首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. B. Morrison 《CMAJ》1979,120(6):633-637
  相似文献   

2.
3.
Sugar transporters are key players in many fundamental processes in plant growth and development. Recent results have identified several new transporters that contribute to a wide array of physiological activities, and detailed molecular analysis has provided exciting insights into the structure and regulation of these essential membrane proteins.  相似文献   

4.
Two transport systems for glucose were detected: a high affinity system with a Km of 27 muM, and a low affinity system with a Km of 3.3 mM. The high affinity system transported glucose, 2-deoxy-D-glucose (Km = 26 muM), 3-O-methylglucose (Km = 19 muM), D-glucosamine (Km = 652 muM), D-fructose (Km = 2.3 mM) and L-sorbose (Km = 2.2 mM). All sugars were accumulated against concentration gradients. The high affinity system was strongly or completely inhibited by N-ethylmaleimide, quercetin, 2,4-dinitrophenol and sodium azide. The system had a distinct pH optimum (7.4) and optimum temperature (45 degrees C). The low affinity system transported glucose, 2-deoxy-D-glucose (Km = 7.5 mM), and 3-O-methylglucose (Km = 1.5 mM). Accumulation again occurred against a concentration gradient. The low affinity system was inhibited by N-ethylmaleimide, quercetin and 2,4-dinitrophenol, but not by sodium azide. The rate of uptake by the low affinity system was constant over a wide temperature range (30--50 degrees C) and was not much affected by pH; but as the pH of the medium was altered from 4.5 to 8.9 a co-ordinated increase in affinity for 2-deoxy-D-glucose (from 52.1 mM to 0.3 mM) and decrease in maximum velocity (by a factor of five) occurred. Both uptake systems were present insporelings germinated in media containing sodium acetate as sole carbon source. Only the low affinity system could initially be demonstrated in glucose-grown tissue, although the high affinity system was restored by starvation inglucose-free medium. The half-ti me for restoration of high affinity activity was 3.5 min and the process was unaffected by cycloheximide. Addition of glucose to an acetate-grown culture inactivated the high affinity system with a half-life of 5--7.5 s. Addition of cycloheximide to an acetate-grown culture caused decay of the high affinity system with a half-life of 80 min. Regulation is thus thought to depend on modulation of protein activity rather than synthesis, and the kinetics of glucose, 2-deoxy-D-glucose and 3-O-methylglucose uptake would be consistent with there being a single carrier showing negative co-operativity. Analysis of transport defective mutants revealed defects in both transport systems although the mutants used were alleles of a single gene. It is concluded that this gene (the ftr cistron) is the structural gene for an allosteric molecule which serves both transport systems.  相似文献   

5.
Sugar sensing in higher plants.   总被引:24,自引:0,他引:24       下载免费PDF全文
J C Jang  J Sheen 《The Plant cell》1994,6(11):1665-1679
Sugar repression of photosynthetic genes is likely a central control mechanism mediating energy homeostasis in a wide range of algae and higher plants. It overrides light activation and is coupled to developmental and environmental regulations. How sugar signals are sensed and transduced to the nucleus remains unclear. To elucidate sugar-sensing mechanisms, we monitored the effects of a variety of sugars, glucose analogs, and metabolic intermediates on photosynthetic fusion genes in a sensitive and versatile maize protoplast transient expression system. The results show that sugars that are the substrates of hexokinase (HK) cause repression at a low concentration (1 to 10 mM), indicating a low degree of specificity and the irrelevance of osmotic change. Studies with various glucose analogs suggest that glucose transport across the plasma membrane is necessary but not sufficient to trigger repression, whereas subsequent phosphorylation by HK may be required. The effectiveness of 2-deoxyglucose, a nonmetabolizable glucose analog, and the ineffectiveness of various metabolic intermediates in eliciting repression eliminate the involvement of glycolysis and other metabolic pathways. Replenishing intracellular phosphate and ATP diminished by hexoses does not overcome repression. Because mannoheptulose, a specific HK inhibitor, blocks the severe repression triggered by 2-deoxyglucose and yet the phosphorylated products per se do not act as repression signals, we propose that HK may have dual functions and may act as a key sensor and signal transmitter of sugar repression in higher plants.  相似文献   

6.
7.
Sugar regulation of harvest-related genes in asparagus.   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

8.
9.
Changes in the dry weights of various parts of the castor bean seedling showed that the rates of transfer of material through the cotyledons to the embryonic axis exceeded 2 mg/hour after 5 to 6 days of germination. The sugar present in the endosperm was predominantly, and in the cotyledon almost exclusively, sucrose. Anatomical features were described which contribute to the efficiency of the cotyledons as organs of absorption and transmittal of sucrose to the embryonic axis, where hexoses are much more prevalent.  相似文献   

10.
The presence of glucosephosphate isomerase, one of the key enzymes in carbohydrate metabolism, was confirmed for the first time in the cell-free extract of Leptospira biflexa. The glucosephosphate isomerase of L. biflexa was heat-labile and its optimum pH was about 8.5. The enzyme showed an optimal temperature of about 45 C but was more stable at 30 C. Km value of the enzyme was 5.6 X 10(-3)M. The activity of the enzyme was inhibited by the inhibitor, 6-phosphogluconate. From this study, the presence of a metabolic pathway, the phosphogluconate pathway, other than non-oxidative pentose phosphate pathway presented by Baseman and Cox was suggested.  相似文献   

11.
The technique of reversible hemolysis represents one approach which may be used to study transport regulation in nucleated red cells. After 1 h of incubation at 37 degrees C, 88% of the ghosts regained their permeability barrier to L-glucose. In these ghosts, the carrier-mediated rate of entry of 3-O-methylglucose was more than 10-fold greater than the rate in intact cells. Glyceraldehyde-3-phosphate dehydrogenase prevented ghosts from resealing when it was present at the time of hemolysis. Albumin, lactic dehydrogenase and peroxidase did not have this effect. Sugar transport rate could not be tested in the unsealed ghosts. Two possible mechanisms for the effect of hypotonic hemolysis on sugar transport rate were discussed: (1) altered membrane organization and (2) loss of intracellular compounds which bind to the membrane and inhibit transport in intact cells.  相似文献   

12.
Sugar unloading in roots of Ricinus communis L.   总被引:1,自引:1,他引:0  
  相似文献   

13.
Sugar transport and metabolism in Schistosoma mansoni.   总被引:2,自引:0,他引:2  
The absorption kinetics of some 14-C-labeled simple sugards in adults of Schistosoma mansoni are described. The influx of fructose and 3-0-methylglucose was by diffusion alone, while glucose, 2-deoxyglucose (2DOG), galactose, glucosamine, and mannose were absorbed by mediated transport as well as by diffusion. Although absorbed glucose was rapidly metabolized, uptake rates of radio-glucose in 2-min incubations corresponded with the amount of glucose (determined chemically) removed from the incubation medium. In 30-min incubations 2DOG was slowly metabolized and accumulated against an apparent concentration difference. The mediated transport of glucose and 2DOG was inhibited in Na+-free media, and by the presence of ouabain, phlorizin, phloretin, and other sugars. Accordingly, influxes of glucose of 2DOG and 22-Na+ were coupled. On a per mg protein basis, female worms transported more 2DOG and glucose, but less glycine, than did males. However, the rate of glucose metabolism by male and female worms incubated together was greater than that of either males or females incubated separately. The nature of sugar transport in schistosomes and other flatworms is similar to that in vertebrates.  相似文献   

14.
15.
16.
17.
18.
Short-term transport studies were conducted using excised whole Zea mays kernels incubated in buffered solutions containing radiolabeled sugars. Following incubation, endosperms were removed and rates of net 14C-sugar uptake were determined. Endogenous sugar gradients of the kernel were estimated by measuring sugar concentrations in cell sap collected from the pedicel and endosperm. A sugar concentration gradient from the pedicel to the endosperm was found. Uptake rates of 14C-labeled glucose, fructose, and sucrose were linear over the concentration range of 2 to 200 millimolar. At sugar concentrations greater than 50 millimolar, hexose uptake exceeded sucrose uptake. Metabolic inhibitor studies using carbonylcyanide-m-chlorophenylhydrazone, sodium cyanide, and dinitrophenol and estimates of Q10 suggest that the transport of sugars into the developing maize endosperm is a passive process. Sucrose was hydrolyzed to glucose and fructose during uptake and in the endosperm was either reconverted to sucrose or incorporated into insoluble matter. These data suggest that the conversion of sucrose to glucose and fructose may play a role in sugar absorption by endosperm. Our data do not indicate that sugars are absorbed actively. Sugar uptake by the endosperm may be regulated by the capacity for sugar utilization (i.e. starch synthesis).  相似文献   

19.
In vitro sugar transport into developing isolated maize embryos was studied. Embryo fresh and dry weight increased concomitantly with endogenous sucrose concentration and glucose uptake throughout development. However, endogenous glucose and fructose concentration and sucrose uptake remained constant. The uptake kinetics of radiolabeled sucrose, glucose, and fructose showed a biphasic dependence on exogenous substrate concentration. Hexose uptake was four to six times greater than sucrose uptake throughout development. Carbonylcyanide-m-chlorophenylhydrazone and dinitrophenol inhibited sucrose and glucose uptake significantly, but 3-O-methyl glucose uptake was less affected. The uptake of 1 millimolar sucrose was strongly pH dependent while glucose was not. Glucose and fructose were readily converted to sucrose and insoluble products soon after absorption into the embryo. Thus, sucrose accumulated, while glucose pools remained low. Based on the findings of this and other studies a model for sugar transport in the developing maize kernel is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号