首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we isolated and compared the weathering effectiveness and population of mineral-weathering bacteria from the rhizosphere and bulk soils of Morus alba grown in a mineral-rich soil. Eighty-four isolates could release Si, Al, K, and Fe from potash feldspar. Weathering effectiveness and pattern of the isolates differed between the rhizosphere and bulk soils. The proportion of the highly effective Si, Al, K, and Fe solubilizers was significantly higher in the rhizosphere soils than in the bulk soils. Notably, the proportion of the highly effective acid-producing isolates was also significantly higher in the rhizosphere soils. The 84 mineral-weathering isolates were affiliated with 15 bacterial genera. Distinct mineral-weathering genera were observed between the rhizosphere and bulk soils. The results suggested that the highly effective mineral-weathering bacteria were selected in the rhizosphere soils and the mineral-weathering bacteria from the rhizosphere and bulk soils might weather potash feldspar through different mechanisms.  相似文献   

2.
A total of 150 bacteria were isolated from the less and more altered (weathered) purple siltstones and the adjacent soils to compare the changes in the rock weathering patterns and populations of rock-weathering bacteria. The proportions of the highly effective Fe and Si solubilizers were significantly different among the altered rocks and soils. Maximum proportions of the highly effective Fe, Si, and Al solubilizers were observed in the soils, while significantly higher proportion of the highly effective K solubilizers was observed in the more altered rocks and the soils. The rock-weathering bacteria belonged to 37 bacterial species, among which 36, 64, and 56% of the species were specific to the less and more altered rocks and the soils, respectively. In the rock-weathering process, strains M78 and L38 mainly produced acetic acid, while strain H28 mainly produced gluconic acid. Furthermore, dominant rock-weathering members of Ensifer genus had the higher ability to release Fe and Si, while dominant rock-weathering members of Bacillus had the higher ability to release K. The results suggest the changes in the element mobilization patterns and populations of the rock-weathering bacteria and highlight the possible role of these bacteria in the rock weathering and soil formation.  相似文献   

3.
A total of 121 bacterial strains were isolated from the rhizosphere soils, root and stem interiors of Rumex acetosa to characterize the microenvironment-related changes in the mineral-weathering effectiveness, weathering mechanisms and populations of the bacteria. Among the 121 bacterial strains, 118 bacterial strains were found to weather biotite. The relative abundance of the highly effective mineral-weathering bacteria was different among the rhizosphere soils, root and stem interiors. Notably, the highest and lowest relative abundances of the highly effective mineral-weathering bacteria were observed in the stem and root interiors, respectively. Furthermore, the relative abundance of the highly acid-producing bacteria was significantly higher in the rhizosphere soils and stem interiors, while the highest and lowest relative abundances of the highly siderophore-producing bacteria were found in the stem interiors and rhizosphere soils, respectively. The mineral-weathering bacteria from the rhizosphere soils, root and stem interiors were affiliated with 11, 7 and 4 genera, respectively. In addition, 25–73% of the bacterial genera were specific to the plant-associated environments. The results showed diverse mineral-weathering bacteria in the plant-associated environments and microenvironment-related changes in weathering effectiveness and pattern and populations of the mineral-weathering bacteria. The results also suggested the different biotite-weathering mechanisms used by the bacteria among the plant-associated environments.  相似文献   

4.
【目的】比较高效矿物风化固氮假单胞菌(Pseudomonas azotoformans) F77及其亲缘关系较近的假单胞菌(Pseudomonas paracarnis) P1风化黑云母的效应和机制。【方法】通过检测两株菌在不同时间点的发酵液中细胞数量、pH值、葡萄糖剩余量、葡萄糖酸浓度和可溶性Fe、Al释放量,比较它们对黑云母的风化效果与生理机制。采用RNA-seq技术研究这两株菌风化黑云母过程中出现差异的分子机制。【结果】在持续5 d的风化试验中,菌株F77发酵液中的细胞数量和pH值低于菌株P1,葡萄糖酸浓度是菌株P1的27.3-53.9倍,Fe和Al元素的释放量是菌株P1的3.3-23.3倍。比较转录组数据表明,菌株F77特有的基因数量(2 872)和差异基因数量(1 832)均多于菌株P1 (分别为1 903和1 258)。菌株F77在胞内物质跨膜转运与碳代谢、细胞运动、趋化与信号诱导等途径中基因数量也高于菌株P1。此外,菌株F77的超氧化物歧化酶和过氧化氢酶基因差异表达倍数、葡萄糖酸合成基因数量和差异表达倍数也明显高于菌株P1。【结论】菌株F77风化黑云母以及合成葡萄糖酸的能力显著高于菌株P1。菌株F77通过产生葡萄糖酸来促进黑云母的风化。添加黑云母显著促进了菌株F77胞内与矿物风化相关基因的表达,如物质跨膜转运、细胞运动与趋化、信号诱导、碳代谢及能量代谢等途径基因。此外,葡萄糖酸合成途径基因、超氧化物歧化酶基因以及过氧化氢酶基因在矿物风化中可能发挥重要作用。  相似文献   

5.
To date, several bacterial species have been described as mineral-weathering agents which improve plant nutrition and growth. However, the possible relationships between mineral-weathering potential, taxonomic identity, and metabolic ability have not been investigated thus far. In this study, we characterized a collection of 61 bacterial strains isolated from Scleroderma citrinum mycorrhizae, the mycorrhizosphere, and the adjacent bulk soil in an oak forest. The ability of bacteria to weather biotite was assessed with a new microplate bioassay that measures the pH and the quantity of iron released from this mineral. We showed that weathering bacteria occurred more frequently in the vicinity of S. citrinum than in the bulk soil. Moreover, the weathering efficacy of the mycorrhizosphere bacterial isolates was significantly greater than that of the bulk soil isolates. All the bacterial isolates were identified by partial 16S rRNA gene sequence analysis as members of the genera Burkholderia, Collimonas, Pseudomonas, and Sphingomonas, and their carbon metabolism was characterized by the BIOLOG method. The most efficient isolates belonged to the genera Burkholderia and Collimonas. Multivariate analysis resulted in identification of three metabolic groups, one of which contained mainly bacterial isolates associated with S. citrinum and exhibiting high mineral-weathering potential. Therefore, our results support the hypothesis that by its carbon metabolism this fungus selects in the bulk soil reservoir a bacterial community with high weathering potential, and they also address the question of functional complementation between mycorrhizal fungi and bacteria in the ectomycorrhizal complex for the promotion of tree nutrition.  相似文献   

6.
Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure.  相似文献   

7.
Summary The effects of coniferous monoculture on the distribution of C, Fe and Al in the upper horizons of brown ochreous earths of the Belgian Ardennes were investigated by comparing 5 soil profiles developed under an 80 year old spruce stand with another 5 profiles developed under a climactic broad-leaved forest (beechwood).Organic carbon, Fe and Al were extracted with 0.1N NaOH/Na-tetraborate solution buffered at pH 9.7: recent studies have shown that this extraction is particularly appropriate for the detection of incipient podzolisation in brown earths-brown podzolic soils intergrades.Even if most of the classic podzolisation indexes fail to illustrate differences, nevertheless our results show that fulvic acids and organo-ferric complexes are present in significantly greater amounts in the upper part of the cambic (B)1 horizon of the soils developed under conifers. Moreover, this podzolic tendancy is confirmed by the weathering patterns of the clay minerals in the A1(B) horizons developed under spruces, i.e. a more pronouced weathering of chloritic layers than those observed in the beechwood soil, with a correlative genesis of more abundant smectite-like minerals. One may therefore conclude that the change in the humus type (moder to mor) after the planting of spruce trees, has been sufficient, within the local climatic and edaphic context, to promote incipient podzolisation.  相似文献   

8.
This study examined the biotic and abiotic processes controlling solution chemistry and cycling of aluminum (Al) in the organic horizons of a northern coniferous forest ecosystem. A mass balance budget indicated that aboveground inputs of Al to the O horizon averaged 0.9 kg ha–1 1 yr–1, with major inputs accounted for by litterfall (69%), followed by precipitation (21%), and net canopy throughfall plus stemflow (10%). Estimated leaching losses of Al from the O horizon averaged 2.1 kg Al ha-1 yr1. We hypothesize that the difference between measured Al inputs and outputs can be accounted for by Al release from weathering of soil minerals admixed into the O horizon. Variations in O horizon solution Al chemistry were influenced by a number of factors, including pH, Al equilibria with different solid-phase organic exchange sites, and Al complexation with humic ligands in soil solution.  相似文献   

9.
Microorganisms are known to participate in the weathering of primary phyllosilicate minerals through the production of organic ligands and acids and through the uptake of products of weathering. Here we show that the lithotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture described by Straub et al. (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl. Environ. Microbiol. 62:1458–1460, 1996) can grow via oxidation of structural Fe(II) in biotite, a Fe(II)-rich trioctahedral mica found in granitic rocks. Oxidation of silt/clay-sized biotite particles was detected by a decrease in extractable Fe(II) content and simultaneous nitrate reduction. Mössbauer spectroscopy confirmed structural Fe(II) oxidation. Approximately 1.5 × 107 cells were produced per μmol of Fe(II) oxidized, in agreement with previous estimates of the growth yield of lithoautotrophic circumneutral-pH Fe(II)-oxidizing bacteria. Microbial oxidation of structural Fe(II) resulted in biotite alterations similar to those found in nature, including a decrease in the unit cell b dimension toward dioctahedral levels and Fe and K release. Structural Fe(II) oxidation may involve either direct enzymatic oxidation, followed by solid-state mineral transformation, or indirect oxidation as a result of the formation of aqueous Fe, followed by electron transfer from Fe(II) in the mineral to Fe(III) in solution. Although it is not possible to distinguish between these two mechanisms with available data, the complete absence of aqueous Fe in oxidation experiments favors the former alternative. The demonstration of microbial oxidation of structural Fe(II) suggests that microorganisms are directly responsible for the initial step in the weathering of biotite in granitic aquifers and the plant rhizosphere.  相似文献   

10.
A serpentinised harzburgite outcrop located in the Vosges Mountains hosts a population of the Ni-hyperaccumulator Thlaspi caerulescens J. & C. Presl. A complete study was undertaken to relate the variability of Ni availability along the ultramafic toposequence to pedogenesis, soil mineralogy and functioning with X-Ray Diffraction, Transmission Electron Microscope observations coupled with Isotopic Exchange Kinetics and diethylenetriamine pentaacetic acid extraction of Ni. The soil profiles ranging from Dystric Cambisol to Hypermagnesic Hypereutric Cambisol were distributed unevenly along the toposequence probably due to geochemical variability of the bedrock and also complex quaternary erosion features. The richest soils were characterised by slight mineral weathering leading to Ni, Cr and Fe accumulation in the B horizons whereas the lowest saturated soils had very low-metal contents. Most soil minerals were inherited from the parent materials and there were only few traces of formation of secondary minerals. Primary minerals (e.g. serpentine, chlorite) contained low Ni concentrations (0.2%) whereas neoformed goethite, mainly in the B horizons of the richest soils, contained up to 4.3% Ni. Ni was probably sorbed onto amorphous Fe oxy−hydroxide particles (oxalate extraction) rather than incorporated within the crystal lattice of goethite. Ni availability in the B horizon of Hypereutric Cambisols was extremely high and so was the oxalate extractable Fe. At the toposequence level, there was a high level of Ni availability in the least weathered soils and a very low-availability level in the more intensively weathered soils (strongly acidic pH). Ni availability was unexpectedly positively correlated to pH and was controlled by soil mineralogy and Ni-bearing mineral phases. Ni hyperaccumulation (above 1,000 mg kg−1) by native T. caerulescens was only reached in the Ni-rich soils as a consequence of the local edaphic factors. Ni uptake by T. caerulescens is strongly regulated by Ni availability in soils and therefore related to pedogenesis.  相似文献   

11.
Non-native earthworms are a continued source of environmental change in the northeastern United States that may affect trace metals in the plant-soil system, with largely unknown effects. We assessed earthworm impacts on exchangeable and strong acid extractable (total) concentrations and pools of Al, Fe, Cu, Zn, Mo, Pb in non-point source polluted, forest soil horizons (Organic, A, and B) and foliar metals concentrations in young (<?3 years) Acer saccharum and Polystichum acrostichoides at four proximal forests in the Finger Lakes Region of New York. We observed decreasing total trace metal Organic horizon pools and increasing total trace metal A horizon concentrations as a function of increasing earthworm biomass. Earthworms had limited effects on exchangeable concentrations in A and B horizons and total metal concentrations in the B horizon. Foliar trace metal concentrations in Acer were better explained by earthworm biomass than soil concentrations but foliar concentrations for Polystichum were poorly predicted by both earthworm biomass and soil metal concentrations. Our results suggest that earthworms can affect trace metal uptake by some plants, but not by increasing soil trace metal exchangeability or from changing soil properties (pH, %SOM, or cation exchange capacity). Instead, non-native earthworms may indirectly alter understory plant uptake of trace metals.  相似文献   

12.
The principal nutrient source for forest trees derives from the weathering of soil minerals which results from water circulation and from plant and microbial activity. The main objectives of this work were to quantify the respective effects of plant- and root-associated bacteria on mineral weathering and their consequences on tree seedling growth and nutrition. That is why we carried out two column experiments with a quartz-biotite substrate. The columns were planted with or without pine seedlings and inoculated or not with three ectomycorrhizosphere bacterial strains to quantify biotite weathering and pine growth and to determine how bacteria improve pine growth. We showed that the pine roots significantly increased biotite weathering by a factor of 1.3 for magnesium and 1.7 for potassium. We also demonstrated that the inoculation of Burkholderia glathei PML1(12) significantly increased biotite weathering by a factor of 1.4 for magnesium and 1.5 for potassium in comparison with the pine alone. In addition, we observed a significant positive effect of B. glathei PMB1(7) and PML1(12) on pine growth and on root morphology (number of lateral roots and root hairs). We demonstrated that PML1(12) improved pine growth when the seedlings were supplied with a nutrient solution which did not contain the nutrients present in the biotite. No improvement of pine growth was observed when the seedlings were supplied with all the nutrients necessary for pine growth. We therefore propose that the growth-promoting effect of B. glathei PML1(12) mainly resulted from the improved plant nutrition via increased mineral weathering.  相似文献   

13.
Plants fractionate Si isotopes which provides a useful Si tracer in the Si soil-plant cycle. This study reports plant Si content and Si-isotopic signatures in mature banana plants grown on soils with different weathering degree, but all developed from basaltic pyroclasts in the Mungo area, Cameroon. The δ30Si compositions were determined in various plant parts and soil surface horizons by MC-ICP-MS in dry plasma mode with external Mg doping to a precision of ± 0.15‰ (± 2σSD). The Si-isotopic compositions in banana plants grown on weathered clayey soils (+0.54 ± 0.15‰) are heavier than on weakly developed soils rich in fresh ash and pumice (+0.02 ± 0.15‰). The corresponding bulk soils display lower δ30Si value in weathered soil (?1.41‰) than in poorly developed soil (?0.41‰). We suggest that the dissolved Si source for the plant, governed firstly by dissolution of easily weatherable minerals, was isotopically enriched in heavy isotopes through clay formation over long periods. At seasonal to annual time scale, this source is influenced by a combination of following processes: Si adsorption of light isotopes onto Fe oxides, plant Si uptake and recycling in surface horizons. This would provide an isotopically heavier Si source in the more weathered soil since the Fe oxides content increases with weathering. Plant Si-isotopic signature might thus reflect the soil weathering degree. This study further suggests that in addition to weathering processes, rivers isotopic signatures likely depend on the fate of phytoliths in the soil-plant-river system.  相似文献   

14.
Bacteria in nature often live within biofilms, exopolymeric matrices that provide a favorable environment that can differ markedly from their surroundings. Biofilms have been found growing on mineral surfaces and are expected to play a role in weathering those surfaces, but a clear understanding of how environmental factors, such as trace‐nutrient limitation, influence this role is lacking. Here, we examine biofilm development by Pseudomonas putida in media either deficient or sufficient in Fe during growth on biotite, an Fe rich mineral, or on glass. We hypothesized that the bacteria would respond to Fe deficiency by enhancing biotite dissolution and by the formation of binding sites to inhibit Fe leaching from the system. Glass coupons acted as a no‐Fe control to investigate whether biofilm response depended on the presence of Fe in the supporting solid. Biofilms grown on biotite, as compared to glass, had significantly greater biofilm biomass, specific numbers of viable cells (SNVC), and biofilm cation concentrations of K, Mg, and Fe, and these differences were greater when Fe was deficient in the medium. Scanning electron microscopy (SEM) confirmed that biofilm growth altered the biotite surface, smoothing the rough, jagged edges of channels scratched by hand on the biotite, and dissolving away small, easy‐to‐access particles scattered across the planar surface. High‐resolution magic angle spinning proton nuclear magnetic resonance (HRMAS 1H NMR) spectroscopy showed that, in the Fe‐deficient medium, the relative amount of polysaccharide nearly doubled relative to that in biofilms grown in the medium amended with Fe. The results imply that the bacteria responded to the Fe deficiency by obtaining Fe from biotite and used the biofilm matrix to enhance weathering and as a sink for released cation nutrients. These results demonstrate one mechanism by which biofilms may help soil microbes overcome nutrient deficiencies in oligotrophic systems.  相似文献   

15.
Elemental concentrations of above- and belowground tissues were determined in anAbies amabilis stand in the Cascade Mountains, Washington, USA. These data were used to calculate the pools and circulation of trace elements and micronutrients on a stand level. For all elements except Al, a greater proportion (from 62 to 87%) was distributed in above- rather than belowground tissues. This contrasted sharply with the biocirculation of elements where 97% of the Al and Fe, 88% of the Cu and 67–84% of the Ca, P, and Mg of total detrital cycling was from the belowground components. Aboveground tissues, however, contributed 69% of the Zn, 65% of the K and 68% of the Mn found in annual detritus production. The proportion of total element pool circulated annually was the highest for Al (82%) and Fe (32%) followed by 13% and less for the remaining elements. Copper, Fe and Al were accumulated in root tissues, while Mn and Zn accumulated in foliage.We hypothesize that roots are an effective mechanism for avoiding Al toxicity in these subalpine ecosystems. The large root biomasses of these stands allow for high Al levels to be taken up and immobilized in roots; this is observed in the significantly higher Al accumulations in below- than aboveground tissues. The high root turnover in these stands is hypothesized to be a result of root senescence occurring in response to high Al accumulation. Furthermore, Al inputs into detritus production occur by soil horizon so that roots with high Al concentrations located in the Bhs horizon turnover and are retained within that horizon. These roots also decompose very slowly (99% decay = 456 years) due to the high Al and low Ca, Mn and Mg present in these tissues and therefore have very little impact on short-term elemental cycling.  相似文献   

16.
To date, several bacterial species have been described as mineral-weathering agents which improve plant nutrition and growth. However, the possible relationships between mineral-weathering potential, taxonomic identity, and metabolic ability have not been investigated thus far. In this study, we characterized a collection of 61 bacterial strains isolated from Scleroderma citrinum mycorrhizae, the mycorrhizosphere, and the adjacent bulk soil in an oak forest. The ability of bacteria to weather biotite was assessed with a new microplate bioassay that measures the pH and the quantity of iron released from this mineral. We showed that weathering bacteria occurred more frequently in the vicinity of S. citrinum than in the bulk soil. Moreover, the weathering efficacy of the mycorrhizosphere bacterial isolates was significantly greater than that of the bulk soil isolates. All the bacterial isolates were identified by partial 16S rRNA gene sequence analysis as members of the genera Burkholderia, Collimonas, Pseudomonas, and Sphingomonas, and their carbon metabolism was characterized by the BIOLOG method. The most efficient isolates belonged to the genera Burkholderia and Collimonas. Multivariate analysis resulted in identification of three metabolic groups, one of which contained mainly bacterial isolates associated with S. citrinum and exhibiting high mineral-weathering potential. Therefore, our results support the hypothesis that by its carbon metabolism this fungus selects in the bulk soil reservoir a bacterial community with high weathering potential, and they also address the question of functional complementation between mycorrhizal fungi and bacteria in the ectomycorrhizal complex for the promotion of tree nutrition.  相似文献   

17.
We measured Al, Fe, and P fractions by horizon in two southern Appalachian forest soil profiles, and compared solution PO4 –1 removal in chloroform-sterilized and non-sterilized soils, to determine whether biological and geochemical P subcycles were vertically stratified in these soils. Because organic matter can inhibit Al and Fe oxide crystallization, we hypothesized that concentrations of non-crystalline (oxalate-extractable) Al (Al0) and Fe (Fe0), and concomitantly P sorption, would be greatest in near-surface mineral (A) horizons of these soils.Al0 and Fe0 reached maximum concentrations in forest floor and near-surface mineral horizons, declined significantly with depth in the mineral soil, and were highly correlated with P sorption capacity. Small pools of readily acid-soluble (AF-extractable) and readily-desorbable P suggested that PO4 3– was tightly bound to Al and Fe hydroxide surfaces. P sorption in CHCl3-sterilized mineral soils did not differ significantly from P sorption in non-sterilized soils, but CHCl3 sterilization reduced P sorption 40–80% in the forest floor. CHCl3 labile (microbial) P also reached maximum concentrations in forest floor and near-surface mineral horizons, comprising 31–35% of forest floor organic P. Combined with previous estimates of plant root distributions, data suggest that biological and geochemical P subcycles are not distinctly vertically stratified in these soils. Plant roots, soil microorganisms, and P sorbing minerals all reach maximum relative concentrations in near-surface mineral horizons, where they are likely to compete strongly for PO4 3– available in solution.  相似文献   

18.
The principal nutrient source for forest trees derives from the weathering of soil minerals which results from water circulation and from plant and microbial activity. The main objectives of this work were to quantify the respective effects of plant- and root-associated bacteria on mineral weathering and their consequences on tree seedling growth and nutrition. That is why we carried out two column experiments with a quartz-biotite substrate. The columns were planted with or without pine seedlings and inoculated or not with three ectomycorrhizosphere bacterial strains to quantify biotite weathering and pine growth and to determine how bacteria improve pine growth. We showed that the pine roots significantly increased biotite weathering by a factor of 1.3 for magnesium and 1.7 for potassium. We also demonstrated that the inoculation of Burkholderia glathei PML1(12) significantly increased biotite weathering by a factor of 1.4 for magnesium and 1.5 for potassium in comparison with the pine alone. In addition, we observed a significant positive effect of B. glathei PMB1(7) and PML1(12) on pine growth and on root morphology (number of lateral roots and root hairs). We demonstrated that PML1(12) improved pine growth when the seedlings were supplied with a nutrient solution which did not contain the nutrients present in the biotite. No improvement of pine growth was observed when the seedlings were supplied with all the nutrients necessary for pine growth. We therefore propose that the growth-promoting effect of B. glathei PML1(12) mainly resulted from the improved plant nutrition via increased mineral weathering.  相似文献   

19.
Mobile submicron mineral phases within soil pore waters are presumed to play a major role in the transport and availability of organic carbon (OC) in subsurface horizons. This work reports on the composition of the?<?0.45 µm and 0.45–1.2 µm size fractions of extracted soil pore waters from horizons of a well-drained-Spodosol-soil to reveal conditions favorable for carbon mobility and accumulation. These operationally defined quantities are abbreviated SF-S (size fraction small) and SF-L (size fraction large) to identify the?<?0.45 µm and the 0.45–1.2 µm size fraction filtrates, respectively. It is found that in the SF-S fraction, OC mass concentrations are more than 30–50 times higher than metal (M?=?Fe?+?Al) mass concentrations in all Spodosol horizons, with metal-to-carbon (M/C) atomic ratios of 0.15–0.03. Chemical equilibrium modeling calculations estimate?>?95% of the total Fe and Al in SF-S are complexed with OC in all Spodosol horizons. In contrast with the SF-S, the SF-L had much greater OC concentrations and even lower M/C (<?0.01), except in the Bh horizon (M/C?=?0.05). In Bh, major accumulation of organic matter occurred above the lesser-accumulating Bhs, the latter having higher pH, but much lower OC in all forms (soil, colloidal). Infrared spectroscopy indicates the SF-L fraction of soil pore waters contains both organic and inorganic constituents, including amorphous silica, the second-most abundant component after OC. Mineral-organic associations such as mineral crystallites embedded in OC are observed in the SF-L fraction by transmission electron microscopy (TEM). Transmission electron microscopy also reveal carbon-rich amorphous structures containing traces of Fe, Al and Si, and small (~?100 nm) spherical amorphous SiO2 particles. These observations provide support for the main mechanism of OC accumulation in Spodosols being the downward movement of colloids (organic, OC-sorbed mineral and organo-mineral), followed by colloid immobilization due to a combination of increases in pH and M/C ratio. The occurrence of these three types of colloidal structures in pore waters seems to depend on the pH and the relative supply of OC and Fe?+?Al to pore waters. Similar colloidal structures might also contribute to the transport and availability of OC in subsurface horizons of soils that range in the accumulation of organic and organo-metallic compounds, that is, in the expression of spodic properties.  相似文献   

20.
Munro  L.  Courchesne  F. 《Biogeochemistry》2019,143(3):293-312

Fine-scale trace element (TE) concentration patterns exist in soils that were never exposed to the direct deposition of TE in the past. We aimed to understand the role of vegetation, in particular trees, in defining these spatial patterns in the soil horizons of an uncontaminated forest ecosystem. Living tree leaves and surface soil samples (L, F, and B horizons) were collected from a ca. 1400 m2 plot in the Hermine watershed where a strong gradient in the abundance of Yellow birches (Betula alleghaniensis—BA) exists. TE analysis showed that BA leaves had up to 13 times more Cd and Zn than the other tree species. Significantly similar spatial patterns were detected between the density of BA trunks, the abundance of BA leaves in the litter (L) layer, and Cd and Zn concentrations in the F horizon. The opposite trend was found in the upper B horizon, where Cd and Zn were depleted under a denser BA canopy. We submit that soil depletion could be associated with the preferential phytoextraction of Cd and Zn by BA over a period of several decades. Our study stresses the role of biological cycling by trees on the profile redistribution and the generation of patterns of soil TE in quasi-pristine forests.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号