首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell extracts of Agrobacterium tumefaciens, immobilised in calcium alginate beads, had a 7-fold increase in N-carbamoylase (N-carbamylamino acid amidohydrolase E.C. 3.5.1) activity on reaction with N-carbamylglycine. The hydantoinase (dihydropyrimidinase E.C. 3.5.2.2) and N-carbamoylase activities remained stable over 4 weeks storage at 4°C relative to the non-immobilised enzymes, with the hydantoinase activity showing a 5-fold increase in activity relative to the non-immobilised hydantoinase. The pH optima of the immobilised hydantoinase and N-carbamoylase enzymes decreased to pH 7 and pH 8, respectively. The temperature optimum remained at 40°C for the N-carbamoylase enzyme while the hydantoinase activity was optimal at 50°C.  相似文献   

2.
The activity of purified N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase from Methanopyrus kandleri was found to increase up to 200-fold when potassium phosphate was added in high concentrations (1.5 M) to the assay. A 200-fold stimulation was also observed with sodium phosphate (1 M) and sodium sulfate (1 M) whereas stimulation by potassium sulfate (0.8 M), ammonium sulfate (1.5 M), potassium chloride (2.5 M), and sodium chloride (2 M) was maximal 100-fold. A detailed kinetic analysis of the effect of potassium phosphate revealed that this salt exerted its stimulatory effect by decreasing the K m for N 5,N 10-methenyltetrahydromethanopterin from 2 mM to 40 M and by increasing the V max from 2000 U/mg (kcat=1385 s-1) to 13300 U/mg (kcat=9200 s-1). Besides increasing the catalytic efficiency (kcat/K m) salts were found to protect the cyclohydrolase from heat inactivation. For maximal thermostability much lower concentrations (0.1 M) of salts were required than for maximal activity.Abbreviations H4MPT tetrahydromethanopterin - N 5,N 10-methenyl-H4MPT - CHO-H4MPT N 5-formyl-H4-MPT - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH3–H4-MPT N 5-methyl-H4MPT - MOPS -N-morpholinopropane sulfonic acid - TRICINE N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

3.
Incubation of Azotobacter chroococcum in the presence of micromolar concentrations of MnCl2, but not MgCl2, prevented nitrogenase activity from NH 4 + inhibition. Mg(II), at a 100-fold concentration with respect to Mn(II), counteracted the protective effect of Mn(II) on nitrogenase activity. When Mn(II) was added to cells that had been given NH4Cl, stopping of NH 4 + uptake and recovery of nitrogenase activity took place, and a raise of NH 4 + concentration in medium developed. Furthermore, incubation of A. chroococcum cells with 20 M Mn(II) under air, but not under an argon: oxygen (79%:21%) gas mixture, resulted in NH 4 + excretion to the external medium. The Mn(II)-mediated uncoupling of nitrogen fixation from ammonium assimilation leads us to conclude that Mn(II) may act as a physiological inhibitor of glutamine synthetase.Abbreviations Hepes N-2-Hydroxyethylpiperazine-N-ethanesulfonic acid - Mops 3-(N-Morpholino)propanesulfonic acid  相似文献   

4.
Archaeoglobus fulgidus and Methanopyrus kandleri are both extremely thermophilic Archaea with a growth temperature optimum at 83°C and 98°C, respectively. Both Archaea contain an active N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase. The enzyme from M. kandleri has recently been characterized. We describe here the purification and properties of the enzyme from A. fulgidus.The cyclohydrolase from A. fulgidus was purified 180-fold to apparent homogeneity and its properties were compared with those recently published for the cyclohydrolase from M. kandleri. The two cytoplasmic enzymes were found to have very similar molecular and catalytic properties. They differed, however, significantly with respect of the effect of K2HPO4 and of other salts on the activity and the stability. The cyclohydrolase from A. fulgidus required relatively high concentrations of K2HPO4 (1 M) for optimal thermostability at 90°C but did not require salts for activity. Vice versa, the enzyme from M. kandleri was dependent on high K2HPO4 concentrations (1.5 M) for optimal activity but not for thermostability. Thus the activity and structural stability of the two thermophilic enzymes depend in a completely different way on the concentration of inorganic salts. The molecular basis for these differences are discussed.Abbreviations H4MPT tetrahydromethanopterin - MFR methanofuran - CH3–H4MPT N 5-methyl-H4MPT - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH2H4MPT N 5,N 10-methenyl-H4MPT - CHO–H4MPT N 5 formyl-H4MPT - CHO-MFR formyl-MFR - cyclohydrolase N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase - MOPS 3-(N-morpholino) propane sulfonic acid - TRICINE N-tris (hydroxymethyl) methyl glycine - 1 U=1 mol/min  相似文献   

5.
In the culture supernatant ofTrypanosoma rangeli, strain El Salvador, a sialidase was present with an activity of 0.1 U/mg protein as determined with the 4-methylumbelliferyl glycoside of -N-acetylneuraminic acid as substrate. This enzyme was purified about 700-fold almost to homogeneity by gel chromatography on Sephadex G-100 and Blue Sepharose, and affinity chromatographies on 2-deoxy-2,3-didehydroneuraminic acid and horse submandibular gland mucin, both immobilized on Sepharose. The pH optimum is at 5.4–5.6, and the molecular weight was determined by gel chromatography, high performance liquid chromatography and sodium dodecyl sulphate gel electrophoresis to be 70 000. The substrate specificity of the enzyme is comparable to bacterial, viral and mammalian sialidases with cleavage rates for the following substrates in decreasing order: N-acetylneuraminyl-(2–3)-lactose> N-glycoloylneuraminy-(2–3)-lactose> N-acetylneuraminyl-(2–6)-lactose >sialoglycoproteins>gangliosides>9-O-acetylated sialoglycoproteins.4-O-Acetylated derivatives are resistant towards the action of this sialidase. The enzyme activity can be inhibited by 2-deoxy-2,3-didehydro-N-acetylneuraminic acid, Hg2+ ions, andp-nitrophenyloxamic acid; it is not dependent on the presence of Ca2+ Mn2+ or Mg2+ ions.Abbreviations BSA bovine serum albumin - BSM bovine submandibular gland mucin - CMP cytidine monophosphate - EDIA ethylenediaminetetraacetic acid - ESM equine submandibular gland mucin - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - HPLC high performance liquid chromatography - Lac lactose - MU-Neu5Ac 4-methylumbelliferyl glycoside of -N-acetylneuraminic acid - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - Neu4Ac5Gc N-glycoloyl-4-O-acetylneuraminic acid - Neu2en 2-deoxy-2,3-didehydroneuraminic acid - Neu5Gc N-glycoloylneuraminic acid - PMSF phenylmethylsulfonyl fluoride - PSM pig submandibular gland mucin - SDS sodium dodecyl sulfate - Tris tris-(hydroxymethyl)aminomethane Dedicated to Professor Dr. Heinz Mühlpfordt on the occasion of his 65th birthday.  相似文献   

6.
It was recently reported that the extreme thermophile Methanopyrus kandleri contains only a H2-forming N 5, N 10-methylenetetrahydromethanopterin dehydrogenase which uses protons as electron acceptor. We describe here the presence in this Archaeon of a second N 5,N 10-methylenetetrahydromethanopterin dehydrogenase which is coenzyme F420-dependent. This enzyme was purified and characterized. The enzyme was colourless, had an apparent molecular mass of 300 kDa, an isoelectric point of 3.7±0.2 and was composed of only one type of subunit of apparent molecular mass of 36 kDa. The enzyme activity increased to an optimum with increasing salt concentrations. Optimal salt concentrations were e.g. 2 M (NH4)2SO4, 2 M Na2HPO4, 1.5 M K2HPO4, and 2 M NaCl. In the absence of salts the enzyme exhibited almost no activity. The salts affected mainly the V max rather than the K m of the enzyme. The catalytic mechanism of the dehydrogenase was determined to be of the ternary complex type, in agreement with the finding that the enzyme lacked a chromophoric prosthetic group. In the presence of M (NH4)2SO4 the V max was 4000 U/mg (k cat=2400 s-1) and the K m for N 5,N 10-methylenetetrahydromethanopterin and for coenzyme F420 were 80 M and 20 M, respectively. The enzyme was relatively heat-stable and lost no activity when incubated anaerobically in 50 mM K2HPO4 at 90°C for one hour. The N-terminal amino acid sequence was found to be similar to that of the F420-dependent N 5, N 10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Archaeoglobus fulgidus.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme F420 - CH2=H4MPT N 5,N 10-methylenetrahydromethanopterin - CHH4MPT+ N 5,N 10-methenyltetrahydromethanopterin - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - Mops N-morpholinopropane sulfonic acid - Tricine N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

7.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

8.
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogens known so far. N 5 N 10 -Methylenetetrahydromethanopterin reductase, an enzyme involved in methanogenesis from CO2, was purified from this hyperthermophile. The apparent molecular mass of the native enzyme was found to be 300 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only one polypeptide of apparent molecular mass 38 kDa. The ultraviolet/visible spectrum of the enzyme was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was specific for reduced coenzyme F420 as electron donor; NADH, NADPH or reduced dyes could not substitute for the 5-deazaflavin. The catalytic mechanism was found to be of the ternary complex type as deduced from initial velocity plots. V max at 65°C and pH 6.8 was 435 U/mg (kcat=275 s-1) and the K m for methylenetetrahydro-methanopterin and for reduced F420 were 6 M and 4 M, respectively. From Arrhenius plots an activation energy of 34 kJ/mol was determined. The Q 10 between 40°C and 90°C was 1.5.The reductase activity was found to be stimulated over 100-fold by sulfate and by phosphate. Maximal stimulation (100-fold) was observed at a sulfate concentration of 2.2 M and at a phosphate concentration of 2.5 M. Sodium-, potassium-, and ammonium salts of these anions were equally effective. Chloride, however, could not substitute for sulfate or phosphate in stimulating the enzyme activity.The thermostability of the reductase was found to be very low in the absence of salts. In their presence, however, the reductase was highly thermostable. Salt concentrations between 0.1 M and 1.5 M were required for maximal stability. Potassium salts proved more effective than ammonium salts, and the latter more effective than sodium salts in stabilizing the enzyme activity. The anion was of less importance.The N-terminal amino acid sequence of the reductase from M. kandleri was determined and compared with that of the enzyme from Methanobacterium thermoautotrophicum and Methanosarcina barkeri. Significant similarity was found.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5 ,N 10 -methylene-H4MPT - CH3-H4MPT N 5-methyl-H4MPT - CHH4MPT+ N 5 ,N 10 -methenyl-H4MPT - F420 coenzyme F420; 1 U=1 mol/min  相似文献   

9.
By employing a bovine UDP-N-acetylgalactosamine: polypeptideN-acetylgalactosaminyl transferase (O-GalNAc transferase) cDNA as a probe, we isolated four overlapping cDNAs from a porcine lung cDNA library. Both the nucleotide sequence of the porcine cDNA and the predicted primary structure of the protein (559 amino acids) proved to be very similar to those of the bovine enzyme (95% and 99% identity, respectively). Transient expression of the clone in COS-7 cells, followed by enzymatic activity assays, demonstrated that this cDNA sequence encodes a porcine O-GalNAc transferase. The intracellular O-GalNAc transferase activity was increased approximately 100-fold by transfecting cells with the porcine cDNA.Abbreviations O-GalNAc transferase UDP-N-acetylgalactosamine: polypeptideN-acetylgalactosaminyltransferase - PCR polymerase chain reaction - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - GnT-III UDP-N-acetylglucosamine: -mannoside -1,4N-acetylglucosaminyltransferase III  相似文献   

10.
The respiratory system of chemolithoautotrophically-grown Alcaligenes latus contains a, b, and c type cytochromes. Two cytochrome oxidases were identified by their carbon monoxide difference spectra and their differing sensitivities to cyanide and carbon monoxide. The oxidases were cytochrome o and an a-type cytochrome. Ubiquinone was present in A. latus membranes and could be reduced by H2. The quinone analogue, 2-heptyl-4-hydroxy-quinoline-N-oxide (HQNO), was a strong inhibitor of the H2 oxidase reaction, but did not prevent the reduction of either ubiquinone or the cytochromes.Abbreviations HQNO 2-heptyl-4-hydroxy-quinoline-N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

11.
Sialidase secreted by the urease-positiveClostridium sordellii strain G12 was isolated from culture medium and purified to apparent homogeneity as estimated by Fast Protein Liquid Chromatography (FPLC) and sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE). For this purpose, ion-exchange chromatography, gel filtration, isoelectric focusing, and FPLC on ion-exchange resin and gel filtration materials were used. The sialidase was purified 159 300-fold from 5 l of culture medium, yielding 9 g of enzyme protein with a specific activity of 480 U/mg. For the denatured (SDS-PAGE) and native (FPLC) sialidase relative molecular masses of 40 000 and 38 500 Da, respectively, were estimated. The substrate specificity, kinetic data, and pH-optimum of the enzyme are similar to those of other bacterial sialidases. The influences of salt or serum proteins on enzyme activity are of interest.Abbreviations MU-Neu5Ac 4-methylumbelliferyl -d-N-acetylneuraminic acid - Ganglioside GD1a IV3NeuAc, ll3NeuAc-GgOse4Cer - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid  相似文献   

12.
The role of cytokinin N-glucosylation and degradation by cytokinin oxidase/dehydrogenase (CKX, EC 1.5.99.12) in response to application of exogenous auxins (2,4-dichlorophenoxyacetic acid [2,4-D] and -naphthaleneacetic acid [NAA]) and cytokinins (N 6-benzyladenine [BA] and trans-zeatin [Z]) was investigated in de-rooted seedlings of Raphanus sativus L. cv. Rampouch. Both auxins applied for 24 h at 1 and 10 M concentration increased N-glucosylation of exogenously applied [3H]dihydrozeatin (DHZ) by up to 20%. The level of endogenous 7N-glucosides (of Z, isopentenyladenine [iP] and DHZ) was increased by 2,4-D and NAA at 10 M concentration by 28 and 23%, respectively, the level of Z being decreased by 90 and 59%, respectively. 2,4-D and NAA suppressed CKX activity ca. by half. Exogenous cytokinins Z and BA applied at 1 and 10 M concentration stimulated 7N-glucosylation of [3H]DHZ (by up to 40%). BA both at 1 and 10 M, increased the level of endogenous Z by up to 35% and that of 7N-glucosides by up to 27%. BA application also strongly stimulated CKX activity (by up to 180%). Feeding with 1 and 10 M Z resulted in ca. 100-fold and 2000-fold increase of Z level, respectively. The main metabolite, Z7G, was increased ca. 6-fold and 60-fold, respectively. Levels of Z 9-glucoside (Z9G), trans-zeatin riboside (ZR) and Z O-glucoside (ZOG) were elevated to lesser extent. As compared to BA, Z had only negligible effect on CKX activity. Adenine (1–500 M) was preferentially 7N-glucosylated inhibiting competitively 7N-glucosylation of [3H]DHZ. At high concentrations (100–500 M) it increased endogenous levels of active cytokinins, especially of Z, however, it had no effect on CKX activity. Cytokinin N-glucosylation proved to be involved in down-regulation of active cytokinins in response to auxin and in the re-establishment of cytokinin homeostasis following application of exogenous cytokinins.  相似文献   

13.
It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N 1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N 1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3–20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid ( 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity ( 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity.Abbreviations DAO diamine oxidase - DFMO DL--difluoromethylornithine - DP 1-3-diaminopropane - IC50 50% inhibition concentration - MAO monoamine oxidase - N 1-ACSP; N 1-acetylspermine - N1-ACSPD N 1-acetylspermidine - N 8-ACSPD N 8-acetylspermidine - ODC ornithine decarboxylase - PAO(s) polyamine oxidase(s) - PUT putrescine - SP spermine - SPD spermidine  相似文献   

14.
The cytochrome oxidase activity (oxygen uptake in the dark) of a membrane preparation from Anabaena variabilis was found to be stimulated by cytochrome c-553 and plastocyanin obtained from this alga. Cytochrome c from horse heart was as active as cytochrome c-553, whereas little or no stimulation of oxygen uptake was obtained with cytochromes c 2 from two Rhodospirillaceae, the plastidic cytochrome c-552 from Euglena, and plastocyanin from spinach. Cytochrome c-553 (A. variabilis) stimulated photosystem 1 activity in the same preparation much more than cytochrome c (horse heart). The results indicate that cytochrome c-553 and plastocyanin, besides their established function as electron donors of photosystem 1, participate in respiratory electron transport as reductants of a terminal oxidase. Photooxidation and dark oxidation show a different donor specificity.Abbreviations Chl chlorophyll a - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

15.
Whole cells of the methylotrophic bacteriumMethylophilus methylotrophus cultured under methanol-limited conditions contain approximately equal amounts of two majorc-type cytochromes,c H andc L. Virtually all of the cytochromec H, and over one-third of the cytochromec L, are loosely attached to the periplasmic surface of the respiratory membrane whence they can be released by sonication or by washing cells in ethylenediaminetetraacetate (EDTA). The latter causes inhibition of methanol oxidase activity and stimulation of ascorbate-N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) oxidase activity, neither of which effects are reversible by divalent metal ions. Kinetic analyses indicate that ascorbate-TMPD is oxidised via two routes, viz. a slow low-affinity pathway involving loosely membrane-boundc-type cytochromes plus cytochrome oxidaseaa 3, and a faster higher-affinity pathway involving the firmly membrane-bound cytochrome oxidasec L o complex; the former route predominates in the presence of divalent metal ions, and the latter route after exposure to EDTA. These and other results are discussed in terms of the spatial organisation of the terminal respiratory chain, and of the role ofc-type cytochromes in the oxidation of methanol and ascorbate-TMPD.Abbreviations EDTA Enthylenediaminetetraacetate - PMS Phenazinemethosulphate - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - SDS Sodium dodecylsulphate - I50 Concentration of inhibitor required to give 50% inhibition of enzyme activity - PQQ Pyrroloquinoline quinone  相似文献   

16.
Antimutagenic activity of Lactobacillus plantarum KLAB21, isolated from Korean kimchi, was investigated against MNNG (N-methyl-N-nitro-N-nitrosoguanidine), NQO (4-nitroquinoline-1-oxide), NPD (4-nitro-O-phenylenediamine) and aflatoxin B1 using Salmonella typhimurium strains TA100 and TA98. Although all the cell fractions including the culture supernatant, dry cells and cell-free extract exhibited antimutagenic activity against MNNG and NQO, the culture supernatant possessed the highest activity. The antimutagenic ratio of the culture supernatant was 98.4% against MNNG on strain TA100 and 57.3% against NQO on strain TA98. Its antimutagenic activity was reconfirmed by a Bacillus subtilis spore-rec assay. Levels of the antimutagenic ratios of other lactic acid bacteria originating from fermented milk ranged between 26.8 to 53% against MNNG and 28.5 to 43.4% against NQO. The antimutagenic activities of the strain KLAB21 against NPD were 72.6% on TA100 and 62.8% on TA98, and those against aflatoxin B1 were 82.5% on TA100 and 78.2% on TA98.  相似文献   

17.
Menaquinol oxidase isolated from the membrane of Bacillus subtilis W23 was found to consist of four polypeptides (QoxA, B, C, and D) that were predicted by the sequence of the qox operon of B. subtilis 168 (Santana et al. 1992). The preparation contained 7 mol cytochrome aa 3 per g protein, which corresponds to 2mol heme A per mol enzyme of 144 kDa molecular mass. Respiration with dimethylnaphthoquinol catalyzed by the enzyme was ten times faster than that with menadiol. Activities with more electropositive quinols were negligible. The activity of the enzyme was inhibited by equimolar amounts of HQNO, while antimycin, myxothiazol, and stigmatellin were more than tenfold less effective. When cells of both strains of B. subtilis (W23 and 168) were grown with glucose, quinol respiration was an order of magnitude more active than respiration with N,N,N,N-tetramethyl-1,4-phenylenediamine plus ascorbate. Surprisingly, the same result was obtained with mutant strains lacking qoxB. As cytochromes a and d were virtually absent, a second quinol oxidase, possibly of the cytochrome o-type, was apparently formed by the mutants.Abbreviations cat Chloramphenicol resistance gene - cta Cytochrome oxidase genes - DMN 2,3-Dimethyl-1,4-naphthoquinone - DMNH 2 Reduced DMN - HQNO 2-(n-Heptyl)-4-hydroxyquinoline-N-oxide - qox Quinol oxidase genes - TMPD N,N,N,N-tetramethyl-1,4-phenylenediamine  相似文献   

18.
A soluble protein that interacts with a range of cytokinins was extensively purified from wheat (Triticum aestivum L.) germ. This protein has a K d for kinetin of 2×10-7 M. The binding of kinetin to the protein is inhibited by low concentrations of synthetic and naturally-occurring cytokinins including N6-benzyladenine, N6-benzyladenosine, kinetin riboside, N6-dimethylallyladenine, N6-dimethylallyladenosine, zeatin, zeatin riboside, N6-dimethyladenine and N6-dimethyladenosine. Adenine, adenosine and several non-N6-substituted adenine derivatives were ineffective as inhibitors of kinetin binding. While N6-butyryl-3,5-cyclic AMP, N6,2-O-dibutyryl-3,5-cyclic AMP and 2,3-cyclic AMP inhibited binding of kinetin to the protein, 3,5-cyclic AMP was ineffective. The kinetin-binding protein is heat-labile and pronase-sensitive. Kinetin-binding activity exactly co-chromatographs with a single peak of carbohydrate and protein on gel-filtration and is displaced from concanavalin A-Sepharose 4B by -methylglucoside. On gel filtration, the kinetin-binding protein behaves as a soluble protein with an apparent molecular weight of 180,000 daltons.  相似文献   

19.
Summary Two new mutants of E. coli K12, strains PT9 and PT32 were isolated, that were defective in proline transport. They had no high affinity proline transport activity, but their cytoplasmic membranes retained proline binding activity with altered sensitivity to inhibition by p-chloromercuribenzoate(pCMB). The lesion was mapped at the putP gene, which is located at min 23 on the revised E. coli genetic map (Bachmann 1983) as a composite gene in the proline utilization gene cluster, putP, putC, and putA, arranged in this order. The putC gene was shown to regulate the synthesis of proline dehydrogenase (putA gene product).Hybrid plasmids carrying the put region (Motojima et al. 1979; Wood et al. 1979) were used to construct the physical map of the put region. The possible location of the putP gene in the DNA segment was determined by subcloning the putP gene, genetic complementation, and recombination analyses using several proline transport mutants.Abbreviations pCMB p-chloromercuribenzoate - DM Davis and Mingioli - Ap ampicillin - NTG N-methyl-N-nitro-N-nitrosoguanidine - EMS ethylmethane sulfonate - Str streptomycin - Tet tetracycline - Ac l-azetidine-2-carboxylic acid - DHP 3, 4-dehydro-d,l-proline - MTT 3-(4,5-dimethyl-2)2,5-diphenyl tetrazolium bromide - Tris tris(hydroxymethyl)aminomethane - EDTA ethylenediamine tetraacetic acid - Kan kanamycin - Spc spectinomycin  相似文献   

20.
Archaeoglobus fulgidus, a sulfate-reducing Archaeon with a growth temperature optimum of 83°C, uses the 5-deazaflavin coenzyme F420 rather than pyridine nucleotides in catabolic redox processes. The organism does, however, require reduced pyridine nuclcotides for biosynthetic purposes. We describe here that the Archaeon contains a coenzyme F420-dependent NADP reductase which links anabolism to catabolism. The highly thermostable enzyme was purfied 3600-fold by affinity chromatography to apparent homogeneity in a 60% yield. The native enzyme with an apparent molecular mass of 55 kDa was composed of only one type of subunit of apparent molecular mass of 28 kDa. Spectroscopic analysis of the enzyme did not reveal the presence of any chromophoric prosthetic group. The purified enzyme catalyzed the reversible reduction of NADP (apparent K M 40 M) with reduced F420 (apparent K M 20M) with a specific activity of 660 U/mg (apparent V max) at pH 8.0 (pH optimum) and 80°C (temperature optimum). It was specific for both coenzyme F420 and NADP. Sterochemical investigations showed that the F420-dependent NADP reductase was Si face specific with respect to C5 of F420 and Si face specific with respect to C4 of NADP.Abbreviations F420 coenzyme F420 - F420H2 1,5-dihydrocoenzyme F420 - H4MPT tetrahydromethanopterin - CH=H4MPT N5, N10-methylenetetrahydromethanopterin - MFR methanofuran - HPLC high performance liquid chromatography - methylene-H4MPT dehydrogenase N5, N10-methylenetetrahydromethanopterin dehydrogenase - 1 U = 1 mol/min  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号