首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Structure of the tubulin dimer in zinc-induced sheets   总被引:8,自引:0,他引:8  
The structure of tubulin has been studied in projection by minimum beam electron microscopy and image processing of negatively stained zinc-induced sheets. The reconstructed images include data to 15 Å resolution.We report here a clear and reproducible 82 Å repeat arising from the arrangement of heterodimers in sheet aggregates of tubulin. This repeat is only observed in diffraction patterns from images recorded by minimum beam methods (10 to 20 e/Å2) and arises from small, but consistent, structural differences between two similar subunits believed to represent the two chemical species of tubulin monomer (Mr, 55,000). At higher electron doses (100 to 200 e/Å2), the additional information is lost or very much reduced, and only a repeat of 41 Å is observed, owing to the loss of distinction between monomers in the tubulin heterodimer.The sheets are composed of 49 Å wide, polar protofilaments, similar to those observed in microtubules; however, the interprotofilament packing is completely different in the two structures. In these sheets, adjacent protofilaments point and face in opposite directions; i.e. they are related by dyad-screw axes normal to the protofilament axes and in the plane of the sheet. Thus, the zinc-induced sheets are crystals of space group P21, with cell dimensions of about 97 Å × 82 Å, containing one tubulin heterodimer per asymmetric unit.Reconstructed images of four individual sheets, and their average, show the arrangement and shapes of the two heterodimers contained in each unit cell. The structure and packing of heterodimers in sheets are compared to those in opened out microtubules where all protofilaments point and face in the same direction.  相似文献   

2.
HURP is a newly discovered microtubule-associated protein (MAP) required for correct spindle formation both in vitro and in vivo. HURP protein is highly charged with few predicted secondary and tertiary folding domains. Here we explore the effect of HURP on pure tubulin, and describe its ability to induce a new conformation of tubulin sheets that wrap around the ends of intact microtubules, thereby forming two concentric tubes. The inner tube is a normal microtubule, while the outer one is a sheet composed of tubulin protofilaments that wind around the inner tube with a 42.5° inclination. We used cryo-electron microscopy and unidirectional surface shadowing to elucidate the structure and conformation of HURP-induced tubulin sheets and their interaction with the inner microtubule. These studies clarified that HURP-induced sheets are composed of anti-parallel protofilaments exhibiting P2 symmetry. HURP is a unique MAP that not only stabilizes and bundles microtubules, but also polymerizes free tubulin into a new configuration.  相似文献   

3.
The accumulation associated protein (Aap) of Staphylococcus epidermidis mediates intercellular adhesion events necessary for biofilm growth. This process depends upon Zn2+‐induced self‐assembly of G5 domains within the B‐repeat region of the protein, forming anti‐parallel, intertwined protein “ropes” between cells. Pleomorphism in the Zn2+‐coordinating residues was observed in previously solved crystal structures, suggesting that the metal binding site might accommodate other transition metals and thereby support dimerization. By use of carefully selected buffer systems and a specialized approach to analyze sedimentation velocity analytical ultracentrifugation data, we were able to analyze low‐affinity metal binding events in solution. Our data show that both Zn2+ and Cu2+ support B‐repeat assembly, whereas Mn2+, Co2+, and Ni2+ bind to Aap but do not support self‐association. As the number of G5 domains are increased in longer B‐repeat constructs, the total concentration of metal required for dimerization decreases and the transition between monomer and dimer becomes more abrupt. These characteristics allow Aap to function as an environmental sensor that regulates biofilm formation in response to local concentrations of Zn2+ and Cu2+, both of which are implicated in immune cell activity.  相似文献   

4.
It was demonstrated that Zn2+, in contrast to Pb2+ and Co2+, initiates the development of the nonspecific mitochondrial permeability (NMP) in hepatocytes. Kinetic analysis of this process was performed. It was proved that Zn-induced NMP is mediated by activation of megachannels (mitochondrial permeability transition pores). Sulfo groups of the ADP/ATP antiporter and carboxylic groups of voltage-dependent anionic channels are also involved in the development of Zn2+-stimulated NMP. Interaction between Zn2+ and cyclophilin D is the key event in the process of activation of NMP. We found that the Na/Ca exchanger exerts an activating effect on the Zn-induced NMP. In general, swelling of the mitochondria and Ca2+ release from these organelles under the action of Zn2+ are based on noticeably dissimilar mechanisms. The observed distinctions depend on the functional state of the mitochondrial transport systems.  相似文献   

5.
The metal ions Zn2+, Cu2+, and Fe2+ play a significant role in the aggregation mechanism of Aβ peptides. However, the nature of binding between metal and peptide has remained elusive; the detailed information on this from the experimental study is very difficult. Density functional theory (dft) (M06‐2X/6‐311++G (2df,2pd) +LANL2DZ) has employed to determine the force field resulting due to metal and histidine interaction. We performed 200 ns molecular dynamics (MD) simulation on Aβ1‐42‐Zn2+, Aβ1‐42‐Cu2+, and Aβ1‐42‐Fe2+ systems in explicit water with different combination of coordinating residues including the three Histidine residues in the N‐terminal. The present investigation, the Aβ1‐42‐Zn2+ system possess three turn conformations separated by coil structure. Zn2+ binding caused the loss of the helical structure of N‐terminal residues which transformed into the S‐shaped conformation. Zn2+ has reduced the coil and increases the turn content of the peptide compared with experimental study. On the other hand, the Cu2+ binds with peptide, β sheet formation is observed at the N‐terminal residues of the peptide. Fe2+ binding is to promote the formation of Glu22‐Lys28 salt‐bridge which stabilized the turn conformation in the Phe19‐Gly25 residues, subsequently β sheets were observed at His13‐Lys18 and Gly29‐Gly37 residues. The turn conformation facilitates the β sheets are arranged in parallel by enhancing the hydrophobic contact between Gly25 and Met35, Lys16 and Met35, Leu17 and Leu34, Val18 and Leu34 residues. The Fe2+ binding reduced the helix structure and increases the β sheet content in the peptide, which suggested, Fe2+ promotes the oligomerization by enhancing the peptide‐peptide interaction. Proteins 2016; 84:1257–1274. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Complexes formed by reduced glutathione (GSH) with metal cations (Cr2+, Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Hg2+) were systematically investigated by the density functional theory (DFT). The results showed that the interactions of the metal cations with GSH resulted in nine different stable complexes and many factors had an effect on the binding energy. Generally, for the same period of metal ions, the binding energies ranked in the order of Cu2+>Ni2+>Co2+>Fe2+>Cr2+>Zn2+>Mn2+; and for the same group of metal ions, the general trend of binding energies was Zn2+>Hg2+>Cd2+. Moreover, the amounts of charge transferred from S or N to transition metal cations are greater than that of O atoms. For Fe2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+ and Hg2+ complexes, the values of the Wiberg bond indices (WBIs) of M-S (M denotes metal cations) were larger than that of M-N and M-O; for Cr2+ complexes, most of the WBIs of M-O in complexes were higher than that of M-S and M-N. Furthermore, the changes in the electron configuration of the metal cations before and after chelate reaction revealed that Cu2+, Ni2+,Co2+ and Hg2+ had obvious tendencies to be reduced to Cu+,Ni+,Co+ and Hg+ during the coordination process.  相似文献   

7.
The effects of some metal ions on amidolytic and fibrinogenolytic activities of highly purified human plasmin were investigated in vitro. In the presence of Zn2+, Cu2+, Cd2+, and Au+ in the incubation mixture at the concentrations of 1×10−5−1×10−3 M, the anidolytic plasmin activity was strongly inhibited, whereas Ca2+ and Mg2+ at the same concentrations were not effective. The analysis of the kinetic study has shown that Zn2+ or Cu2+ acts as mixed-type inhibitors of plasmin activity. The inhibition of amidolytic plasmin activity by Zn2+ and Cu2+ was reduced in the presence of EDTA, histidine, or albumin. Incubation of plasmin with Zn2+ or Cu2+ (at the concentration of 5×10−4 M) resulted in complete loss of its proteolytic action on fibrinogen, whereas Cd2+ and Au+ under the same conditions only partially inhibited this process.  相似文献   

8.
Cibacron blue was found to inhibit assembly and increase the critical concentration of microtubule proteins. In the presence of 4 mol Cibacron blue/mol tubulin, assembly was completely inhibited and pre-formed microtubules disassembled. Addition of 8% (v/v) dimethylsulfoxide to Cibacron blue-inhibited samples induced assembly of normal microtubules in addition to sheets of protofilaments. Disassembly was induced upon addition of 1 mM colchicine or 2mM Ca2+. No obvious difference was seen in the protein composition of these microtubules compared with controls. GTP exchange was not affected by the presence of Cibacron blue nor was GTP able to counteract its effect. This indicates that the exchangeable GTP site is not involved. The extent of assembly of phosphocellulose purified tubulin in the presence of 8% (v/v) dimethylsulfoxide was only slightly less in the presence of Cibacron blue, although the assembly rate was decreased. These results suggest that Cibacron blue might alter the binding of one or more of the associated proteins stimulating assembly.  相似文献   

9.
Cadmium uptake kinetics in intact soybean plants   总被引:33,自引:3,他引:30       下载免费PDF全文
The absorption characteristics of Cd2+ by 10- to 12-day-old soybean plants (Glycine max cv Williams) were investigated with respect to influence of Cd concentration on adsorption to root surfaces, root absorption, transport kinetics and interaction with the nutrient cations Cu2+, Fe2+, Mn2+, and Zn2+. The fraction of nonexchangeable Cd bound to roots remained relatively constant at 20 to 25% of the absorbed fraction at solution concentration of 0.0025 to 0.5 micromolar, and increased to 45% at solution concentration in excess of 0.5 micromolar. The exchangeable fraction represented 1.4 to 32% of the absorbed fraction, and was concentration dependent. Using dinitrophenol as a metabolic inhibitor, the `metabolically absorbed' fraction was shown to represent 75 to 80% of the absorbed fraction at concentration less than 0.5 micromolar, and decreased to 55% at 5 micromolar. At comparatively low Cd concentrations, 0.0025 to micromolar 0.3, root absorption exhibited two isotherms with K2 values of 0.08 and 1.2 micromolar. Root absorption and transfer from root to shoot of Cd2+ was inhibited by Cu2+, Fe2+, Mn2+, and Zn2+. Analyses of kinetic interaction of these nutrient cations with Cd2+ indicated that Cu2+, Fe2+, Zn2+, and possibly Mn2+ inhibited Cd absorption competitively suggesting an involvement of a common transport site or process.  相似文献   

10.
The sulfhydryl content of rat spermatozoa at different stages of their maturation in the epididymis was determined by alkylation with 14C-iodoacetamide. Inhibition of this reaction by reagents having an affinity for thiols verified its specificity. The results support previous conclusions that epididymal maturation in eutherian mammals involves oxidation of -SH groups to -S-S- crosslinks in sperm heads and tails, imparting unusual stability to these structures. The heads and tails of immature rat spermatozoa displayed more than 20 and 5 times as many reactive -SH groups respectively as did those of mature spermatozoa. Fractionation of sonicated spermatozoa revealed that most of the reactive thiols are in the tails. Zn2+, Cu2+ and Cd2+ inhibited the alkylation of -SH groups by iodoacetamide. Although the Zn2+ inhibition could be reversed by EDTA, the effect of Cu2+, believed to involve oxidation, was not reversible and could be largely prevented by a sufficient excess of Zn2+. Thus, Zn2+ may retard the oxidation of sperm -SH groups in vivo.  相似文献   

11.
12.
The three-dimensional structure of porcine brain tubulin in planar sheets formed in the presence of zinc has been determined to a resolution of approximately 20 Å by electron microscopy and image reconstruction on negatively stained samples. The samples were prepared with a mica floatation technique, which yields tubulin sheets with 36 reciprocal space maxima on lattice lines at 21, 28, 42 and 84 Å?1 in Fourier transforms of digitized images. In order to obtain three-dimensional data, sheets were tilted with the goniometer stage of the electron microscope to provide images at various angles between 0 ° and ± 60 °. Transforms of 33 tilted images plus the transform of untilted sheets based on an average of nine untilted images were combined to give the third dimension of reciprocal space (z1). These data, were expressed in terms of the phases and amplitudes along the z1 lattice line for each of the 36 maxima observed in untilted samples, as well as five additional lattice lines which have zero-amplitudes in the non-tilted central section of the three-dimensional transform. Home of these zero-amplitudes arise from systematic absences which are due to a 2-fold screw axis relating adjacent protofilaments of tubulin in the zinc-induced sheets. Thus in the three-dimensional reconstructions of the sheets a polarity of the protofilaments is apparent, with adjacent protofilaments aligned in opposite directions to give an antiparallel pattern, in contrast to normal microtubules composed of protofilaments in parallel alignment. Two classes of morphological units, each with a mass corresponding to a molecular weight of about 55,000, are found to alternate along the protofilaments. These distinct morphological units are identified as the α and β subunits of tubulin, confirming the representation of tubulin as an αβ heterodimer. Furthermore, the extensive internal contact between subunits within a dimer can readily be distinguished from the less extensive contact between dimer units. Such differences in contacts were not apparent in the earlier two-dimensional reconstructions. In addition, areas of excluded stain joining one class of subunits to the subunits of the other class in adjacent protofilaments have been resolved for tubulin polymerized in zinc-induced sheets. Of the two classes of subunits one is distinguished by a prominent cleft. Identification of which class of subunits is α and which is β is not yet possible.  相似文献   

13.
Cu2+, Zn2+, Fe2+ and I are often supplemented to the diet of suckling and early weaning piglets, but little information is available regarding the effects of different Cu2+, Zn2+, Fe2+ and I mixtures on bacteria growth, diversity and fermentation characteristics of fermented liquid diet for piglets. Pyrosequencing was performed to investigate the effect of Cu2+, Zn2+, Fe2+ and I mixtures on the diversity, growth and fermentation characteristics of bacteria in the liquid diet fermented with Bacillus subtilis and Enterococcus faecalis under air-tight condition. Results showed that the mixtures of Cu2+, Zn2+, Fe2+ and I at different concentrations promoted Bacillus growth, increased bacterial diversity and lactic acid production and lowered pH to about 5. The importance of Cu2+, Zn2+, Fe2+ and I is different for Bacillus growth with the order Zn2+> Fe2+>Cu2+> I in a 21-d fermentation and Cu2+>I>Fe2+>Zn2+ in a 42-d fermentation. Cu2+, Zn2+, Fe2+ and I is recommended at a level of 150, 60, 150 and 0.6 mg/kg respectively for the production of fermented liquid diet with Bacillus subtilis. The findings improve our understanding of the influence of trace elements on liquid diet fermentation with probiotics and support the proper use of trace elements in the production of fermented liquid diet for piglets.  相似文献   

14.
The rates of reaction of catechol cyclic phosphate in water and in acetonitrile-water demonstrate that imidazolium ion and metal ions (Na+, Mg2+, Zn2+) cause significant accelerations. These studies provide models for the potential role of cations in catalysis of reactions of phosphate anions by enzymes. In catalysis by Zn2+, we find that two to three imidazoles are required for coordination to Zn2+ for most effective catalysis. Enough water must be present to solvate imidazole and coordinate to Zn2+, indicating that a coordinated H2O is the nucleophile in Zn2+ catalysis. Product analysis also supports this conclusion.  相似文献   

15.
Water and K+ fluxes were examined in detopped plants ofZea mays L. (cv. White Horse Tooth), which were grown and exuded on half-strength Long Ashton nutrient solution containing the appropriate concentration of Zn2+ at 20 °C. In light-grown plants, 100 and 500 μM Zn2+ increased both water and K+ fluxes in detopped maize plants whereas 1 000 μM Zn2+ inhibited both fluxes. In the dark-pretreated plants, 1 000 μM Zn2+ in the medium stimulated K+ flux. The fluxes of K+, Zn2+, Ca2+ and Mg2+ were usually higher in detopped plants than in intact ones. At 1 000 μM Zn2+ in the exudation medium, Zn2+ concentration was higher in the xylem exudate of dark-pretreated plants than in roots of plants maintained in light. The results are discussed in relation to the influence of Zn2+ on the membrane permeability and transport in plants.  相似文献   

16.
17.
Salts of transition elements that alter the rate of sperm cell movement act at or near calcium-binding sites. After living bull sperm cells had been preincubated in VO43?, Ni2+, Zn2+, Mn2+, and also La3+, they were then fixed. Crisply defined organelles and the absence of particulate deposits in the morphological controls contrasted sharply with the treated specimens; the latter contained regions of increased electron density, the nature and distribution of which depended on the test substance, reflecting the differential affinities of the specific ions. La3+ formed fine dense areas, mainly at the exocytic surface of the plasma membrane. VO43? marks the cell surface but also left particulate densities within the cell. Ni2+ caused a nearly uniformly dense deposit at the surface and on the satellite fibers and axonemal microtubules. Zn2+ formed less uniform but coarser deposits, while in Mn2+ the distribution was similar to that in Zn2+ but much denser in the axonemal matrix and on the satellite fibers. Verapamil restricted the size and number of the opacities, while procaine permitted a similar distribution of slightly larger size reaction product. The differences in size and distribution of the enhanced densities were consistent and replicable for the individual assay substances. Vanadate, which specifically inhibits Na, K-ATPase, bound to ouabain-sensitive enzyme loci, however, completely disrupting the axonemal complex. This suggests that an important role of dynein in flagellar motion may relate to intracellular transport of Ca2+.  相似文献   

18.
19.
Extracellular Zn2+ was found to reversibly inhibit the ClC-0 Cl channel. The apparent on and off rates of the inhibition were highly temperature sensitive, suggesting an effect of Zn2+ on the slow gating (or inactivation) of ClC-0. In the absence of Zn2+, the rate of the slow-gating relaxation increased with temperature, with a Q10 of ∼37. Extracellular Zn2+ facilitated the slow-gating process at all temperatures, but the Q10 did not change. Further analysis of the rate constants of the slow-gating process indicates that the effect of Zn2+ is mostly on the forward rate (the rate of inactivation) rather than the backward rate (the rate of recovery from inactivation) of the slow gating. When ClC-0 is bound with Zn2+, the equilibrium constant of the slow-gating process is increased by ∼30-fold, reflecting a 30-fold higher Zn2+ affinity in the inactivated channel than in the open-state channel. As examined through a wide range of membrane potentials, Zn2+ inhibits the opening of the slow gate with equal potency at all voltages, suggesting that a two-state model is inadequate to describe the slow-gating transition. Following a model originally proposed by Pusch and co-workers (Pusch, M., U. Ludewig, and T.J. Jentsch. 1997. J. Gen. Physiol. 109:105–116), the effect of Zn2+ on the activation curve of the slow gate can be well described by adding two constraints: (a) the dissociation constant for Zn2+ binding to the open channel is 30 μM, and (b) the difference in entropy between the open state and the transition state of the slow-gating process is increased by 27 J/ mol/°K for the Zn2+-bound channel. These results together indicate that extracellular Zn2+ inhibits ClC-0 by facilitating the slow-gating process.  相似文献   

20.
Some basic proteins enable microtubule protein to form special assembly products in vitro, known as double-walled microtubules. Using histones (H1, core histones) as well as the human encephalitogenic protein to induce the formation of double-walled microtubules, we made the following electron microscopic observations: (1) Double-walled microtubules consist of an "inner" microtubule which is covered by electron-dense material, apparently formed from the basic protein, and by a second tubulin wall. (2) The tubulin of the second wall seems to be arranged as protofilaments, surrounding the inner microtubule in a helical or ring-like manner. (3) The surface of double-walled microtubules lacks the projections of microtubule-associated proteins, usually found on microtubules. (4) In the case of protofilament ribbons (incomplete microtubules), H1 binds exclusively to their convex sides that correspond to the surface of microtubules. Zn2+-induced tubulin sheets, consisting in contrast to microtubules of alternately arranged protofilaments, are covered by H1 on both surfaces. Furthermore, multilayered sheet aggregates appeared. The results indicate that the basic proteins used interact only with that protofilament side which represents the microtubule surface. In accordance with this general principle, models on the structure of double-walled microtubules and multilayered tubulin sheets were derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号