首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can sequester BMP complexes in a latent state.  相似文献   

2.
We previously reported that mice lacking the RARgamma gene and one or both alleles of the RARbeta gene (i.e., RARbeta+/-/RARgamma-/- and RARbeta-/-/RARgamma-/- mutants) display a severe and fully penetrant interdigital webbing (soft tissue syndactyly), caused by the persistence of the fetal interdigital mesenchyme (Ghyselinck et al., 1997, Int. J. Dev. Biol. 41, 425-447). In the present study, these compound mutants were used to investigate the cellular and molecular mechanisms involved in retinoic acid (RA)-dependent formation of the interdigital necrotic zones (INZs). The mutant INZs show a marked decrease in the number of apoptotic cells accompanied by an increase of cell proliferation. This marked decrease was not paralleled by a reduction of the number of macrophages, indicating that the chemotactic cues which normally attract these cells into the INZs were not affected. The expression of a number of genes known to be involved in the establishment of the INZs, the patterning of the autopod, and/or the initiation of apoptosis was also unaffected. These genes included BMP-2, BMP-4, Msx-1, Msx-2, 5' members of Hox complexes, Bcl2, Bax, and p53. In contrast, the mutant INZs displayed a specific, graded, down-regulation of tissue transglutaminase (tTG) promoter activity and of stromelysin-3 expression upon the removal of one or both alleles of the RARbeta gene from the RARgamma null genetic background. As retinoic acid response elements are present in the promoter regions of both tTG and stromelysin-3 genes, we propose that RA might increase the amount of cell death in the INZs through a direct modulation of tTG expression and that it also contributes to the process of tissue remodeling, which accompanies cell death, through an up-regulation of stromelysin-3 expression in the INZs. Approximately 10% of the RARbeta-/- /RARgamma-/- mutants displayed a supernumerary preaxial digit on hindfeet, which is also a feature of the BMP-7 null phenotype (Dudley et al., 1995, Genes Dev. 9, 2795-2807; Luo et al., 1995, Genes Dev. 9, 2808-2820). BMP-7 was globally down-regulated at an early stage in the autopods of these RAR double null mutants, prior to the appearance of the digital rays. Therefore, RA may exert some of its effects on anteroposterior autopod patterning through controlling BMP-7 expression.  相似文献   

3.
4.
Mp is an irradiation-induced mouse mutation associated with microphthalmia, micropinna and hind limb syndactyly. We show that Mp is caused by a 660 kb balanced inversion on chromosome 18 producing reciprocal 3-prime gene fusion events involving Fbn2 and Isoc1. The Isoc1-Fbn2 fusion gene (Isoc1Mp) mRNA has a frameshift and early stop codon resulting in nonsense mediated decay. Homozygous deletions of Isoc1 do not support a significant developmental role for this gene. The Fbn2-Isoc1 fusion gene (Fbn2 Mp) predicted protein consists of the N-terminal Fibrillin-2 (amino acids 1–2646, exons 1–62) lacking the C-terminal furin-cleavage site with a short out-of-frame extension encoded by the final exon of Isoc1. The Mp limb phenotype is consistent with that reported in Fbn2 null embryos. However, severe eye malformations, a defining feature of Mp, are not seen in Fbn2 null animals. Fibrillin-2Mp forms large fibrillar structures within the rough endoplasmic reticulum (rER) associated with an unfolded protein response and quantitative mass spectrometry shows a generalised defect in protein secretion in conditioned media from mutant cells. In the embryonic eye Fbn2 is expressed within the peripheral ciliary margin (CM). Mp embryos show reduced canonical Wnt-signalling in the CM – known to be essential for ciliary body development - and show subsequent aplasia of CM-derived structures. We propose that the Mp “worse-than-null” eye phenotype plausibly results from a failure in normal trafficking of proteins that are co-expressed with Fbn2 within the CM. The prediction of similar trans-acting protein effects will be an important challenge in the medical interpretation of human mutations from whole exome sequencing.  相似文献   

5.
Bone morphogenetic protein-1 processes probiglycan   总被引:5,自引:0,他引:5  
Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays important roles in regulating the deposition of fibrous extracellular matrix in vertebrates, including provision of the procollagen C-proteinase activity that processes the major fibrillar collagens I-III. Biglycan, a small leucine-rich proteoglycan, is a nonfibrillar extracellular matrix component with functions that include the positive regulation of bone formation. Biglycan is synthesized as a precursor with an NH(2)-terminal propeptide that is cleaved to yield the mature form found in vertebrate tissues. Here, we show that BMP-1 cleaves probiglycan at a single site, removing the propeptide and producing a biglycan molecule with an NH(2) terminus identical to that of the mature form found in tissues. BMP-1-related proteases mammalian Tolloid and mammalian Tolloid-like 1 (mTLL-1) are shown to have low but detectable levels of probiglycan-cleaving activity. Comparison shows that wild type mouse embryo fibroblasts (MEFs) produce only fully processed biglycan, whereas MEFs derived from embryos homozygous null for the Bmp1 gene, which encodes both BMP-1 and mammalian Tolloid, produce predominantly unprocessed probiglycan, and MEFs homozygous null for both the Bmp1 gene and the mTLL-1 gene Tll1 produce only unprocessed probiglycan. Thus, all detectable probiglycan-processing activity in MEFs is accounted for by the products of these two genes.  相似文献   

6.
7.
8.
9.

Background

Fibrillins 1 (FBN1) and 2 (FBN2) are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan''s syndrome and congenital contractural arachnodactyly (CCA) result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.

Methodology/Principal Findings

As part of a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.

Conclusions

These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.  相似文献   

10.
BMP-13 Emerges as a Potential Inhibitor of Bone Formation   总被引:1,自引:1,他引:0       下载免费PDF全文
Bone morphogenetic protein-13 (BMP-13) plays an important role in skeletal development. In the light of a recent report that mutations in the BMP-13 gene are associated with spine vertebral fusion in Klippel-Feil syndrome, we hypothesized that BMP-13 signaling is crucial for regulating embryonic endochondral ossification. In this study, we found that BMP-13 inhibited the osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. The endogenous BMP-13 gene expression in MSCs was examined under expansion conditions. The MSCs were then induced to differentiate into osteoblasts in osteo-inductive medium containing exogenous BMP-13. Gene expression was analysed by real-time PCR. Alkaline phosphatase (ALP) expression and activity, proteoglycan (PG) synthesis and matrix mineralization were assessed by cytological staining or ALP assay. Results showed that endogenous BMP-13 mRNA expression was higher than BMP-2 or -7 during MSC growth. BMP-13 supplementation strongly inhibited matrix mineralization and ALP activity of osteogenic differentiated MSCs, yet increased PG synthesis under the same conditions. In conclusion, BMP-13 inhibited osteogenic differentiation of MSCs, implying that functional mutations or deficiency of BMP-13 may allow excess bone formation. Our finding provides an insight into the molecular mechanisms and the therapeutic potential of BMP-13 in restricting pathological bone formation.  相似文献   

11.
Biochemical and biophysical methods are used to show that BMP-7 is secreted as a stable complex consisting of the processed growth factor dimer noncovalently associated with its two prodomain propeptide chains and that the BMP-7 complex is structurally similar to the small transforming growth factor beta (TGFbeta) complex. Because the prodomain of TGFbeta interacts with latent TGFbeta-binding proteins, a family of molecules homologous to the fibrillins, the prodomain of BMP-7 was tested for binding to fibrillin-1 or to LTBP-1. The BMP-7 prodomain and BMP-7 complex, but not the separated growth factor dimer, interact with N-terminal regions of fibrillin-1. This interaction may target the BMP-7 complex to fibrillin microfibrils in the extracellular matrix. Immunolocalization of BMP-7 in tissues like the kidney capsule and skin reveals co-localization with fibrillin. However, BMP-7 immunolocalization in other tissues known to be active sites for BMP-7 signaling is not apparent, suggesting that immunolocalization of BMP-7 in certain tissues represents specific extracellular storage sites. These studies suggest that the prodomains of TGFbeta-like growth factors are important for positioning and concentrating growth factors in the extracellular matrix. In addition, they raise the possibility that prodomains of other TGFbeta-like growth factors interact with fibrillins and/or LTBPs and are also targeted to the extracellular matrix.  相似文献   

12.
13.
To explain the disappearance of medial edge epithelial (MEE) cells during palatal fusion, programmed cell death, epithelial-mesenchymal transformation, and migration of these cells to the oral and nasal epithelia have been proposed. However, MEE cell death has not always been accepted as a mechanism involved in midline epithelial seam disappearance. Similarly, labeling of MEE cells with vital lipophilic markers has not led to a clear conclusion as to whether MEE cells migrate, transform into mesenchyme, or both. To clarify these controversies, we first utilized TUNEL techniques to detect apoptosis in mouse palates at the fusion stage and concomitantly analyzed the presence of macrophages by immunochemistry and confocal microscopy. Second, we in vitro infected the MEE with the replication-defective helper-free retroviral vector CXL, which carries the Escherichia coli lacZ gene, and analyzed beta-galactosidase activity in cells after fusion to follow their fate. Our results demonstrate that MEE cells die and transform into mesenchyme during palatal fusion and that dead cells are phagocytosed by macrophages. In addition, we have investigated the effects of the absence of transforming growth factor beta(3) (TGF-beta(3)) during palatal fusion. Using environmental scanning electron microscopy and TUNEL labeling we compared the MEE of the clefted TGF-beta(3) null and wild-type mice. We show that MEE cell death in TGF-beta(3) null palates is greatly reduced at the time of fusion, revealing that TGF-beta(3) has an important role as an inducer of apoptosis during palatal fusion. Likewise, the bulging cells observed on the MEE surface of wild-type mice prior to palatal shelf contact are very rare in the TGF-beta(3) null mutants. We hypothesize that these protruding cells are critical for palatal adhesion, being morphological evidence of increased cell motility/migration.  相似文献   

14.
Interleukin-7 (IL-7) is an essential T-cell survival cytokine. IL-7 receptor (IL-7Rα) deficiency severely impairs T-cell development due to substantial apoptosis. We hypothesized that IL-7Rα(null)-induced apoptosis is partially contributed by an elevated p53 activity. To investigate the genetic association of IL-7/IL-7Rα signaling with the p53 pathway, we generated IL-7Rα(null)p53(null) (DKO) mice. DKO mice exhibited a marked reduction of apoptosis in developing T cells and an augmented thymic lymphomagenesis with telomere erosions and exacerbated chromosomal anomalies, including chromosome duplications, breaks, and translocations. In particular, Robertsonian translocations, in which telocentric chromosomes fuse at the centromeric region, and a complete loss of telomeres at the fusion site occurred frequently in DKO thymic lymphomas. Cellular and molecular investigations revealed that IL-7/IL-7Rα signaling withdrawal diminished the protein synthesis of protection of telomere 1 (POT1), a subunit of telomere protective complex shelterin, leading to telomere erosion and the activation of the p53 pathway. Blockade of IL-7/IL-7Rα signaling in IL-7-dependent p53(null) cells reduced POT1 expression and caused telomere and chromosome abnormalities similar to those observed in DKO lymphomas. This study underscores a novel function of IL-7/IL-7Rα during T-cell development in regulating telomere integrity via POT1 expression and provides new insights into cytokine-mediated survival signals and T-cell lymphomagenesis.  相似文献   

15.
重组人BMP-2在烟草不同组织中的表达   总被引:1,自引:0,他引:1  
骨形态发生蛋白(BMPs)是一类调节骨组织发育的生长因子。BMP-2是BMP家族中诱骨活性最强的。在骨组织工程研究和临床应用中需要大量的BMP-2。因此,研究出一种能够有效地大量生产BMP-2的方法是十分必要的。随着植物分子生物学的进展,转基因植物被用作一种生物反应器来生产目的蛋白。以gus作为报告基因,研究了重组人bmp-2基因在烟草中的表达。通过GUS活性检测、半定量PCR和Western blotting分析了根、茎、叶组织中基因表达的水平,结果显示融合蛋白在根和茎组织中表达量显著高于叶组织。由于根和茎组织中蛋白组成与叶组织相比相对简单,提示其更易于进行目的蛋白的纯化。  相似文献   

16.
17.
Cdc42, a member of the Rho subfamily of small GTPases, is known to be a regulator of multiple cellular functions, including cytoskeletal organization, cell migration, proliferation, and apoptosis. However, its tissue-specific roles, especially in mammalian limb development, remain unclear. To investigate the physiological function of Cdc42 during limb development, we generated limb bud mesenchyme-specific inactivated Cdc42 (Cdc42(fl/fl); Prx1-Cre) mice. Cdc42(fl/fl); Prx1-Cre mice demonstrated short limbs and body, abnormal calcification of the cranium, cleft palate, disruption of the xiphoid process, and syndactyly. Severe defects were also found in long bone growth plate cartilage, characterized by loss of columnar organization of chondrocytes, and thickening and massive accumulation of hypertrophic chondrocytes, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed that expressions of Col10 and Mmp13 were reduced in non-resorbed hypertrophic cartilage, indicating that deletion of Cdc42 inhibited their terminal differentiation. Syndactyly in Cdc42(fl/fl); Prx1-Cre mice was caused by fusion of metacarpals and a failure of interdigital programmed cell death (ID-PCD). Whole mount in situ hybridization analysis of limb buds showed that the expression patterns of Sox9 were ectopic, while those of Bmp2, Msx1, and Msx2, known to promote apoptosis in the interdigital mesenchyme, were down-regulated. These results demonstrate that Cdc42 is essential for chondrogenesis and ID-PCD during limb development.  相似文献   

18.
The Tight skin (Tsk) mutation is a duplication of the mouse fibrillin 1 (Fbn1) gene that results in a larger (418 kD) than normal (350 kD) protein; Tsk/+ mice display increased connective tissue, bone overgrowth, and lung emphysema. Lung emphysema, bone overgrowth, and vascular complications are the distinctive traits of mice with reduced Fbn1 gene expression and of Marfan syndrome (MFS) patients with heterozygous fibrillin 1 mutations. Although Tsk/+ mice produce equal amounts of the 418- and 350-kD proteins, they exhibit a relatively mild phenotype without the vascular complications that are associated with MFS patients and fibrillin 1-deficient mice. We have used genetic crosses, cell culture assays and Tsk-specific antibodies to reconcile this discrepancy and gain new insights into microfibril assembly. Mice compound heterozygous for the Tsk mutation and hypomorphic Fbn1 alleles displayed both Tsk and MFS traits. Analyses of immunoreactive fibrillin 1 microfibrils using Tsk- and species-specific antibodies revealed that the mutant cell cultures elaborate a less abundant and morphologically different meshwork than control cells. Cocultures of Tsk/Tsk fibroblasts and human WISH cells that do not assemble fibrillin 1 microfibrils, demonstrated that Tsk fibrillin 1 copolymerizes with wild-type fibrillin 1. Additionally, copolymerization of Tsk fibrillin 1 with wild-type fibrillin 1 rescues the abnormal morphology of the Tsk/Tsk aggregates. Therefore, the studies suggest that bone and lung abnormalities of Tsk/+ mice are due to copolymerization of mutant and wild-type molecules into functionally deficient microfibrils. However, vascular complications are not present in these animals because the level of functional microfibrils does not drop below the critical threshold. Indirect in vitro evidence suggests that a potential mechanism for the dominant negative effects of incorporating Tsk fibrillin 1 into microfibrils is increased proteolytic susceptibility conferred by the duplicated Tsk region.  相似文献   

19.
Digit formation during vertebrate limb development is a well-known example of programmed cell death. We have used this system to analyze whether the formation of the interdigital necrotic zone in mouse autopods is linked with the expression of BAG-1, a gene with an anti-death activity. Here, we demonstrate that during development of mouse autopods, BAG-1 expression is downregulated upon the initiation of interdigital apoptosis. We further show that retinoic acid induced interdigital apoptosis is also correlated with a downregulation of BAG-1 expression. On the contrary, the expression of BAG-1 remains unaltered in autopods of RARbeta(-/-)/RARgamma(-/-) mice which show severe interdigital webbing due to a marked decrease in interdigital apoptosis.  相似文献   

20.
A key event in chronic allergic asthma is the TGF-β-induced activation of fibroblasts into α-SMA-positive myofibroblasts which synthesize type-I collagen. In the present study we investigated the effect of the anti-fibrotic molecule BMP-7 in asthma. Balb/c mice were immunized i.p. with ovalbumin in alum and challenged every 2 days with ovalbumin aerosol (two or six challenges for acute and chronic protocols, respectively). The lung was evaluated for: α-SMA and type-I collagen by immunohistochemistry; BMP-7 and TGF- β1 gene expression by qRT-PCR; type-I collagen and Smads 2 and 3 by immunoblotting; mucus by PSA staining. Type-I collagen around bronchi, α-SMA, mucus secretion, TGF- β1 and BMP-7 gene expression were all increased in asthma. The TGF- β1/BMP-7 ratio was higher in the chronic group and correlated with higher levels of collagen. Fibroblasts isolated from asthmatic and healthy lungs produced type-I collagen upon stimulation with TGF- β1 via phosphorylation of Smad-2, Smad-3. Pre-treatment of the fibroblasts with BMP-7 reduced collagen production and Smads phosphorylation. Intranasal treatment of asthmatic mice with recombinant BMP-7 during the immunization protocol reduced lung inflammation and type I collagen deposition. These results suggest a protective role for BMP-7 in lung allergic inflammation, opposing the pro-fibrotic effects of TGF- β1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号