首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Concanavalin A (Con A) exists in dimeric state at pH 5. In concentration range 20-60% (v/v) 2,2,2-trifluoroethanol (TFE) and 2-40% (v/v) 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), Con A at pH 5.0 shows visible aggregation. However, when succinyl Con A was used, no aggregation was observed in the entire concentration range of fluoroalcohols (0-90% v/v TFE and HFIP) and resulted in stable alpha-helix formation. Temperature-induced concentration-dependent aggregation in Con A was also found to be prevented/reduced in succinylated form. Possible role of electrostatic repulsion among residues in the prevention of hydrophobically driven aggregation has been discussed. Results indicate that succinylation of a protein resulted in greater stability (in both beta-sheet and alpha-helical forms) against alcohol-induced and temperature-induced concentration-dependent aggregation and this observation may play significant role in amyloid-forming proteins. Effect of TFE and HFIP on the conformation of a dimeric protein, Succinylated Con A, has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of hydrophobic dye ANS (8-anilinonaphthalene-1-sulfonic acid). Far UV-CD, a probe for secondary structure shows loss of native secondary structure in the presence of low concentration of both the alcohols, TFE (10% v/v) and HFIP (4% v/v). Upon addition of higher concentration of these alcohols, Succinylated Con A exhibited transformation from beta-sheet to alpha-helical structure. Intrinsic tryptophan fluorescence studies, ANS binding and near UV-CD experiments indicate the protein is more expanded, have more exposed hydrophobic surfaces and highly disrupted tertiary structure at 60% (v/v) TFE and 30% (v/v) HFIP concentrations. Taken together, these results it might be concluded that TFE and HFIP induce two intermediate states at their low and high concentrations in Succinyl Con A.  相似文献   

2.
The thermodynamic and spectroscopic properties of a cysteine-free variant of Escherichia coli dihydrofolate reductase (AS-DHFR) were investigated using the combined effects of urea and temperature as denaturing agents. Circular dichroism (CD), absorption, and fluorescence spectra were recorded during temperature-induced unfolding at different urea concentrations and during urea-induced unfolding at different temperatures. The first three vectors obtained by singular-value decomposition of each set of unfolding spectra were incorporated into a global analysis of a unique thermodynamic model. Although individual unfolding profiles can be described as a two-state process, a simultaneous fit of 99 vectors requires a three-state model as the minimal scheme to describe the unfolding reaction along both perturbation axes. The model, which involves native (N), intermediate (I), and unfolded (U) states, predicts a maximum apparent stability, DeltaG degrees (NU), of 6 kcal mol(-)(1) at 15 degrees C, an apparent m(NU) value of 2 kcal mol(-)(1) M(-)(1), and an apparent heat capacity change, DeltaC(p)()(-NU), of 2.5 kcal mol(-)(1) K(-)(1). The intermediate species has a maximum stability of approximately 2 kcal mol(-)(1) and a compactness closer to that of the native than to that of the unfolded state. The population of the intermediate is maximal ( approximately 70%) around 50 degrees C and falls below the limits of detection of > or =2 M urea or at temperatures of <35 or >65 degrees C. The fluorescence properties of the equilibrium intermediate resemble those of a transient intermediate detected during refolding from the urea-denatured state, suggesting that a tryptophan-containing hydrophobic cluster in the adenosine-binding domain plays a key role in both the equilibrium and kinetic reactions. The CD spectroscopic properties of the native state reveal the presence of two principal isoforms that differ in ligand binding affinities and in the packing of the adenosine-binding domain. The relative populations of these species change slightly with temperature and do not depend on the urea concentration, implying that the two native isoforms are well-structured and compact. Global analysis of data from multiple spectroscopic probes and several methods of unfolding is a powerful tool for revealing structural and thermodynamic properties of partially and fully folded forms of DHFR.  相似文献   

3.
The sodium perchlorate-induced conformational transition of Staphylococcal nuclease has been monitored by both circular dichroism (CD) and fluorescence spectroscopy. The perchlorate-induced transition is cooperative as observed by both spectroscopic signals. However, the protein loses only about one-third of its native far-UV CD signal at high perchlorate concentrations, indicating that a significant amount of secondary structure remains in the post-transition state. The remaining CD signal can be further diminished in a cooperative manner by the addition of the strong denaturant, urea. Near-UV CD spectra clearly show that the protein loses its tertiary structure in the perchlorate-induced denatured state. The perchlorate-induced transition curves were fit to the standard two-state model and the standard free energy change and m value of the transition are 2.3kcal/mol and 1.8kcal/(molM), respectively. By comparison, the urea-induced unfolding of Staphylococcal nuclease (in the absence of perchlorate) yields an unfolding free energy change, DeltaG(0,un), of 5.6kcal/mol and an m value of 2.3kcal/(molM). Thus, the thermodynamic state obtained in the post-transition region of perchlorate-induced conformation transition has a significantly lower free energy change, a high content of secondary structure, and diminished tertiary structure. These results suggest that the perchlorate-induced denatured state is a partially folded equilibrium state. Whether this intermediate is relevant to the folding/unfolding path under standard conditions is unknown at this time.  相似文献   

4.
A formation of a molten globule in the unfolding of ribonuclease A could be considered as an evidence supporting a hypothesis on the existence of such intermediates on the pathway of a protein folding. Using a novel technique (tritium labeling method) we have showed that the ribonuclease A equilibrium unfolding in urea and guanidinium chloride (GuCl) solutions proceeds through a formation of intermediates whose properties (compactness, retention of the larger part hydrophobic core, secondary structure, and native-like folding pattern) correspond to the fundamental characteristics of the molten globule state. The both intermediates are the “wet” molten globules (the globule interior contains the water molecules). The results reveal the noticeable distinctions in intermediates structure, first of all, in the extent of their compactness. The urea intermediate is less compact than that in GuCl. It is shown that the refolding of the protein denatured by GuCl results in the formation of the intermediate which enzyme activity is virtually the same as the activity of the native protein.  相似文献   

5.
6.
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274-329 K. At 298 K, values of deltaGdegrees , deltaCp, and Cm were 3.1+/-0.2 kcal mol(-1), 5.9+/-0.8 kcal mol(-1) K(-1) (15.9 cal (mol-residue)(-1) K(-1)), and 0.8 M, respectively, at pH 3.0 and 14.5+/-0.4 kcal mol(-1), 8.3+/-0.7 kcal mol(-1) K(-1) (22.4 kcal (mol-residue)(-1) K(-1)), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of deltaGdegrees and deltaCp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of deltaCp per mol-residue for the molten globule is comparable to corresponding values of deltaCp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of deltaCp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.  相似文献   

7.
Ahmad B  Ansari MA  Sen P  Khan RH 《Biopolymers》2006,81(5):350-359
The effect of low, medium, and high molecular weight poly(ethylene glycol) (e.g., PEG-400, -6000, and -20,000) on the structure of the acid unfolded state of unmodified stem bromelain (SB) obtained at pH 2.0 has been studied by various spectroscopic methods. The conformation of stem bromelain at pH 2.0 exhibits substantial loss of secondary structure and almost complete loss of native tertiary contacts and has been termed the acid unfolded state (A(U)). Addition of PEG-400 to A(U) led to an increase in the mean residue ellipticity (MRE) value at 222 nm, indicating formation of alpha-helical structure. On the other hand, PEG-6000 and 20,000 led to a decrease in the MRE value at 222 nm, indicating unfolding of the A(U) state. Interestingly, at 70% (w/v) PEG-400 and 40% (w/v) PEG-20,000, MRE values at 222 nm almost approach the native state at pH 7.0 and the unfolded state (6 M GnHCl) of stem bromelain, respectively. The probes for tertiary structure showed formation of nonnative tertiary contacts in the presence of 70% (w/v) PEG-400, while 40% (w/v) PEG-6000 and 20,000 were found to stabilize the unfolded state of SB. An increase in binding of 1-anilino 8-naphthalene sulfonic acid and a decrease in fractional accessibility of tryptophan residues (f(a)) compared to A(U) in the presence of 70% PEG-400 indicate that the PEG-400-induced state has a significant amount of exposed hydrophobic patches and is more compact than A(U). The results imply that the PEG-400-induced state has characteristics of molten globule, and higher molecular weight PEGs led to the unfolding of the A(U) state.  相似文献   

8.
The stability of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) is strongly dependent upon pH. Below pH 4.2, the folded and unfolded states are both populated significantly. Their interconversion is slow on the NMR chemical shift time-scale and separate, well-resolved resonances from each state are observed. This allows the hydrodynamic properties of both states to be studied under identical conditions by using pulse field gradient NMR experiments. Hydrodynamic radii of the folded, unfolded and urea denatured protein molecules at pD 3.8 have been derived. The acid-denatured protein has a significantly smaller hydrodynamic radius, 28.2A, compared to that of the urea-denatured protein, which is 33.6A at pD 3.8. Far-UV CD spectra show that there is more residual secondary structure retained in the acid-denatured ensemble than in the urea-denatured one. ANS binding experiments and analysis of the CD data show that this acid-denatured species is not a molten globule state. Diffusion measurements of CTL9 were conducted over the pD range from 2.1 to 7.0. The hydrodynamic radii of both the folded and the acid-unfolded protein start to increase below pD 4, with the radius of hydration of the acid-unfolded state increasing from 25.1A at pD 4.2 to 33.5A at pD 2.1. The hydrodynamic radius of the urea-denatured protein is much less sensitive to pH. The unfolded protein at pD 2.1, no urea, has almost the same hydrodynamic radius as the urea-denatured protein at pD 3.8. The CD spectra, however, show significant differences in residual secondary structure, and the acid-denatured state contains more structure.  相似文献   

9.
It has long been understood that the proline residue has lower configurational entropy than any other amino acid residue due to pyrrolidine ring hindrance. The peptide bond between proline and its preceding amino acid (Xaa-Pro) typically exists as a mixture of cis- and trans-isomers in the unfolded protein. Cis–trans isomerization of Xaa-Pro peptide bonds are infrequent, but still occur in folded proteins. Therefore, the effects of the cis–trans isomerization equilibrium in both unfolded and folded states should be taken into account when estimating the stability contribution of a specific proline residue. In order to study the stability contribution of the four proline residues to the hyperthermophilic protein Ssh10b, in this work, we expressed and purified a series of Pro→Ala mutants of Ssh10b, and performed correlative unfolding experiments in detail. We proposed a new unfolding model including proline isomerization. The model predicts that the contribution of a proline residue to protein stability is associated with the thermodynamic equilibrium between cis- and trans-isomers both in the unfolded and folded states, agreeing well with the experimental results.  相似文献   

10.
The effect of pressure on the unfolding of bovine alpha-lactalbumin was investigated by ultraviolet absorption methods. The change of molar volume associated with unfolding, deltaV, was measured in the presence or absence of guanidine hydrochloride at pH 7. The deltaV was estimated to be -63 cm3/mol in the absence of a chemical denaturant. While in the presence of guanidine hydrochloride (GuHCl), it was found that deltaV was -66 cm3/mol at 25 degrees C and was independent of the concentration of GuHCl, despite the fact that the molten globule fraction in the total unfolding product decreased with the increase of GuHCl concentration. The results indicate that the volume of alpha-lactalbumin only changes at the transition from a native to a molten globule state, and almost no volume change has been found during the transition from a molten globule to the unfolded state.  相似文献   

11.
Urea-induced unfolding of Escherichia coli citrate synthase occurs in two phases, as monitored by circular dichroism at 222 nm (measuring secondary structure) or by tryptophan fluorescence. In this paper we characterize the intermediate state, which retains about 40% of the ellipticity of the native state, and is stable between 2.5 M and 5.5 M urea, approximately. This intermediate binds significant amounts of the probe for hydrophobic surfaces, anilinonaphthalene sulfonate, but forms aggregates at least as high as an octamer, as shown by transverse urea gradient polyacrylamide electrophoresis. Thermal denaturation of E. coli citrate synthase also produces an intermediate at temperatures near 60 degrees C, which also retains about 40% of the native ellipticity and forms aggregates, as measured by electrospray-ionization/time-of-flight mass spectrometry. We have used a collection of "cavity-forming" mutant proteins, in which bulky buried hydrophobic residues are replaced by alanines, to explore the nature of the intermediate state further. A certain amount of these mutant proteins shows a destabilized intermediate, as measured by the urea concentration range in which the intermediate is observed. These mutants are found in parts of the citrate synthase sequence that, in a native state, form helices G, M, N, Q, R, and S. From this and other evidence, it is argued that the intermediate state is an aggregated state in which these six helices, or parts of them, remain folded, and that formation of this intermediate is also likely to be a key step in the folding of E. coli citrate synthase.  相似文献   

12.
Chedad A  Van Dael H  Vanhooren A  Hanssens I 《Biochemistry》2005,44(46):15129-15138
Equilibrium circular dichroism and kinetic stopped-flow fluorescence studies on the stability and the folding kinetics of a set of Trp to Phe mutants of goat alpha-lactalbumin (GLA) were used to characterize the native, intermediate, and transition states of these constructs. GLA contains four tryptophan residues, three of which, Trp26, Trp104, and Trp118, are located in the alpha-domain, while the fourth, Trp60, is located in the beta-domain. Trp26, Trp60, and Trp104 are part of a hydrophobic cluster, whereas Trp118 is situated in a more flexible region near the C-terminal end of the protein. In each case, the mutation leads to a reduction in the overall stability, but only for W26F and W60F is an equilibrium intermediate observed in guanidine hydrochloride-induced unfolding experiments. In kinetic refolding experiments, however, for all samples a burst phase is observed, the amplitude of which depends on the specific mutation. Refolding and unfolding kinetics can adequately be described by a sequential three-state mechanism. phi value analysis showed that the local structure around Trp26, Trp60, and Trp104 is formed in the intermediate and in the transition state of the folding reaction, while around Trp118 no persistent native contacts are observed. From these findings, we conclude that, although hydrophobicity is a major driving force for folding, minor steric changes induced by point mutation can considerably influence the overall stability and the folding process of the protein.  相似文献   

13.
Naeem A  Fatima S  Khan RH 《Biopolymers》2006,83(1):1-10
A systematic investigation of the effects of detergents [Sodium dodecyl sulphate (SDS), hexa decyltrimethyl ammonium bromide (CTAB) and Tween-20] on the structure of acid-unfolded papain (EC.3.4.22.2) was made using circular dichroism (CD), intrinsic tryptophan fluorescence, and 1-anilino 8-sulfonic acid (ANS) binding. At pH 2, papain exhibits a substantial amount of secondary structure and is relatively less denatured compared with 6 M GdnHCl (guanidine hydrochloride) but loses the persistent tertiary contacts of the native state. Addition of detergents caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity value at 208 and 222 nm. Near-UV CD spectra also showed the regain of native-like spectral features in the presence of 8 mM SDS and 3.5 mM CTAB. Induction of structure in acid-unfolded papain was greater in the presence SDS followed by CTAB and Tween-20. Intrinsic tryptophan fluorescence studies indicate the change in the environment of tryptophan residues upon addition of detergents to acid-unfolded papain. Addition of 8 mM SDS resulted in the loss of ANS binding sites exhibited by a decrease in ANS fluorescence intensity, suggesting the burial of hydrophobic patches. Maximum ANS binding was obtained in the presence of 0.1 mM Tween-20 followed by CTAB, indicating a compact "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acid-unfolded papain in the presence of detergents showed the partial recovery of enzymatic activity. These results suggest that papain at low pH and in the presence of SDS exists in a partially folded state characterized by native-like secondary structure and tertiary folds. While in the presence of Tween, acid-unfolded papain exists as a compact intermediate with molten-globule-like characteristics, viz. enhanced hydrophobic surface area and retention of secondary structure. While in the presence of CTAB it exists as a compact intermediate with regain of native-like secondary and partial tertiary structure as well as high ANS binding with the partially recovered enzymatic activity, i.e., a molten globule state with tertiary folds.  相似文献   

14.
The absence of detectable kinetic and equilibrium folding intermediates by optical probes is commonly taken to indicate that protein folding is a two-state process. However, for some small proteins with apparent two-state behavior, unfolding intermediates have been identified in native-state hydrogen exchange or kinetic unfolding experiments monitored by nuclear magnetic resonance. Rd-apocytochrome b(562), a four-helix bundle, is one such protein. Here, we found another unfolding intermediate for Rd-apocytochrome b(562). It is based on a cooperative transition of (15)N chemical shifts of amide protons as a function of urea concentrations before the global unfolding. We have solved the high-resolution structure of the protein at 2.8 M urea, which is after this cooperative transition but before the global unfolding. All four helices remained intact, but a number of hydrophobic core residues repacked. This intermediate provides a possible structural interpretation for the kinetic unfolding intermediates observed using nuclear magnetic resonance methods for several proteins and has important implications for theoretical studies of protein folding.  相似文献   

15.
Stable intermediate states and high energy barriers in the unfolding of GFP   总被引:2,自引:0,他引:2  
We present a study of the denaturation of a truncated, cycle3 variant of green fluorescent protein (GFP). Chemical denaturation is used to unfold the protein, with changes in structure being monitored by the green fluorescence, tyrosine fluorescence and far-UV circular dichroism. The results show that the denaturation behaviour of GFP is complex compared to many small proteins: equilibrium is established only very slowly, over the time course of weeks, suggesting that there are high folding/unfolding energy barriers. Unfolding kinetics confirm that the rates of unfolding at low concentrations of denaturant are very low, consistent with the slow establishment of the equilibrium. In addition, we find that GFP significantly populates an intermediate state under equilibrium conditions, which is compact and stable with respect to the unfolded state (m(IU)=4.6 kcal mol(-1) M(-1) and Delta G(IU)=12.5 kcal mol(-1)). The global and local stability of GFP was probed further by measuring the hydrogen/deuterium (H/D) NMR exchange rates of more than 157 assigned amide protons. Analysis at two different values of pH showed that amide protons within the beta-barrel structure exchange at the EX2 limit, consequently, free energies of exchange could be calculated and compared to those obtained from the denaturation-curve studies providing further support for the three-state model and the existence of a stable intermediate state. Analysis reveals that amide protons in beta-strands 7, 8, 9 and 10 have, on average, higher exchange rates than others in the beta-barrel, suggesting that there is greater flexibility in this region of the protein. Forty or so amide protons were found which do not undergo significant exchange even after several months and these are clustered into a core region encompassing most of the beta-strands, at least at one end of the barrel structure. It is likely that these residues play an important role in stabilizing the structure of the intermediate state. The intermediate state observed in the chemical denaturation studies described here, is similar to that observed at pH 4 in other studies.  相似文献   

16.
A series of explicit-solvent molecular dynamics simulations of the protein ubiquitin are reported, which investigate the effect of environmental factors (presence of methanol cosolvent in the aqueous solution, neutral or low pH value, room or elevated temperature) on the structure, stability, and dynamics of the protein. The simulations are initiated either from the native structure of the protein or from a model of a partially folded state (A-state) that is known to exist at low pH in methanol-water mixtures. The main results of the simulations are: (1) The ubiquitin native structure is remarkably stable at neutral pH in water; (2) the addition of the methanol cosolvent enhances the stability of the secondary structure but weakens tertiary interactions within the protein; (3) this influence of methanol on the protein structure is enhanced at low pH, while the effect of lowering the pH in pure water is limited; and (4) the A-state of ubiquitin can be described as a set of relatively rigid secondary structure elements (a native-like beta-sheet and native-like alpha-helix plus two nonnative alpha-helices) connected by flexible linkers.  相似文献   

17.
We study the unfolding of a parallel G-quadruplex from human telomeric DNA by mechanical stretching using steered molecular dynamics (MD) simulation. We find that the force curves and unfolding processes strongly depend on the pulling sites. With pulling sites located on the sugar-phosphate backbone, the force-extension curve shows a single peak and the unfolding proceeds sequentially. Pulling sites located on the terminal nucleobases lead to a force-extension curve with two peaks and the unfolding is more cooperative. Simulations of the refolding of partially unfolded quadruplexes show very different behavior for the two different pulling modalities. In particular, starting from an unfolded state prepared by nucleobase pulling leads to a long-lived intermediate state whose existence is also corroborated by the free energy profile computed with the Jarzynski equation. Based on this observation, we propose a novel folding pathway for parallel G-quadruplexes with the human telomere sequence.  相似文献   

18.
Addition of 8-anilino-1-naphthalenesulfonate (ANS) to acid-denatured pectate lyase C (pelC) leads to a large increase in the fluorescence quantum yield near 480 nm. The conventional interpretation of such an observation is that the ANS is binding to a partially folded intermediate such as a molten globule. Far-ultraviolet circular dichroism demonstrates that the enhanced fluorescence results from the induction of a partially folded protein species that adopts a large fraction of native-like secondary structure on binding ANS. Thus, ANS does not act as a probe to detect a partially folded species, but induces such a species. Near-ultraviolet circular dichroism suggests that ANS is bound to the protein in a specific conformation. The mechanism of ANS binding and structure induction was probed. The interaction of acid-unfolded pelC with several ANS analogs was investigated. The results strongly indicate that the combined effects of hydrophobic and electrostatic interactions account for the relatively high binding affinity of ANS for acid-unfolded pelC. These results demonstrate the need for caution in interpreting enhancement of ANS fluorescence as evidence for the presence of molten globule or other partially folded protein intermediates.  相似文献   

19.
Folding mechanisms of a variant of green fluorescent protein (F99S/M153T/V163A) were investigated by a wide variety of spectroscopic techniques. Equilibrium measurements on acid-induced denaturation of the protein monitored by chromophore and tryptophan fluorescence and small-angle X-ray scattering revealed that this protein accumulates at least two equilibrium intermediates, a native-like intermediate and an unfolding intermediate, the latter of which exhibits the characteristics of the molten globule state under moderately denaturing conditions at pH 4. To elucidate the role of the equilibrium unfolding intermediate in folding, a series of kinetic refolding experiments with various combinations of initial and final pH values, including pH 7.5 (the native condition), pH 4.0 (the moderately denaturing condition where the unfolding intermediate is accumulated), and pH 2.0 (the acid-denaturing condition) were carried out by monitoring chromophore and tryptophan fluorescence. Kinetic on-pathway intermediates were accumulated during the folding on the refolding reaction from pH 2.0 to 7.5. However, the signal change corresponding to the conversion from the acid-denatured to the kinetic intermediate states was significantly reduced on the refolding reaction from pH 4.0 to pH 7.5, whereas only the signal change corresponding to the above conversion was observed on the refolding reaction from pH 2.0 to pH 4.0. These results indicate that the equilibrium unfolding intermediate is composed of an ensemble of the folding intermediate species accumulated during the folding reaction, and thus support a hierarchical model of protein folding.  相似文献   

20.
Experimental approaches, including circular dichroism, small angle X-ray scattering, steady-state fluorescence, and fluorescence energy transfer, were applied to study the 3D-structure of apomyolgobin in different conformational states. These included the native and molten globules, along with either less ordered conformations induced by the addition of anions or completely unfolded states. The results show that the partially folded forms of apomyoglobin stabilized by KCl and/or Na(2)SO(4) under unfolding conditions (pH 2) exhibit a significant amount of secondary structure (circular dichroism), low packing density of protein molecules (SAXS), and native-like dimensions of the AGH core (fluorescence energy transfer). This finding indicates that a native-like tertiary fold of the polypeptide chain, i.e., the spatial organization of secondary structure elements, most likely emerges prior to the formation of the molten globule state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号