首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of primary components of the microbial community (autotrophic pico- and nanoplankton, phototrophic bacteria, heterotrophic bacteria, microscopic fungi, heterotrophic flagellates, ciliates and heliozoa) in the water column of Lake Shira, a steppe brackish-water, stratified lake in Khakasia, Siberia (Russia), were assessed in midsummer. Bacterioplankton was the main component of the planktonic microbial community, accounting for 65.3 to 75.7% of the total microbial biomass. The maximum concentration of heterotrophic bacteria were recorded in the monimolimnion of the lake. Autotrophic microorganisms contributed more significantly to the total microbial biomass in the pelagic zone (20.2–26.5%) than in the littoral zone of the lake (8.7–14.9%). First of all, it is caused by development of phototrophic sulphur bacteria at the oxic-anoxic boundary. The concentrations of most aerobic phototrophic and heterotrophic microorganisms were maximal in the upper mixolimnion. Heterotrophic flagellates dominated the protozoan populations. Ciliates were minor component of the planktonic microbial community of the lake. Heterotrophic flagellates were the most diverse group of planktonic eucaryotes in the lake, which represented by 36 species. Facultative and obligate anaerobic flagellates were revealed in the monimolimnion. There were four species of Heliozoa and only three of ciliates in the lake.  相似文献   

2.
鄱阳湖湿地不同土地利用方式下土壤微生物群落功能多样性   总被引:23,自引:6,他引:17  
张杰  胡维  刘以珍  葛刚  吴兰 《生态学报》2015,35(4):965-971
于2011年5月分别采集鄱阳湖围垦92、48a和38a的水稻田,退田还湖25a的退耕地以及自然湿地共5个样地的表层土壤,利用Biolog-ECO板技术对土壤微生物群落的单一碳源利用情况进行了测定,并结合群落指数和主成分分析(PCA)对培养72 h土壤微生物群落功能多样性变化进行了分析。结果表明:退耕地和自然湿地土壤微生物群落利用31种碳源的能力较强,来自不同围垦年限的土壤微生物群落利用碳源能力均较弱;且随围垦时间的增长,土壤微生物对碳源的利用能力呈降低的趋势。自然湿地、退耕地与围垦92、38a样地土壤之间存在显著的微生物功能多样性差异;围垦对土壤微生物代谢糖类、羧酸类、氨基酸类物质的影响最为明显。结果提示,围垦改变了湿地土壤微生物群落结构,退田还湖有助于湿地土壤微生物群落结构的恢复。  相似文献   

3.
Sediments accommodate the dominating share of groundwater microbiomes, however the processes that govern the assembly and succession of sediment-attached microbial communities in groundwater aquifers are not well understood. To elucidate these processes, we followed the microbial colonization of sterile sediments in in situ microcosms that were exposed to groundwater for almost 1 year at two distant but hydrologically connected sites of a pristine, shallow, porous aquifer. Our results revealed intriguing similarities between the community succession on the newly-colonized sediments and succession patterns previously observed for biofilms in other more dynamic aquatic environments, indicating that the assembly of microbial communities on surfaces may be governed by similar underlying mechanisms across a wide range of different habitats. Null model simulations on spatiotemporally resolved 16S rRNA amplicon sequencing data further indicated selection of specific OTUs rather than random colonization as the main driver of community assembly. A small fraction of persistent OTUs that had established on the sediments during the first 115 days dominated the final communities (68%–85%), suggesting a key role of these early-colonizing organisms, in particular specific genera within the Comamonadaceae and Oxalobacteraceae, for community assembly and succession during the colonization of the sediments. Overall, our study suggests that differences between planktonic and sediment-attached communities often reported for groundwater environments are not the result of purely stochastic events, but that sediment surfaces select for specific groups of microorganisms that assemble over time in a reproducible, non-random way.  相似文献   

4.
Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments.  相似文献   

5.
The recent inclusion of communities of planktonic algae and microbial crusts into the system of European vegetation types is critically discussed. It is argued that formal vegetation classification should be limited to plant taxa represented by macroscopic individuals within a plot, including all vascular plants, bryophytes, lichens, charophyta and macrophytic chlorophyta, rhodophyta or phaeophyta. In the interest of comparability and methodological stringency, all microscopic algae and all prokaryotes, including cyanobacteria, and the habitats dominated by such microorganisms (e.g. plankton, biofilms and crusts), should be excluded from vegetation classification.  相似文献   

6.
Caves are extreme and specialised habitats for terrestrial life that sometimes contain moonmilk, a fine-grained paste-like secondary mineral deposit that is found in subterranean systems worldwide. While previous studies have investigated the possible role of microorganisms in moonmilk precipitation, the microbial community ecology of moonmilk deposits is poorly understood. Bacterial and fungal community structure associated with four spatially isolated microcrystalline, acicular calcite moonmilk deposits at Ballynamintra Cave (S. Ireland) was investigated during this study. Statistical analyses revealed significant differences in microbial activity, number of bacterial species, bacterial richness and diversity, and fungal diversity (Shannon's diversity) among the moonmilk sites over an area of approximately 2.5 m2. However, the number of fungal species and fungal community richness were unaffected by sampling location. SIMPER analysis revealed significant differences in bacterial and fungal community composition among the sampling sites. These data suggest that a rich assemblage of microorganisms exists associated with moonmilk, with some spatial diversity, which may reflect small-scale spatial differences in cave biogeochemistry.  相似文献   

7.
Our knowledge on the Microbiology of the Atacama Desert has increased steadily and substantially during the last two decades. This information now supports a paradigmatic change on the Atacama Desert from a sterile, uninhabitable territory to a hyperarid region colonized by a rich microbiota that includes extremophiles and extreme-tolerant microorganisms. Also, extensive reports are available on the prevalent physical and chemical environmental conditions, ecological niches and, the abundance, diversity and organization of the microbial life in the Atacama Desert. This territory is a highly desiccated environment due to the absence of regular rain events. Liquid water scarcity is the most serious environmental factor affecting the Atacama Desert microorganisms. The intense solar irradiation in this region contributes, in a synergistic fashion with desiccation, to limit the survival and growth of the microbial life. In order to overcome these two extreme conditions, successful microorganisms, organized as microbial consortia, take advantage of (a) the physical characteristics of lithic habitats, which provide sites for colonization on, within or below the rock substrate, the attenuation and filtration of the intense solar irradiation and, the collection of liquid water from incoming fog formations and by water vapour condensation and deliquescence on or within their surfaces, and (b) the biological adaptations of members of the microbial communities that allow them to synthesize hydrophilic macromolecules, antioxidants and UV-light absorbents. Lithic habitats have been considered specialized shelters where life forms can reach protection at environments subjected to extremes of desiccation and solar irradiation, here on Earth or elsewhere. This review is an overview of part of the scientific information collected on lithobionts from the Atacama Desert, their rock substrates and their strategies to cope with extremes of desiccation and intense photosynthetic active radiation and UV irradiations.  相似文献   

8.
Fungi contribute substantially to biogeochemical cycles of terrestrial and marine habitats by decomposing matter and recycling nutrients. Yet, the diversity of their planktonic forms in the open ocean is poorly described. In this study, culture-independent and molecular approaches were applied to investigate fungal diversity and abundance derived from samples collected from a broad swath of the Pacific Warm Pool across major environmental gradients Our results revealed that planktonic fungi were molecularly diverse and their diversity patterns were related to major phytoplankton taxa and various nutrients including nitrate, nitrite, orthophosphate and silicic acid. Over 400 fungal phylotypes were recovered across this region and nearly half of them grouped into two major fungal lineages of Ascomycota and Basidiomycota, whose abundance varied among stations. These results suggest that planktonic fungi are a diverse and integral component of the marine microbial community and should be included in future marine microbial ecosystem models.  相似文献   

9.
The community composition of marine planktonic cyanobacteria in transitional marine habitats can influence its overall contribution to aquatic primary production. To understand distribution patterns of marine planktonic cyanobacterial assemblages, phylogenetic and statistical analyses were undertaken on planktonic cyanobacterial 16S rRNA gene sequences from four transitional marine habitats [Baltic Sea (BL), Monterey Bay (MB), South China Sea (SCS) and Sundarbans (SB)]. Out of 3255 sequences analyzed, only 546 sequences were found to be planktonic cyanobacteria and were considered in this study. Among these, 338 sequences representative of Sundarbans, the world's largest mangrove were generated based on Sanger and Illumina sequencing approaches. Based on 16S rRNA phylogeny, four major taxonomic orders of marine planktonic cyanobacteria were recovered in varying proportions with several novel 16S rRNA sequences in each of the four targeted sites. Members of the order Synechococcales were dominant in all the sites (?94% sequences) while the orders Chroococcales and Oscillatoriales were only detected in SB and SCS sites, respectively. In the phylogenetic tree, sequences representing the major marine picocyanobacterial genus Synechococcus showed overwhelming dominance in SB and they were found in three other sites. Prochlorococcus ‐like sequences were found in sizeable number in MB and SCS but were absent in SB and coastal BL. Synechococcus ‐like sequences were represented by three major marine clusters (5.1, 5.2, and 5.3). Three novel clades as part of Synechococcus cluster were detected only in SB and one novel clade in BL. The majority of OTUs were found to be exclusive to each site, whereas some were shared by two or more sites as revealed by beta‐diversity analysis.  相似文献   

10.
The relationships between the abundance and activity of planktonic, heterotrophic microorganisms and the quantity and characteristics of dissolved organic carbon (DOC) in a Rocky Mountain stream were evaluated. Peak values of glucose uptake, 2.1 nmol L−1 hr−1, and glucose concentration, 333 nM, occurred during spring snowmelt when the water temperature was 4.0°C and the DOC concentration was greatest. The turnover time of thein situ glucose pool ranged seasonally from 40–1110 hours, with a mean of 272 hr. Seasonal uptake of3H-glucose, particulate ATP concentrations, and direct counts of microbial biomass were independent of temperature, but were positively correlated with DOC concentrations and negatively correlated with stream discharge. Heterotrophic activity in melted snow was generally low, but patchy. In the summer, planktonic heterotrophic activity and microbial biomass exhibited small-scale diel cycles which did not appear to be related to fluctuations in discharge or DOC, but could be related to the activity of benthic invertebrates. Leaf-packs placed under the snow progressively lost weight and leachable organic material during the winter, indicating that the annual litterfall in the watershed may be one source of the spring flush of DOC. These results indicate that the availability of labile DOC to the stream ecosystem is the primary control on seasonal variation in heterotrophic activity of planktonic microbial populations.  相似文献   

11.
Lokočová  K.  Maťátková  O.  Vaňková  E.  Kolouchová  I.  Čejková  A.  Masák  J. 《Microbiology》2021,90(3):370-382
Microbiology - Many microorganisms readily form microbial biofilms whose resistance to antimicrobial compounds is several orders of magnitude higher than that of the planktonic form. One such genus...  相似文献   

12.
In this review, initial microbial adhesive interactions are divided into adhesion to substratum surfaces, coaggregation between microbial pairs and co-adhesion between sessile and planktonic microorganisms of different strains or species. The physico-chemical mechanisms underlying the adhesive interactions are described and a critical review is given of currently employed methods to study microbial adhesive interactions, with an emphasis on the use of the parallel plate flow chamber. Subsequently, for each of the three microbial adhesive interactions distinguished, the role of Lifshitz-van der Waals, acid-base and electrostatic interactions is described based on existing literature.  相似文献   

13.
Marine sessile eukaryotic hosts provide a unique surface for microbial colonisation. Chemically mediated interactions between the host and colonising microorganisms, interactions between microorganisms in the biofilm community and surface-specific physical and chemical conditions impact differently on the diversity and function of surface-associated microbial assemblages compared with those in planktonic systems. Understanding the diversity and ecology of surface-associated microbial communities will greatly contribute to the discovery of next-generation, bioactive compounds. On the basis of recent conceptual and technological advances insights into the microbiology of marine living surfaces are improving and novel bioactives, including those previously ascribed as host derived, are now revealed to be produced by members of the surface-associated microbial community.  相似文献   

14.
Fish larvae abundances, diversity and trophic position across shallow seagrass, coral reef and open water habitats were examined to characterize their distribution in coastal East Africa. Larvae were identified to family and analysed for abundance differences between sites and habitats, trophic level using stable-isotope analysis and parental spawning mode. Abundances differed greatly between sites with the highest numbers of larvae occurring in the open-water and seagrass habitats. Larval fish diversity was high across habitats with 51 families identified with small differences between sites and among habitats. Notably, larvae of abundant large herbivorous fishes present in reef and seagrass habitats were almost completely absent at all sampling locations. In the seagrass, demersal spawned larvae were more abundant compared with the reef and open-water habitats. Stable-isotope analysis revealed that fish larvae have a varied diet, occupying trophic level two to three and utilizing planktonic prey. This study offers new insights into distributional aspects of fish larvae along the East African coast where such information is sparse.  相似文献   

15.
为深入了解海南东寨港红树林生态系统微生物多样性及其在氮、磷、硫等代谢循环中的功能特点,本研究采用宏基因组测序,从物种注释与丰度、群落功能及多样性指数等角度,分析红树林淤泥和水体生境中微生物群落结构及生态功能的特异性。结果显示,在淤泥中检测到53个门、909个属的微生物类群,有3个占比超过1%的优势门类,其中变形杆菌门为83.78%,处于绝对优势,其下的12个优势属全部来自变形杆菌门;不动杆菌属是聚磷微生物的主要类群,其在淤泥中含量是水体的107.7倍,硫氧化单胞菌属、脱硫杆菌属是硫化物代谢的主要菌属,主要存在于淤泥生境当中。在水体中检测到64个门、1 522个属,包括13个优势门类、7个优势属;Nitrospinae和硝化螺旋菌门是亚硝酸盐氧化代谢的关键类群,两者在水体中占比分别是淤泥中的28.1倍和6.8倍。多样性评估得知,水体样品中的Shannon Wiener指数和Simpson指数均高于淤泥样品,两样品在属分类学单元上的Simpson指数趋近于1,表明红树林生态系统具有非常高的微生物多样性,水体生境的微生物多样性高于淤泥;亚硝酸盐的微生物代谢循环主要发生在水体生境中,微生物对磷的富集作用和硫化合物的氧化还原代谢主要发生在淤泥生境中。本研究有助于认识东寨港红树林湿地生境中的微生物资源状况,为保护红树林生态系统和开发利用其中的微生物资源提供依据。  相似文献   

16.
Biofilms are surface-attached, matrix-encased, structured microbial communities which display phenotypic features that are dramatically different from those of their free-floating, or planktonic, counterparts. Biofilms seem to be the preferred mode of growth of microorganisms in nature, and at least 65% of all human infections are associated with biofilms. The most notable and clinically relevant property of biofilms is their greater resistance to antimicrobials compared with their planktonic counterparts. Although both bacterial and fungal biofilms display this phenotypic feature, the exact mechanisms underlying their increased drug resistance are yet to be determined. Advances in proteomics techniques during the past decade have facilitated in-depth analysis of the possible mechanisms underpinning increased drug resistance in biofilms. These studies have demonstrated the ability of proteomics techniques to unravel new targets for combating microbial biofilms. In this review, we discuss the putative drug resistance mechanisms of microbial biofilms that have been uncovered by proteomics and critically evaluate the possible contribution of the new knowledge to future development in the field. We also summarize strategic uses of novel proteomics technologies in studies related to drug resistance mechanisms of microbial biofilms.  相似文献   

17.
珠江浮游真核微型生物分子多样性及其与水环境的关系   总被引:1,自引:0,他引:1  
文章分别在丰水期和枯水期于珠江广州段和西江广东段43个样点采集水样, 基于末端限制性长度多态性分析, 研究了珠三角地区珠江水体的浮游真核微型生物的分子多样性及其群落结构和水体理化因子的关系。结果表明, 西江广东段及珠江广州段水体氮和磷严重超标, 水质状况堪忧。枯水期样本浮游真核微型生物香农威尔多样性指数普遍高于丰水期样本, 西江广东段样本浮游真核微型生物多样性指数普遍高于珠江广州段样本。不同水期, 不同区域的浮游真核微型生物群落结构均存在显著差异。珠江样点的浮游真核微型生物群落结构均与化学需氧量、高锰酸盐指数、氨氮、总氮、总磷高度相关; 但不同水期、不同区域的浮游真核微型生物群落结构与理化因子相关系数有所差异。此外, 分别筛选出了1个、8个末端限制性片段代表了潜在的敏感(Cystobasidium sp.或Protostelium nocturnum)、耐污(Acanthamoeba hatchetti、Babesia bicornis、Blastocystis sp.、Botryosphaerella sudetica、Candida caryicola、Coccomyxa simplex、Cryptomonas ovata、Filos agilis、Stenophora robusta、Sulfonecta uniserialis、Theileria sp.等)物种/类群。  相似文献   

18.
Plant rhizosphere soil houses complex microbial communities in which microorganisms are often involved in intraspecies as well as interspecies and inter-kingdom signalling networks. Some members of these networks can improve plant health thanks to an important diversity of bioactive secondary metabolites. In this competitive environment, the ability to form biofilms may provide major advantages to microorganisms. With the aim of highlighting the impact of bacterial lifestyle on secondary metabolites production, we performed a metabolomic analysis on four fluorescent Pseudomonas strains cultivated in planktonic and biofilm colony conditions. The untargeted metabolomic analysis led to the detection of hundreds of secondary metabolites in culture extracts. Comparison between biofilm and planktonic conditions showed that bacterial lifestyle is a key factor influencing Pseudomonas metabolome. More than 50% of the detected metabolites were differentially produced according to planktonic or biofilm lifestyles, with the four Pseudomonas strains overproducing several secondary metabolites in biofilm conditions. In parallel, metabolomic analysis associated with genomic prediction and a molecular networking approach enabled us to evaluate the impact of bacterial lifestyle on chemically identified secondary metabolites, more precisely involved in microbial interactions and plant-growth promotion. Notably, this work highlights the major effect of biofilm lifestyle on acyl-homoserine lactone and phenazine production in P. chlororaphis strains.  相似文献   

19.
【目的】当前对全球冷泉生态系统微生物生态学研究显示,冷泉生态系统中主要微生物类群为参与甲烷代谢的微生物,它们的分布差异与所处冷泉区生物地球化学环境密切相关。但在冷泉区内也存在环境因子截然不同的生境,尚缺乏比较冷泉区内小尺度生境间微生物多样性和分布规律的研究。本研究旨在分析南海Formosa冷泉区内不同生境间微生物多样性差异,完善和理解不同环境因子对冷泉内微生物群落结构的影响。【方法】对采集自南海Formosa冷泉区不同生境(黑色菌席区、白色菌席区和碳酸盐岩区)沉积物样本中古菌和细菌16S rRNA基因进行测序,结合环境因子,比较微生物多样性差异,分析环境因子对微生物分布的影响。【结果】发现在Formosa冷泉内的不同生境中,甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)是主要古菌类群,占古菌总体相对丰度超过70%;在菌席区ANME-1b和ANME-2a/b是主要ANME亚群,碳酸盐岩区则是ANME-1b。硫酸盐还原菌(sulfate-reducing bacteria,SRB)和硫氧化菌(sulfur-oxidizing bacteria...  相似文献   

20.
Investigation of microbial communities of Antarctica soils is a very important field of research that expands our knowledge of microbial participation in primary soil formation and specific features of their communities in extreme habitats, and it is of considerable interest in directed search of for microorganisms as potential biotechnological objects. The results of long-term (2012–2017) complex studies on soil microbial communities of the Russian East Antarctica polar stations at Shirmakher oasis (Novolazarevskaya station), the Larsemann Hills (Progress station), and the Tala Hills (Molodezhnaya station) are presented in this review. The assessment of biomass of soil microorganisms by the methods of direct microscopy has been carried out for the first time for this region. The general amount of microbial biomass is small; the fungi dominate (77–99%). The unique features of Antarctic soils are the high content and morphological diversity of small forms of microorganisms: fungi are presented by mainly single-celled structures (small spores and yeasts), while bacteria by ultrafine (filtering) forms. At the same time, microorganisms can significantly contribute to such important ecological functions of soil as the emission of greenhouse gases, especially during the warm season with the stable positive temperatures of the soil. This should be considered during creation of models and forecasts of global warming. The use of various isolation techniques for the analysis of the soil microbial population, together with the succession approach, significantly expand the information about taxonomic diversity of cultivated fungi and bacteria in Antarctica soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号