共查询到20条相似文献,搜索用时 15 毫秒
1.
Prevalence and Fingerprinting of Listeria monocytogenes Strains Isolated from Raw Whole Milk in Farm Bulk Tanks and in Dairy Plant Receiving Tanks 下载免费PDF全文
The incidence of Listeria species in raw whole milk from farm bulk tanks and from raw milk in storage at a Swedish dairy plant was studied. Listeria monocytogenes was found in 1.0% and Listeria innocua was found in 2.3% of the 294 farm bulk tank (farm tank) milk specimens. One farm tank specimen contained 60 CFU of L. monocytogenes ml−1. L. monocytogenes was detected in 19.6% and L. innocua was detected in 8.5% of the milk specimens from the silo receiving tanks at the dairy (dairy silos). More dairy silo specimens were positive for both Listeria species during winter than during summer. Restriction enzyme analysis and pulsed-field gel electrophoresis were applied to 65 isolates of L. monocytogenes, resulting in 16 different clonal types. Two clonal types were shared by the farm tank milk and the dairy silo milk. All except one clonal type belonged to serovar 1/2a. In the dairy silo milk five clonal types were found more frequently and for a longer period than the others. No Listeria species were found in any other samples from the plant. 相似文献
2.
Alejandra A. Latorre Jo Ann S. Van Kessel Jeffrey S. Karns Michael J. Zurakowski Abani K. Pradhan Ruth N. Zadoks Kathryn J. Boor Ynte H. Schukken 《Applied and environmental microbiology》2009,75(5):1315-1323
A longitudinal study aimed to detect Listeria monocytogenes on a New York State dairy farm was conducted between February 2004 and July 2007. Fecal samples were collected every 6 months from all lactating cows. Approximately 20 environmental samples were obtained every 3 months. Bulk tank milk samples and in-line milk filter samples were obtained weekly. Samples from milking equipment and the milking parlor environment were obtained in May 2007. Fifty-one of 715 fecal samples (7.1%) and 22 of 303 environmental samples (7.3%) were positive for L. monocytogenes. A total of 73 of 108 in-line milk filter samples (67.6%) and 34 of 172 bulk tank milk samples (19.7%) were positive for L. monocytogenes. Listeria monocytogenes was isolated from 6 of 40 (15%) sampling sites in the milking parlor and milking equipment. In-line milk filter samples had a greater proportion of L. monocytogenes than did bulk tank milk samples (P < 0.05) and samples from other sources (P < 0.05). The proportion of L. monocytogenes-positive samples was greater among bulk tank milk samples than among fecal or environmental samples (P < 0.05). Analysis of 60 isolates by pulsed-field gel electrophoresis (PFGE) yielded 23 PFGE types after digestion with AscI and ApaI endonucleases. Three PFGE types of L. monocytogenes were repeatedly found in longitudinally collected samples from bulk tank milk and in-line milk filters.Listeria monocytogenes can cause listeriosis in humans. This illness, despite being underreported, is an important public health concern in the United States (23) and worldwide. According to provisional incidence data provided by the Centers for Disease Control and Prevention (CDC), 762 cases of listeriosis were reported in the United States in 2007. In previous years (2003 to 2006), the number of reported annual listeriosis cases in the United States ranged between 696 and 896 cases per year (5).Exposure to food-borne L. monocytogenes may cause fever, muscle aches, and gastroenteritis (30), but does not usually cause septicemic illness in healthy nonpregnant individuals (7, 30). Elderly and immunocompromised people, however, are susceptible to listeriosis (22, 10), and they may develop more-severe symptoms (10). Listeriosis in pregnant women may cause abortion (22, 30) or neonatal death (22).Dairy products have been identified as the source of several human listeriosis outbreaks (4, 7, 10, 22). Listeria is ubiquitous on dairy farms (26), and it has been isolated from cows'' feces, feed (3, 26), and milk (21, 35). In ruminants, L. monocytogenes infections may be asymptomatic or clinical. Clinical cases typically present with encephalitis and uterine infections, often resulting in abortion (26, 39). Both clinically infected and healthy animals have been reported to excrete L. monocytogenes in their feces (20), which could eventually cause contamination of the bulk tank milk or milk-processing premises (39).On-farm epidemiologic research provides science-based information to improve farming and management practices. The Regional Dairy Quality Management Alliance (RDQMA) launched a combined United States Department of Agriculture (USDA)-RDQMA pilot project in January 2004 to scientifically validate intervention strategies in support of recommended best management practices among northeast dairy farms. The primary goal of the project was to track dynamics of infectious microorganisms on well-characterized dairy farms. Target species included Salmonella spp. (6, 36, 37), Mycobacterium avium subsp. paratuberculosis (13, 24), and L. monocytogenes.The objectives of this study were to describe the presence of L. monocytogenes on a dairy farm over time and to perform molecular subtyping by pulsed-field gel electrophoresis (PFGE) on L. monocytogenes isolates obtained from bulk tank milk, milk filters, milking equipment, feces, and the environmental samples to identify diversity among L. monocytogenes strains, persistence, and potential sources of bulk tank milk contamination. 相似文献
3.
Epidemic Clone I-Specific Genetic Markers in Strains of Listeria monocytogenes Serotype 4b from Foods 下载免费PDF全文
Suleyman Yildirim Wen Lin Anthony D. Hitchins Lee-Ann Jaykus Eric Altermann Todd R. Klaenhammer Sophia Kathariou 《Applied microbiology》2004,70(7):4158-4164
Listeria monocytogenes contamination of ready-to-eat foods has been implicated in numerous outbreaks of food-borne listeriosis. However, the health hazards posed by L. monocytogenes detected in foods may vary, and speculations exist that strains actually implicated in illness may constitute only a fraction of those that contaminate foods. In this study, examination of 34 serogroup 4 (putative or confirmed serotype 4b) isolates of L. monocytogenes obtained from various foods and food-processing environments, without known implication in illness, revealed that many of these strains had methylation of cytosines at GATC sites in the genome, rendering their DNA resistant to digestion by the restriction endonuclease Sau3AI. These strains also harbored a gene cassette with putative restriction-modification system genes as well as other, genomically unlinked genetic markers characteristic of the major epidemic-associated lineage of L. monocytogenes (epidemic clone I), implicated in numerous outbreaks in Europe and North America. This may reflect a relatively high fitness of strains with these genetic markers in foods and food-related environments relative to other serotype 4b strains and may partially account for the repeated involvement of such strains in human food-borne listeriosis. 相似文献
4.
5.
Borucki MK Gay CC Reynolds J McElwain KL Kim SH Call DR Knowles DP 《Applied and environmental microbiology》2005,71(10):5893-5899
Listeria monocytogenes is a significant food-borne human and veterinary pathogen. Contaminated silage commonly leads to disease in livestock, but the pervasive nature of the bacterium can make it difficult to identify the source of infection. An investigation of bovine listeriosis that occurred on a Pacific Northwest dairy farm ("farm A") revealed that the clinical strain was closely related to fecal strains from asymptomatic cows, and that farm environment was heavily contaminated with a diversity of L. monocytogenes strains. In addition, the farm A clinical strain was closely related to clinical and environmental strains obtained 1 year prior from a second Northwest dairy farm ("farm B"). To investigate the source(s) of contamination on farm A, environmental samples were collected from farm A at two time points. Pulsed-field gel electrophoresis characterization of 538 isolates obtained from that farm identified 57 different AscI pulsovars. Fecal isolates obtained from individual cows were the most genetically diverse, with up to 94% of fecal samples containing more than one pulsovar. The maximum numbers of pulsovars and serotypes isolated from a fecal sample of one cow were 6 and 4, respectively. Serotype 1/2a was isolated most frequently at both time points. Microarray genotyping of bovine listeriosis, fecal, and silage strains from both farms identified four probes that differentiated listeriosis strains from environmental strains; however, no probe was common to both bovine listeriosis strains. 相似文献
6.
Unnerstad H. Romell A. Ericsson H. Danielsson-Tham M. L. Tham W. 《Acta veterinaria Scandinavica》2000,41(2):167-171
Faecal samples from 102 clinically healthy dairy cows, representing 34 farms in the Swedish province of Uppsala, were analysed for the presence of Listeria spp. using an enrichment procedure. Listeria monocytogenes was isolated from six (6%) and L. innocua from 2 (2%) cows. From each of the 6 samples positive for L. monocytogenes, 5 isolates were further characterised by restriction enzyme analysis using the 3 enzymes Apa I, Sma I, and Asc I, followed by pulsed-field gel electrophoresis. Three of the L. monocytogenes positive cows lived at the same farm, and they all harboured the same clonal type. One of these 3 cows also harboured a further clonal type of L. monocytogenes. The fact that one of the cows harboured 2 different clonal types of L. monocytogenes is important from an epidemiological point of view when routes of infection are to be investigated. 相似文献
7.
Ermolaeva SA 《Genetika》2001,37(3):286-293
8.
9.
Monica K. Borucki Jason D. Peppin David White Frank Loge Douglas R. Call 《Applied microbiology》2003,69(12):7336-7342
Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence. 相似文献
10.
Natural Atypical Listeria innocua Strains with Listeria monocytogenes Pathogenicity Island 1 Genes 总被引:1,自引:0,他引:1 下载免费PDF全文
J. Johnson K. Jinneman G. Stelma B. G. Smith D. Lye J. Messer J. Ulaszek L. Evsen S. Gendel R. W. Bennett B. Swaminathan J. Pruckler A. Steigerwalt S. Kathariou S. Yildirim D. Volokhov A. Rasooly V. Chizhikov M. Wiedmann E. Fortes R. E. Duvall A. D. Hitchins 《Applied microbiology》2004,70(7):4256-4266
Identification of bona fide Listeria isolates into the six species of the genus normally requires only a few tests. Aberrant isolates do occur, but even then only one or two extra confirmatory tests are generally needed for identification to species level. We have discovered a hemolytic-positive, rhamnose and xylose fermentation-negative Listeria strain with surprising recalcitrance to identification to the species level due to contradictory results in standard confirmatory tests. The issue had to be resolved by using total DNA-DNA hybridization testing and then confirmed by further specific PCR-based tests including a Listeria microarray assay. The results show that this isolate is indeed a novel one. Its discovery provides the first fully documented instance of a hemolytic Listeria innocua strain. This species, by definition, is typically nonhemolytic. The L. innocua isolate contains all the members of the PrfA-regulated virulence gene cluster (Listeria pathogenicity island 1) of L. monocytogenes. It is avirulent in the mouse pathogenicity test. Avirulence is likely at least partly due to the absence of the L. monocytogenes-specific allele of iap, as well as the absence of inlA, inlB, inlC, and daaA. At least two of the virulence cluster genes, hly and plcA, which encode the L. monocytogenes hemolysin (listeriolysin O) and inositol-specific phospholipase C, respectively, are phenotypically expressed in this L. innocua strain. The detection by PCR assays of specific L. innocua genes (lin0198, lin0372, lin0419, lin0558, lin1068, lin1073, lin1074, lin2454, and lin2693) and noncoding intergenic regions (lin0454-lin0455 and nadA-lin2134) in the strain is consistent with its L. innocua DNA-DNA hybridization identity. Additional distinctly different hemolytic L. innocua strains were also studied. 相似文献
11.
Acid and alkaline phosphatase activities of microbial films colonizing glass surfaces were studied. Films developed in water with a high organic content were characterized by a high ratio of alkaline to acid phosphatase activity. Alkaline phosphatase activity of these films was enhanced by a period of prior heating at 60°C for 10 min. Microbial films developed in poorer water exhibited higher proportions of acid phosphatases and heat treatment had a less favourable effect on the alkaline phosphatase activity. 相似文献
12.
13.
14.
15.
Sofia Poimenidou Charalambia A. Belessi Efstathios D. Giaouris Antonia S. Gounadaki George-John E. Nychas Panagiotis N. Skandamis 《Applied and environmental microbiology》2009,75(22):7182-7188
The presence of pathogens in dairy products is often associated with contamination via bacteria attached to food-processing equipment, especially from areas where cleaning/sanitation is difficult. In this study, the attachment of Listeria monocytogenes on stainless steel (SS), followed by detachment and growth in foods, was evaluated under conditions simulating a dairy processing environment. Initially, SS coupons were immersed in milk, vanilla custard, and yogurt inoculated with the pathogen (107 CFU/ml or CFU/g) and incubated at two temperatures (5 and 20°C) for 7 days. By the end of incubation, cells were mechanically detached from coupons and used to inoculate freshly pasteurized milk which was subsequently stored at 5°C for 20 days. The suspended cells in all three products in which SS coupons were immersed were also used to inoculate freshly pasteurized milk (5°C for 20 days). When SS coupons were immersed in milk, shorter lag phases were obtained for detached than for planktonically grown cells, regardless of the preincubation temperature (5 or 20°C). The opposite was observed when custard incubated at 20°C was used to prepare the two types of inocula. However, in this case, a significant increase in growth rate was also evident when the inoculum was derived from detached cells. In another parallel study, while L. monocytogenes was not detectable on SS coupons after 7 days of incubation (at 5°C) in inoculated yogurt, marked detachment and growth were observed when these coupons were subsequently transferred and incubated at 5°C in fresh milk or/and custard. Overall, the results obtained extend our knowledge on the risk related to contamination of dairy products with detached L. monocytogenes cells.Listeria monocytogenes is ubiquitous in nature due to its inherent ability to survive and grow under a wide range of adverse environmental conditions, such as refrigeration temperatures, high acidity and salinity, and reduced water activity (16). This microorganism is a major concern for the food industry, since it is the causal agent of listeriosis, a severe disease with high hospitalization and case-fatality rates (approximately 91% and 30%, respectively) (25). According to the European Centre for Disease Control and Prevention, listeriosis was the fifth most common zoonotic infection in Europe in 2006 (14), while it accounts for approximately 28% of the deaths resulting from food-borne illnesses in the United States (34).In the food industry, inadequately cleaned food-processing equipment (e.g., stainless steel [SS] surfaces) constitutes a potential source for L. monocytogenes, resulting in contamination of foods which come in contact with such equipment (36). Even though adherence to strict sanitation practices should minimize the risk of survivors on surfaces, existing evidence suggests that a considerable risk may occur in sites of processing plants which are not easily cleaned or sanitized, such as those that do not allow direct access of sanitation equipment for abrasion (e.g., edges, convex surfaces, etc.) (43, 45). Attachment to surfaces is believed to be important for the survival and persistence of this pathogen in such environments, with some strains able to remain on equipment surfaces for several years (32, 37). Thus, L. monocytogenes has been shown to adhere to and form biofilms on various food contact surfaces under laboratory conditions (3, 42, 44). Furthermore, attached L. monocytogenes cells are more difficult to mechanically remove from surfaces and are more resistant to sanitizers than their free-living counterparts (15, 40).Dairy products have been implicated in outbreaks of listeriosis (10, 31). However, most of the in vitro studies of the growth and survival of L. monocytogenes in such products have used strains previously cultivated planktonically (41). Although the results obtained in these studies are of great value, such studies have not taken into consideration that cells contaminating a product in a food-processing environment are usually attached to surfaces enclosed in biofilms. Limited information is available on the kinetic behavior of L. monocytogenes in dairy products inoculated with detached cells, although preincubation conditions have been shown to influence subsequent growth and survival of L. monocytogenes in foods (7, 13, 17, 18). Given the major physiological differences between attached and planktonic cells (15, 27, 48), an effect on subsequent growth might be possible.Considering the above, the main objective of the present study was to assess the influence of L. monocytogenes preincubation conditions with respect to mode of growth (either attached to SS or grown suspended in dairy products) on the subsequent growth of this pathogen in milk (at 5°C for 20 days). To prepare the two types of inocula, two different growth media (milk and vanilla custard) and temperatures (5 and 20°C) were studied. The unforced detachment of L. monocytogenes cells from SS coupons and growth in two dairy products (milk and custard) at 5°C for 20 days was also evaluated. In the latter case, previous attachment of cells to the coupons was done under especially adverse preincubation conditions (in yogurt at 5°C for 7 days). 相似文献
16.
Genetic Diversity of Campylobacter jejuni Isolates from Farm Animals and the Farm Environment 总被引:2,自引:0,他引:2 下载免费PDF全文
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease. 相似文献
17.
Satoko Miya Hajime Takahashi Miku Nakagawa Takashi Kuda Shizunobu Igimi Bon Kimura 《PloS one》2015,10(3)
Listeria monocytogenes causes foodborne illnesses through consumption of ready-to-eat foods. Although 135-201annual listeriosis cases have been estimated in Japan, the details regarding the clinical isolates such as infection source, virulence level, and other genetic characteristics, are not known. In order to uncover the trends of listeriosis in Japan and use the knowledge for prevention measures to be taken, the genetic characteristics of the past human clinical isolates needs to be elucidated. For this purpose, multilocus tandem-repeat sequence analysis (MLTSA) and multi-virulence-locus sequence typing (MVLST) were used in this study. The clinical isolates showed a variety of genetically distant genotypes, indicating they were from sporadic cases. However, the MVLST profiles of 7 clinical isolates were identical to those of epidemic clone (EC) I isolates, which have caused several serious outbreaks in other countries, suggesting the possibility that they have strong virulence potential and originated from a single outbreak. Moreover, 6 Japanese food isolates shared their genotypes with ECI isolates, indicating that there may be risks for listeriosis outbreak in Japan. This is the first investigational study on genetic characteristics of Japanese listeriosis isolates. The listeriosis cases happened in the past are presumably sporadic, but it is still possible that some isolates with strong virulence potential have caused listeriosis outbreaks, and future listeriosis risks also exist. 相似文献
18.
19.
Hiroshi Ueno Keiichi Yokota Takanori Arai Yasukazu Muramatsu Hiroyuki Taniyama Takashi Iida Chiharu Morita 《Microbiology and immunology》1996,40(2):121-124
The prevalence of Listeria monocytogenes in the environment of dairy farms was surveyed from December 1993 to June 1994 in one city of Hokkaido. L. monocytogenes was isolated from 3 out of 5 farms investigated. Serovar 4b organism was isolated from the brain stem of a cow from one farm which was clinically diagnosed as having listeriosis. The same serovar of L. monocytogenes was also isolated from the rectal contents of a healthy cow, straw on the floor, straw in the barn, and silage scattered around the silo from the same farm. At another farm, with no reported cases of bovine listeriosis, serovar 1/2 organism was isolated from the same types of samples as the above mentioned farm except from straw on the floor. The difference in the isolation rates of the organism from straw on the floor between the two farms (22%: 5/23 vs 0%: 0/24) is considered to be caused by the different feeding methods of silage between the two farms. 相似文献
20.
Janet R. Donaldson Bindu Nanduri Shane C. Burgess Mark L. Lawrence 《Applied microbiology》2009,75(2):366-373
Listeria monocytogenes is a gram-positive, food-borne pathogen that causes disease in both humans and animals. There are three major genetic lineages of L. monocytogenes and 13 serovars. To further our understanding of the differences that exist between different genetic lineages/serovars of L. monocytogenes, we analyzed the global protein expression of the serotype 1/2a strain EGD and the serotype 4b strain F2365 during early-stationary-phase growth at 37°C. Using multidimensional protein identification technology with electrospray ionization tandem mass spectrometry, we identified 1,754 proteins from EGD and 1,427 proteins from F2365, of which 1,077 were common to both. Analysis of proteins that had significantly altered expression between strains revealed potential biological differences between these two L. monocytogenes strains. In particular, the strains differed in expression of proteins involved in cell wall physiology and flagellar biosynthesis, as well as DNA repair proteins and stress response proteins. 相似文献