zone of the central Namib Desert (Namibia). In earlier publications, we have studied ecophysiological performance of a series of epilithic and terrestrial lichens. Here, we have extended this work to three epiphytic species (Heterodermia namaquana, Ramalina lacera, and Xanthoria turbinata) that inhabit the sparse perennial shrubs growing in this area. Our intention, monitoring lichen CO2 exchange, their water relations and microclimate conditions, was to determine the functional mechanisms that allow these epiphytes to exist under the special conditions of a fog desert. Measurements were conducted mainly during the spring season.The epiphytic lichens showed response patterns very similar to the epilithic and epigaeic species at the same site. Their metabolism was activated through moistening by dew and/or fog during the night and, in the very early morning, they exhibited the typical brief peak of net photosynthesis (NP) between sunrise and desiccation. The thalli were almost completely dry for the remainder of the day. Average duration of the positive NP during the morning peak was about 3 h. Dew condensation, alone, resulted in activation that provided 58–63% of integrated carbon income (ΣNP) as compared to fog (plus dew). In the late afternoon, there was a tendency for hydration to increase again, due to water vapour uptake at higher air humidity, and this allowed on some days a brief additional period of very low rates of photosynthesis shortly before sunset.Light response of photosynthesis showed “sun-plant” characteristics with saturation around 1000 μmol m−2 s−1 photosynthetically active photon flux density (PPFD). Light compensation point (LCP) of CO2 exchange after sunrise was highly dependent on actual water content (WC) for X. turbinata: at low hydration it was ca. 10 μmol m−2 s−1 PPFD whilst, at high WC, it was almost 80 μmol m−2 s−1 PPFD. In contrast, LCP of R. lacera was almost independent of WC. This phenomenon was probably due to differences in thallus structure.Maximal attained NP and daily ΣNP both showed a saturation-type response to previous maximal nocturnal WC. Neither parameter was increased substantially when higher maximal thallus WCs were produced by experimental moistening in the night. All three species, despite their different morphologies, performed optimally at the highest nocturnal moistening achieved by natural fog and were not able to make use of higher hydration.The three studied epiphytes were similar in their chlorophyll-related rates of NP. Due to lower chlorophyll content, dry weight and carbon-related NP of X. turbinata was only about one-third of that of the other two species. The average carbon income on days with fog and/or dew hydration during the spring season amounted to 2.4 and 2.1 mgC (gC)−1 day−1 (related to thallus carbon content) for H. namaquana and R. lacera, respectively. This primary production was of similar magnitude to those found for the terrestrial species at the same site.  相似文献   

16.
Pengmin Li  Lailiang Cheng   《Plant science》2009,177(5):418-426
Pigments, chlorophyll fluorescence, dark respiration, and the antioxidant system in the shaded peel of green ‘Anjou’ pear (Pyrus communis L.) and its bud mutation, red ‘Anjou’, were compared in response to high peel temperature, high light alone or in combination to determine the protective role of anthocyanins under high temperature with or without light. Under high temperature treatment alone, no difference in the maximum quantum yield of PSII (FV/FM) was detected between red ‘Anjou’ and green ‘Anjou’; the superoxide dismutase activity and the glutathione pool were up-regulated in green ‘Anjou’ peel but remained unchanged in red ‘Anjou’ peel. Under high temperature coupled with high light, the FV/FM of green ‘Anjou’ peel was decreased to a lower value than that of red ‘Anjou’, and significant interaction was detected between temperature and light for both cultivars. Furthermore, the difference in FV/FM between red ‘Anjou’ and green ‘Anjou’ under high temperature coupled with high light was significantly larger than that under high light alone, indicating that this larger difference was caused by the interaction between high temperature and high light as no significant difference was detected in FV/FM between the two cultivars under high temperature treatment alone at any sampling point. It is concluded that the elevated anthocyanin level in the shaded peel of red ‘Anjou’ does not alter its thermotolerance in the dark, but makes it more tolerant of high temperature under high light.  相似文献   

17.
Botrytis blight, caused by Botrytis cinerea (Bc), is an important disease on roses grown in plastic greenhouses in Brazil. Biocontrol with Clonostachys rosea (Cr) applied to leaves and crop debris to reduce pathogen sporulation can complement other control measures for disease management. Two experiments, each with a rose cultivar, were conducted in a plastic greenhouse. For ‘Red Success,’ four treatments were compared: (1) control; (2) fortnightly sprays of Cr; (3) weekly sprays of mancozeb; and (4) weekly sprays of either Cr or mancozeb to the lower third of the plants and the debris. For ‘Sonia,’ treatment 4 was not included. Samples were taken from debris (leaves and petals) at ten 15-day intervals and plated on PCA medium. Sporulation of fungi and incidence of Botrytis blight on buds were assessed. For both cultivars, C treatments significantly (P=0.05) reduced Bc sporulation. However, disease incidence was not consistently reduced, probably because the applications of C. rosea started when Botrytis blight epidemic was advanced and no sanitation practices were performed on nontreated plots. From the present and previous studies, continuous application of Cr on debris, associated with sanitation practices, has the potential to reduce Bc sporulation and disease incidence in the buds.  相似文献   

18.
Jones CD 《Genetica》2005,123(1-2):137-145
Drosophila sechellia is an island endemic of the Seychelles. After its geographic isolation on these islands, D. sechellia evolved into a host specialist on the fruit of Morinda citrifolia – a fruit often noxious and repulsive to Drosophila. Specialization on M. citrifolia required the evolution of a suite of adaptations, including resistance to and preference for some of the toxins found in this fruit. Several of these adaptive traits have been studied genetically. Here, I summarize what is known about the genetics of these traits and briefly describe the ecological and geographical context that shaped the evolution of these characters. The data from D. sechellia suggest that adaptations are not as genetically complex as historically thought, although almost all of the adaptations of D. sechellia involve several genes.  相似文献   

19.
The localized application of the synthetic cytokinin CPPU ((2-chloro-4-pyridyl)-N-phenyl urea) to ovaries at flower opening was as effective as free pollination in setting parthenocarpic fruit in the triploid watermelon cultivar ‘Reina de Corazones’, and increased yield per unit land area by at least 50%, simply due to the lack of requirement for diploid pollen producing plants within the orchard. The application of the synthetic auxin 2,4-D (2,4-dichlorophenoxy acetic acid) as a full coverage spray, was also effective in setting fruit; total yield was however 10% smaller than in the CPPU-treated plots, but the cost of application was much less expensive. These applications had no adverse effect on fruit quality, and their effectiveness in commercial watermelon production was evaluated over 4 years. Localized applications of 2,4-D to ovaries were less effective in setting fruit, and increased hollow fruit.  相似文献   

20.
The lichen-forming order Lichinales, generally characterized by prototunicate asci and the development of thalli with cyanobacteria, has recently been recognized as a separate class of ascomycetes, Lichinomycetes, as a result of molecular phylogenetic studies. As alkali and water-soluble (F1SS) polysaccharides reflect phylogeny in other ascomycetes, a polysaccharide from Lichina pygmaea and L. confinis was purified and characterized to investigate whether these F1SS compounds in the Lichinomycetes were distinctive. Nuclear magnetic resonance (NMR) spectroscopy and chemical analyses revealed this as a galactomannan comprising a repeating unit consisting of an α-(1→6)-mannan backbone, mainly substituted by single α-galactofuranose residues at the O-2- or the O-2,4- positions linked to a small mannan core. With the exception of the trisubstituted mannopyranose residues previously described in polysaccharides from other lichens belonging to orders now placed in Lecanoromycetes, the structure of this galactomannan most closely resembles those found in several members of the Onygenales in Eurotiomycetes. Our polysaccharide data support molecular studies showing that Lichina species are remote from Lecanoromycetes as the galactofuranose residues are in the α-configuration. That the Lichinomycetes were part of an ancestral lichenized group can not be established from the present data because the extracted polysaccharide does not have the galactofuranose residue in the β configuration; however, the data does suggest that an ancestor of the Lichinomycetes contained a mannan and was part of an early radiation in the ascomycetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号