首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffraction data of two crystal forms (forms I and II) of [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus have been collected to 0.92 A and 1.00 A resolutions, respectively, at 100 K using synchrotron radiation. Anisotropic temperature factors were introduced for all non-hydrogen atoms in the refinement with SHELX-97, in which stereochemical restraints were applied to the protein chain but not to the [4Fe-4S] cluster. The final crystallographic R-factors are 9.8 % for 7.0-0.92 A resolution data of the form I and 11.2 % for the 13.3-1.0 A resolution data of the form II. Many hydrogen atoms as well as multiple conformations for several side-chains have been identified. The present refinement has revised the conformations of several peptide bonds and side-chains assigned previously at 2.3 A resolution; the largest correction was that the main-chain of Pro1 and the side-chain of Lys2 were changed by rotating the C(alpha)-C bond of Lys2. Although the overall structures in the two crystal forms are very similar, conformational differences are observed in the two residues at the middle (Glu29 and Asp30) and the C-terminal residues, which have large temperature factors. The [4Fe-4S] cluster is a distorted cube with non-planar rhombic faces. Slight but significant compression of the four Fe-S bonds along one direction is observed in both crystal forms, and results in the D(2d) symmetry of the cluster. The compressed direction of the cluster relative to the protein is conserved in the two crystal forms and consistent with that in one of the clusters in Clostridium acidurici ferredoxin.  相似文献   

2.
Myeloperoxidase compound II has been characterized by using optical absorption and resonance Raman spectroscopies. Compared to compounds II in other peroxidases, the electronic and vibrational properties of this intermediate are strongly perturbed due to the unusual active-site iron chromophore that occurs in myeloperoxidase. Despite this difference in prosthetic group, however, other properties of myeloperoxidase compound II are similar to those observed for this intermediate in the more common peroxidases (horseradish peroxidase in particular). Two forms of the myeloperoxidase intermediate species, each with distinct absorption spectra, are recognized as a function of pH. We present evidence consistent with interconversion of these two forms via a heme-linked ionization of a distal amino acid residue with a pKa congruent to 9. From resonance Raman studies of isotopically labeled species at pH 10.7, we identify an iron-oxygen stretching frequency at 782 cm-1, indicating the presence of an oxoferryl (O = FeIV) group in myeloperoxidase compound II. We further conclude that the oxo ligand is not hydrogen bonded above the pKa but possibly exhibits oxygen exchange with the medium at pH values below the pKa due to hydrogen bonding of the oxo ligand to the distal protein group.  相似文献   

3.
W Gallagher  F Tao  C Woodward 《Biochemistry》1992,31(19):4673-4680
Hydrogen exchange rate constants for the 17 slowest exchanging amide NH groups in bovine pancreatic trypsin inhibitor (BPTI) were measured in solution and in form II and form III crystals. All 17 amide hydrogens are buried and intramolecularly hydrogen bonded in the crystal structure, except Lys 41 which is buried and hydrogen bonded to a buried water. Large-scale crystallization procedures were developed for these experiments, and rate constants for both crystal and solution exchange were measured by 1H NMR spectroscopy of exchange-quenched samples in solution. Two conditions of pH and temperature, pH 9.8 and 35 degrees C, and pH 9.4 and 25 degrees C, bring two groups of hydrogens into the experimental time window (minutes to weeks). One consists of the 10 slowest exchanging hydrogens, all of which are associated with the central beta-sheet of BPTI. The second group consists of seven more rapidly exchanging hydrogens, which are distributed throughout the molecule, primarily in a loop or turn. In both groups, most hydrogens exchange more slowly in crystals, but there is considerable variation in the degree to which the exchange is depressed in crystals. Many differences observed for the more rapidly exchanging hydrogens can be attributed to local surface effects arising from intermolecular contacts in the crystal lattice. Within the slower group, however, a very large effect on exchange of Ile 18 and Tyr 35 appears to be selectively transmitted through the matrix of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The crystal structures of the catalytic domain (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH) in its catalytically competent Fe(II) form and binary complex with the reduced pterin cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) have been determined to 1.7 and 1.5 A, respectively. When compared with the structures reported for various catalytically inactive Fe(III) forms, several important differences have been observed, notably at the active site. Thus, the non-liganded hPheOH-Fe(II) structure revealed well defined electron density for only one of the three water molecules reported to be coordinated to the iron in the high-spin Fe(III) form, as well as poor electron density for parts of the coordinating side-chain of Glu330. The reduced cofactor (BH4), which adopts the expected half-semi chair conformation, is bound in the second coordination sphere of the catalytic iron with a C4a-iron distance of 5.9 A. BH4 binds at the same site as L-erythro-7,8-dihydrobiopterin (BH2) in the binary hPheOH-Fe(III)-BH2 complex forming an aromatic pi-stacking interaction with Phe254 and a network of hydrogen bonds. However, compared to that structure the pterin ring is displaced about 0.5 A and rotated about 10 degrees, and the torsion angle between the hydroxyl groups of the cofactor in the dihydroxypropyl side-chain has changed by approximately 120 degrees enabling O2' to make a strong hydrogen bond (2.4 A) with the side-chain oxygen of Ser251. Carbon atoms in the dihydroxypropyl side-chain make several hydrophobic contacts with the protein. The iron is six-coordinated in the binary complex, but the overall coordination geometry is slightly different from that of the Fe(III) form. Most important was the finding that the binding of BH4 causes the Glu330 ligand to change its coordination to the iron when comparing with non-liganded hPheOH-Fe(III) and the binary hPheOH-Fe(III)-BH2 complex.  相似文献   

5.
Bromoperoxidase Compound I has been formed in reactions between bromoperoxidase and organic peroxide substrates. The absorbance spectrum of bromoperoxidase Compound I closely resembles the Compound I spectra of other peroxidases. The pH dependence of the second order rate constant for the formation of Compound I with hydrogen peroxide demonstrates the presence of an ionizable group at the enzyme active site having a pKa of 5.3. Protonation of this acidic group inhibits the rate of Compound I formation. This pKa value is higher than that determined for other peroxidases but the overall pH rate profiles for Compound I formation are similar. The one-electron reduction of bromoperoxidase Compound I yields Compound II and a second reduction yields native enzyme. Bromoperoxidase Compound II readily forms Compound III in the presence of an excess of hydrogen peroxide. Compound III passes through an as yet uncharacterized intermediate (III) in its decay to native enzyme. Compound III is produced and accumulates in enzymatic bromination reactions to become the predominate steady state form of the enzyme. Since Compound III is inactive as catalyst for enzymatic bromination, its accumulation leads to an idling reaction pathway which displays an unusual kinetic pattern for the bromination of monochlorodimedone.  相似文献   

6.
Abstract Parasporal crystals of the recently isolated Bacillus thuringiensis var. tenebrionis are toxic for coleopteran larvae. Unlike those of other strains they are soluble either in aqueous solutions of NaBr at neutral pH or in water after titration to pH values above pH 10.0. The dissolved crystal protein readily forms crystals after removal of the salt or neutralization. The crystal protein was not found to differ much in the amino acid composition from other crystal proteins. The parasporal crystals are composed of subunits of M r 68 000 which are not linked by disulfide bridges.  相似文献   

7.
The crystal structure of the staphylococcal nuclease mutant V66K, in which valine 66 is replaced by lysine, has been solved at 1.97 A resolution. Unlike lysine residues in previously reported protein structures, this residue appears to bury its side-chain in the hydrophobic core without salt bridging, hydrogen bonding or other forms of electrostatic stabilization. Solution studies of the free energy of denaturation, delta GH2O, show marked pH dependence and clearly indicate that the lysine residue must be deprotonated in the folded state. V66K is highly unstable at neutral pH but only modestly less stable than the wild-type protein at high pH. The pH dependence of stability for V66K, in combination with similar measurements for the wild-type protein, allowed determination of the pKa values of the lysine in both the denatured and native forms. The epsilon-amine of this residue has a pKa value in the denatured state of 10.2, but in the native state it must be 6.4 or lower. The epsilon-amine is thus deprotonated in the folded molecule. These values enabled an estimation of the epsilon-amine's relative change in free energy of solvation between solvent and the protein interior at 5.1 kcal/mol or greater. This implies that the value of the dielectric constant of the protein interior must be less than 12.8. Lysine is usually found with the methylene groups of its side-chain partly buried but is nevertheless considered a hydrophilic surface residue. It would appear that the high pKa value of lysine, which gives it a positive charge at physiological pH, is the primary reason for its almost exclusive confinement to the surface proteins. When deprotonated, this amino acid type can be fully incorporated into the hydrophobic core.  相似文献   

8.
Periplasmic binding proteins (PBPs) are essential components of bacterial transport systems, necessary for bacterial growth and survival. The two‐domain structures of PBPs are topologically classified into three groups based on the number of crossovers or hinges between the globular domains: group I PBPs have three connections, group II have two, and group III have only one. Although a large number of structures for group I or II PBPs are known, fewer group III PBPs have been structurally characterized. Group I and II PBPs exhibit significant domain motions during transition from the unbound to ligand‐bound form, however, no large conformational changes have been observed to date in group III PBPs. We have solved the crystal structure of a periplasmic binding protein FitE, part of an iron transport system, fit, recently identified in a clinical E. coli isolate. The structure, determined at 1.8 Å resolution, shows that FitE is a group III PBP containing a single α‐helix bridging the two domains. Among the individual FitE molecules present in two crystal forms we observed three different conformations (open, closed, intermediate). Our crystallographic and molecular dynamics results strongly support the notion that group III PBPs also adopt the same Venus flytrap mechanism as do groups I and II PBPs. Unlike other group III PBPs, FitE forms dimers both in solution and in the crystals. The putative siderophore binding pocket is lined with arginine residues, suggesting an anionic nature of the iron‐containing siderophore. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Four amino acid residues, His64, Asn67, Leu198 and Val207, in the active site of human carbonic anhydrase II, have been replaced by Lys64, Arg67, Phe198 and Ile207, which are characteristic for the muscle-specific, low-activity isoenzyme form, carbonic anhydrase III. The aim of the investigation has been to test if any of these residues, or a combination of them, is important for the low CO2 hydration activity, low esterase activity, low pKa for the pH/rate profile and low affinity for sulfonamide inhibitors characterizing carbonic anhydrases III. However, no evidence for such critical roles was found. A combination of Lys64 and Arg67 appears to result in a decrease in CO2 hydration activity, but even the quadruple mutant having all four changes is only eight times less active (kcat/Km) than unmodified isoenzyme II, in contrast to isoenzyme III which is nearly 300 times less active than isoenzyme II. The 4-nitrophenyl acetate hydrolase activity of the quadruple mutant is sevenfold lower than that of unmodified isoenzyme II, while the active site of isoenzyme III hardly catalyzes the hydrolysis of this ester at all. The pKa controlling the esterase activity of the quadruple mutant is 6.2, which should be compared to a value of 6.8 for unmodified isoenzyme II, and about 5 for isoenzyme III. While isoenzyme III binds sulfonamide inhibitors 10(3)-10(4) times less strongly than isoenzyme II, only [Asn-67----Arg]isoenzyme II shows a weaker binding of the investigated sulfonamide, dansylamide, but only by a factor of two. Some of the other mutants show enhanced affinities, up to nearly fourfold for the double mutant with Phe198 and Ile207. It is speculated that additional differences between the active sites of isoenzyme II and III might be important for the precise orientations and interactions of the side chains of isoenzyme-III-specific amino acid residues.  相似文献   

10.
The T----R transition of the cooperative enzyme aspartate carbamoyltransferase occurs at pH 7 in single crystals without visibly cracking many of the crystals and leaving those uncracked suitable for single-crystal X-ray analysis. To promote the T----R transition, we employ the competitive inhibitors of carbamoyl phosphate and aspartate, which are phosphonoacetamide (PAM) and malonate, respectively. In response to PAM binding to the T-state crystals, residues Thr 53-Thr 55 and Pro 266-Pro 268 move to their R-state positions to bind to the phosphonate and amino group of PAM. These changes induce a conformation that can bind tightly the aspartate analogue malonate, which thereby effects the allosteric transition. We prove this by showing that PAM-ligated T-state crystals (Tpam), space group P321 (a = 122.2 A, c = 142.2 A), when transferred to a solution containing 20 mM PAM and 8 mM malonate at pH 7, isomerize to R-state crystals (Rpam,mal,soak), space group also P321 (a = 122.2 A, c = 156.4 A). The R-state structure in which the T----R transition occurs within the crystal at pH 7 compares very well (rms = 0.19 A for all atoms) with an R-state structure determined at pH 7 in which the crystals were initially grown in a solution of PAM and malonate at pH 5.9 and subsequently transferred to a buffer containing the ligands at pH 7 (Rpam,mal,crys). In fact, both of the PAM and malonate ligated R-state structures are very similar to both the carbamoyl phosphate and succinate or the N-(phosphonoacetyl)-L-aspartate ligated structures, even though the R-state structures reported here were determined at pH 7. Crystallographic residuals refined to 0.16-0.18 at 2.8-A resolution for the three structures.  相似文献   

11.
L B Vitello  M Huang  J E Erman 《Biochemistry》1990,29(18):4283-4288
The effect of long-term storage on the electronic absorption spectrum and the kinetic properties of cytochrome c peroxidase has been investigated. No detectable differences were observed between freshly isolated enzyme and enzyme stored below -20 degrees C, in the crystalline state, for up to 41 months. The electronic absorption spectrum and the rate of the enzyme-hydrogen peroxide reaction are essentially independent of pH in 0.1 M potassium phosphate buffers for both fresh and stored enzyme. In buffers containing KNO3, the absorption spectrum and the kinetic properties of both fresh and stored enzyme vary with pH, consistent with the titration of an ionizable group with an apparent pKa of 5.5 +/- 0.1. The differences between phosphate- and nitrate-containing buffers are attributed to specific ion effects. In KNO3-containing buffers, the high-pH form of the enzyme reacts rapidly with hydrogen peroxide while the low-pH form is unreactive. Evidence is presented which indicates that both the low-pH and high-pH forms of the enzyme in KNO3-containing buffers are 5-coordinate, high-spin Fe(III) species.  相似文献   

12.
The crystal and molecular structure of Tirofiban [N-(n-butanesulfonyl)-O-(4-(4-piperidinyl)-butyl)-(S)-tyrosine] is here reported. In the solid state the carboxylic group is in the anionic form while the piperidine molecule appear in the protonated form. By H NMR spectroscopy and potentiometric study three pKa are found: pKa(COOH) = 3.1 (1), pKa(NHPIP) = 11.6(1) and pKa(NHSO2) = 13.8(1). The complexing ability of Tirofiban towards various metal ions (Cu(II), Ni(II), Co(II), Cd(II), Pb(II), Zn(II) and Ca(II)) is also determined by means of potentiometric studies. The prevailing species are [M(TirH)2]2+ where the ligand coordinates the metal ion through carboxylic group, while the piperidine nitrogen is still protonated. The great stability of these complexes may be due to the presence of hydrogen bond interactions, as well as the formation of stacking interactions involving the phenyl ring of the tyrosine residue.  相似文献   

13.
The facile modulation of biological processes is an important goal of biological chemists. Here, a general strategy is presented for controlling the catalytic activity of an enzyme. This strategy is demonstrated with ribonuclease A (RNase A), which catalyzes the cleavage of RNA. The side-chain amino group of Lys41 donates a hydrogen bond to a nonbridging oxygen in the transition state for RNA cleavage. Replacing Lys41 with a cysteine residue is known to decrease the value of k(cat)/K(m) by 10(5)-fold. Forming a mixed disulfide between the side chain of Cys41 of K41C RNase A and cysteamine replaces the amino group and increases k(cat)/K(m) by 10(3)-fold. This enzyme, which contains a mixed disulfide, is readily deactivated by dithiothreitol. Forming a mixed disulfide between the side chain of Cys41 and mercaptopropyl phosphate, which is designed to place a phosphoryl group in the active site, decreases activity by an additional 25-fold. This enzyme, which also contains a mixed disulfide, is reactivated in the presence of dithiothreitol and inorganic phosphate (which displaces the pendant phosphoryl group from the active site). An analogous control mechanism could be installed into the active site of virtually any enzyme by replacing an essential residue with a cysteine and elaborating the side chain of that cysteine into appropriate mixed disulfides.  相似文献   

14.
The X-ray crystal structure of recombinant wild-type azurin from Pseudomonas aeruginosa was determined by difference Fourier techniques using phases derived from the structure of the mutant His35Leu. Two data sets were collected from a single crystal of oxidized azurin soaked in mother liquor buffered at pH 5.5 and pH 9.0, respectively. Both data sets extend to 1.93 A resolution. The two pH forms were refined independently to crystallographic R-factors of 17.6% (pH 5.5) and 17.5% (pH 9.0). The conformational transition previously attributed to the protonation/deprotonation of residue His35 (pKa(red) = 7.3, pKa(ox) = 6.2), which lies in a crevice of the protein close to the copper binding site, involves a concomitant Pro36-Gly37 main-chain peptide bond flip. At the lower pH, the protonated imidazole N delta 1 of His35 forms a strong hydrogen bond with the carbonyl oxygen from Pro36, while at alkaline pH the deprotonated N delta 1 acts as an acceptor of a weak hydrogen bond from HN Gly37. The structure of the remainder of the azurin molecule, including the copper binding site, is not significantly affected by this transition.  相似文献   

15.
Structure of form III crystals of bovine pancreatic trypsin inhibitor   总被引:18,自引:0,他引:18  
The structure of bovine pancreatic trypsin inhibitor has been solved in a new crystal form III. The crystals belong to space group P2(1)2(1)2 with a = 55.2 A, b = 38.2 A, c = 24.05 A. The structure was solved on the basis of co-ordinates of forms I and II of the inhibitor by molecular replacement, and the X-ray data extending to 1.7 A were used in a restrained least-squares refinement. The final R factor was 0.16, and the deviation of bonded distances from ideality was 0.020 A. Root-mean-square discrepancy between C alpha co-ordinates of forms III and I are 0.47 A, whilst between forms II and III the discrepancy is 0.39 A. These deviations are about a factor of 3 larger than the expected experimental errors, showing that true differences exist between the three crystal forms. Two residues (Arg39 and Asp50) were modeled with two positions for their side-chains. The final model includes 73 water molecules and one phosphate group bound to the protein. Sixteen water molecules occupy approximately the same positions in all three crystal forms studied to date, indicating their close association with the protein molecule. Temperature factors also show a high degree of correlation between the three crystal forms.  相似文献   

16.
A c-type monoheme ferricytochrome c550 (9.6 kDa) was isolated from cells of Bacillus halodenitrificans sp.nov., grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination. The midpoint redox potential was determined at several pH values by visible spectroscopy. The redox potential at pH 7.6 is 138 mV. When studied by 1H-NMR spectroscopy as a function of pH, the spectrum shows a pH dependence with pKa values of 6.0 and 11.0. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c550. The first pKa is probably associated with protonation of the propionate groups. The second pKa value introduces a larger effect in the 1H-NMR spectrum and is probably due to the ionisation of the axial histidine. Studies of temperature variation of the 1H-NMR spectra for both the ferrous and ferri forms of the cytochrome were performed. Heme meso protons, the heme methyl groups, the thioether protons, two protons from a propionate and the methylene protons from the axial methionine were identified in the reduced form. The heme methyl resonances of the ferri form were also assigned. EPR spectroscopy was also used to probe the ferric heme environment. A signal at gmax approximately 3.5 at pH 7.5 was observed indicating an almost axial heme environment. At higher pH values the signal at gmax approximately 3.5 converts mainly to a signal at g approximately 2.96. The pKa associated with this change is around 11.3. The N-terminal sequence of this cytochrome was determined and compared with known amino acid sequences of other cytochromes.  相似文献   

17.
Two crystal forms of the cytochrome c2 isolated from Rhodopseudomonas capsulata have been obtained. One crystal form (type I), grown from ammonium sulfate solutions at pH 7.5, belongs to the space group R32 with unit cell dimensions of a = b = 100.0 A, and c = 162.2 A in the hexagonal setting. These crystals most likely contain two molecules in the asymmetric unit. The other crystal form (type II) was obtained from polyethylene glycol 6000 solutions at pH 6.5. Type II crystals belong to the space group P3(1)21 or P3(2)21 with one molecule per asymmetric unit and unit cell dimensions of a = b = 52.4 A, and c = 87.9 A. Both crystal forms diffract to at least 1.8 A resolution and appear to be resistant to radiation damage.  相似文献   

18.
The X-ray structure determination, refinement and comparison of two crystal forms of a variant (Asn115Arg) of the alkaline protease from Bacillus alcalophilus is described. Under identical conditions crystals were obtained in the orthorhombic space group P2(1)2(1)2(1) (form I) and the rhombohedral space group R32 (form II). For both space groups the structures of the protease were solved by molecular replacement and refined at 1.85 A resolution. The final R-factors are 17.9% and 17.1% for form I and form II, respectively. The root-mean-square deviation between the two forms is 0.48 A and 0.86 A for main-chain and side-chain atoms, respectively. Due to differences in crystal lattice contacts and packing, the structures of the two crystal forms differ in intermolecular interaction affecting the local conformation of three flexible polypeptide sequences (Ser50-Glu55, Ser99-Gly102, Gly258-Ser259) at the surface of the protein. While the two overall structures are very similar, the differences are significantly larger than the errors inherent in the structure determination. As expected, the differences in the temperature factors in form I and II are correlated with the solvent accessibility of the corresponding amino acid residues. In form II, two symmetry-related substrate binding sites face each other, forming a tight intermolecular interaction. Some residues contributing to this intermolecular interaction are also found to be involved in the formation of the complex between subtilisin Carlsberg and the proteinaceous inhibitor eglin C. This demonstrates that the two symmetry-related molecules interact with each other at the same molecular surface area that is used for binding of substrates and inhibitors.  相似文献   

19.
Methyl acetyl phosphate is a competitive inhibitor of the reduction of acetoacetate by D-3-hydroxybutyrate dehydrogenase. The material also irreversibly inactivates the enzyme. The kinetics of the inactivation are consistent with methyl acetyl phosphate acetylating the conjugate base of a hydrogen bond donor. Protection offered by a substrate analogue (methyl acetonylphosphonate) in the presence of coenzyme implicates reaction at the cationic active site. Reversible protection by the amino group reagent 2,3-dimethylmaleic anhydride suggests that methyl acetyl phosphate reacts with an amino group. Sulfhydryl reagents and acetyl phosphate, a poorer acetylating agent, do not inactivate the enzyme. The pH dependence of the inactivation suggests that the acetylation occurs at a site that has a pKa of 8.2. The utility of methyl acetyl phosphate and other acyl phosphate monoesters in reacting with lysines adjacent to cationic sites of enzymes, hemoglobin, and histones is noted.  相似文献   

20.
The stability of the dodecameric Listeria monocytogenes Dps has been compared with that of the Listeria innocua protein. The two proteins differ only in two amino acid residues that form an intersubunit salt-bridge in L. innocua Dps. This salt-bridge is replaced by a hydrogen bonding network in L. monocytogenes Dps as revealed by the X-ray crystal structure. The resistance to low pH and high temperature was assayed for both Dps proteins under equilibrium conditions and kinetically. Despite the identical equilibrium behavior, significant differences in the kinetic stability and activation energy of the unfolding process are apparent at pH 1.5. The higher stability of L. monocytogenes Dps has been accounted for in terms of the persistence of the hydrogen bonding network at this low pH value. In contrast, the salt-bridge between Lys 114 and Asp 126 characteristic of L. innocua Dps is most likely abolished due to protonation of Asp 126.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号