首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding characteristics of the selective V2 antagonist radioligand [3H]desGly-NH29-d(CH2)5[D-Ileu2,Ileu4]AVP to rat kidney were determined. Binding was specific, saturable and reversible. The peptide bound to a single class of high-affinity binding sites with Bmax 69.4±6.8 fmol/mg protein and KD 2.8±0.3 nM. AVP and other related peptides displaced [3H]desGly-NH29-d(CH2)5[D-Ileu2,Ileu4]AVP binding. The order of potency of inhibition was desamino-D-AVP > AVP > d(CH2)5[D-Ileu2,Ileu4]AVP > oxytocin > d(CH2)3[Tyr(Me)2]AVP > d(CH2)5[sarcosine7]AVP, which is typical of a selective V2 radioligand. Autoradiographic localization of [3H]desGly-NH29-d(CH2)5[D-Ileu2,Ileu4]AVP binding sites in kidney showed dense binding in the inner and outer medulla with less binding in the cortex, which is consistent with known renal V2 receptor distribution.  相似文献   

2.
Endothelin Stimulates Phospholipase D in Striatal Astrocytes   总被引:1,自引:1,他引:0  
Abstract: In primary cultures of mouse striatal astrocytes prelabeled with [3H]myristic acid, endothelin (ET)-1 induced a time-dependent formation of [3H]phosphatidic acid and [3H]diacylglycerol. In the presence of ethanol, a production of [3H]phosphatidylethanol was observed, indicating the activation of a phospholipase D (PLD). ET-1 and ET-3 were equipotent in stimulating PLD activity (EC50 = 2–5 n M ). Pretreatment of the cells with pertussis toxin partially abolished the effect of ET-1, indicating the involvement of a Gi/Go protein. Inhibition of protein kinase C by Ro 31-8220 or down-regulation of the kinase by a long-time treatment with phorbol 12-myristate 13-acetate (PMA) totally abolished the ET-1-induced stimulation of PLD. In contrast, a cyclic AMP-dependent process is not involved in the activation of PLD, because the ET-1-evoked formation of [3H]phosphatidylethanol was not affected when cells were coincubated with either isoproterenol, 8-bromo-cyclic AMP, or forskolin. Acute treatment with PMA also stimulated PLD through a protein kinase C-dependent process. However, the ET-1 and PMA responses were additive. Furthermore, the ET-1-evoked response, contrary to that of PMA, totally depended on the presence of extracellular calcium. These results suggest that at least two distinct mechanisms are involved in the control of PLD activity in striatal astrocytes. Finally, ET-1, ET-3, and PMA also stimulated PLD in astrocytes from the mesencephalon, the cerebral cortex, and the hippocampus.  相似文献   

3.
The reaction between [(η6-p-cymene)Ru(H2O)3]X2 and 4,7-phenanthroline (phen) leads to the formation of the rectangular tetranuclear complexes [(η6-p-cymene)4Ru4(μ-4,7-phen-N4,N7)2(μ-OH)4]X4 (X = NO3, 1a; SO3CF3, 1b) which have been structurally characterised by X-ray crystallography. 1H NMR spectroscopic studies suggest the presence of a partially dissociated dinuclear species of type [(η6-p-cymene)2Ru2(μ-4,7-phen-N4,N7)(solv)4]4+ in equilibrium with the tetranuclear cyclic species found in the solid state. The temperature effect for this equilibrium was studied by variable temperature 1H NMR experiments in D2O and MeOD. The results reveal that the proportion of the tetranuclear species increases with the polarity of the solvent which favour stacking interactions between the phenanthroline moieties. In addition, the reactivity of the tetranuclear species towards the nucleosides guanosine (Guo), cytidine (Cyt), 2′-deoxythymidine (Thy) and 2′-deoxyadenosine (dAdo) has been monitored by 1H NMR as a potential model for the interaction of the 1 species with the probable DNA target. The results reveal that the 1 systems are able to bind the nucleobases endocyclic nitrogen atoms of Guo Cyt, and dAdo.  相似文献   

4.
Phospholipase A2 added directly to superfused [3H]norepinephrine-labeled synaptosomes could cause the release of neurotransmitter molecules. Chloroquine and quinacrine, which block the action of phospholipase A2, inhibited either the phospholipase A2-stimulated or the high potassium-stimulated release of [3H]norepinephrine from synaptosomes. Only quinacrine blocked the high potassium-stimulated influx of Ca2+. It appears that during stimulation of synaptosomes, Ca2+ influx leads to the activation of phospholipase A2, which in turn, hydrolyzes membrane phospholipids in situ. The formation of lysophospholipids may alter the microenvironment and the physicochemical properties of membranes, resulting in the release of neurotransmitter through exocytosis.  相似文献   

5.
The solution of [RhCl(PPh3)3] in acidic 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquid (AlCl3 molar fraction, xAlCl3=0.67) was investigated by 1H and 31P{1H} NMR. One triphenyl phosphine is lost from the complex and is protonated in the acidic media, and cis-[Rh(PPh3)2ClX], (2), where X is probably [AlCl4], is formed. On, standing, 2 is converted to trans-[Rh(H)(PPh3)2X], (3). The reaction of 2 and H2 also produces trans-[Rh(H)(PPh3)2X], (3). 1H and 31P{1H} NMR support the suggestion that a weak ligand such as [AlCl4], present in solution may interact with the metal centre. When [RhCl(PPh3)3] is dissolved in CH2Cl2/AlCl3/HCl for comparison, two exchanging isomers of what is probably [RhH{(μ-Cl)2AlCl2}{(μ-Cl)AlCl3}(PPh3)2], (6) and (7), are formed.  相似文献   

6.
In neuroblastoma × glioma hybrid cells (NG 108-15) labelled with [32P]-trisodium phosphate, [3H]-inositol and [14C]-arachidonic acid, bradykinin stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) while it had no effect on the release of [14C]-arachidonic acid (AA). The effect on PIP, was time- and dose-dependent with a maximal effect on [3H]-inositol- and [32P]-labelled cells after 10–30 s of stimulation with 10−6 M bradykinin. However, the hydrolysis of [14C]-AA labelled PIP2 was delayed compared to the effect on [3H]- and [14C]-PIP2 and was not detectable until after 60 s of stimulation. Bradykinin stimulation resulted in an increased formation of [3H]-inositol phosphates (IP) and [32P]- and [14P]- and [14C]-phosphatidic acid (PA) but the time course for PA formation did not allow the time-course for PIP2 hydrolysis. A reduced labelling of [23P]- and [14C]-phosphatidylcholine was also found in stimulated cells suggesting that PA may derive from other sources than PIP2. In conclusion, our results indicate that bradykinin activates phospholipase C, but not phospholipase A2, in NG 108-15 cells.  相似文献   

7.
Prostaglandin (PG) and thromboxane B2 (TXB2) biosynthesis was studied in cultured astrocytes from neonatal rat brain hemispheres. After two weeks of cultivation, prostanoids were formed with the spectrum: PGD2 > TXB2 > PGF2 > PGE2, as measured by specific radioimmunoassays. Under basal conditions PGD2 biosynthesis (9.55 ng/mg protein/15 min) was in the same order of magnitude as the sum of the other prostanoids. The formation of prostanoids was stimulated in a concentration dependent manner (up to 6–10 fold) by the calcium ionophore A 23187 (0.01–10 μM) as well as by melittin (0.01–5 μg/ml), phospholipase A2 (10–40 U/ml) and phospholipase C (0.01–1 U/ml). Basal and evoked PG and TXB2 biosynthesis depended on the availability of Ca2+, as demonstrated in Ca2+ free incubation medium containing Na2EDTA (1 μM), or with verapamil (100 μM) and 3,4,5-trimethoxybenzoic acid-8-(diethylamino)-octylester-HCl (TMB-8, 1–100 μM). Indomethacin (10 μM), mepacrine (100 μM) and p-bromophenacylbromide (50 μ M) inhibited basal and evoked PG formation. Thin-layer chromatography (TLC) detection after incubation of the cells with [3H]arachidonic acid (1 μCi/ml, for 60 min) confirmed the results obtained by radioimmunoassay. Incubation of [3H]arachidonic acid labelled cells with inonophore or phospholipases, followed by lipid extraction and TLC, showed that A 23187 liberated [3H]arachidonic acid predominantly from phosphatidylethanolamine, whereas phospholipase A2 and C reduced mainly the labelling of the phosphatidyl-inositol/-choline fraction. Potassium depolarization of the cells did not enhance prostanoid formation. Similarly, drugs with affinity to - or β-adrenoceptors, or to dopamine-, 5-hydroxytryptamine-, muscarine-, histamine-, glutamate-, aspartate-, GABA, adenosine- and opioid-receptors failed to stimulate prostanoid biosynthesis. Also compounds like angiotensin, bradykinin and thrombin were ineffective in this respect.

In conclusion, our results confirm that cultured astrocytes possess the complete pattern of enzymes necessary for prostanoid formation and hence might play a crucial role in brain prostanoid biosynthesis. Stimulation of prostanoid biosynthesis involves Ca2+-dependent activation of phospholipase A2, cyclooxygenase reaction and further PG metabolism. However, the endogenous stimulus for enhanced prostanoid synthesis in the brain still has to be established.  相似文献   


8.
The formation of three [Tl(en)n]3+ complexes (n=1–3) in a pyridine solvent has been established by means of 205Tl and 1H NMR. Their stepwise stability constants based on concentrations, Kn=[Tl(en)n 3+]/{[Tl(en)n−1 3+]·[en]}, at 298 K in 0.5 M NaClO4 ionic medium in pyridine, were calculated from 205Tl NMR integrals: log K1=7.6±0.7; log K2=5.2±0.5 and log K3=2.64±0.05. Linear correlation between both the 205Tl NMR shifts and spin–spin coupling 205Tl–1H versus the stability constants has been found and discussed. A single crystal with the composition [Tl(en)3](ClO4)3 was synthesized and its structure determined by X-ray diffraction. The Tl3+ ion is coordinated by three ethylenediamine ligands via six N-donor atoms in a distorted octahedral fashion.  相似文献   

9.
The novel ligand 4,5-bis(diphenylthiophosphinoyl)-1,2,3-triazole, LT-S2H, has been synthesized, converted to the triethylamine salt, and to the palladium complexes Pd[LT-S2]2 and Pd[LT-S2][η3-methallyl]. Structures of LT-S2H, of its 2-acetyl derivative, of Pd[LT-S2]2 and Pd[LT-S2][η3-methallyl] were determined by X-ray crystallography. In the last two complexes the LT-S2 ligand was N,S-bonded.  相似文献   

10.
It has recently been demonstrated that the chemotactic peptide N-formyl-Met-Leu-Phe activates phospholipase D (PLD) in dimethyl sulfoxide-differentiated HL-60 granulocytes to produce phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) (Pai, J.-K., Siegel, M. I., Egan, R. W., and Billah, M. M. (1988) J. Biol. Chem. 263, 12472-12477). We now report that biologically active phorbol esters, a cell-permeable diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), and calcium ionophore A23187 are also potent inducers of PLD in these HL-60 granulocytes. HL-60 granulocytes have been selectively labeled in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P by incubating the cells with alkyl-[32P]lyso-phosphatidylcholine (PC). When these labeled cells are treated with phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate, OAG, or A23187, alkyl-[32P]PA is formed. Because cellular ATP has not been labeled with 32P, the formation of alkyl-[32P]PA conclusively demonstrates PLD activation by these agents. In the presence of 0.5% ethanol, phorbol esters, OAG, and A23187 also induce formation of alkyl-[32P]PEt, demonstrating that the activated PLD catalyzes transphosphatidylation between the phosphatidyl moiety of the alkyl-[32P]PC and ethanol. Formation of alkyl-[32P]PA and alkyl-[32P]PEt in response to these various agents occurs in a time- and dose-dependent manner and exhibits differential Ca2+ requirements. Based on experiments with both [3H]alkyl-PC and alkyl-[32P]PC, it is concluded that alkyl-PA and alkyl-PEt formed in response to PMA, OAG, or A23187 are derived exclusively from PLD action on alkyl-PC. Furthermore, subthreshold concentrations of PMA (0.5-2.0 nM) or OAG (1.0-25 microM) combined with subthreshold levels of A23187 (15-60 nM) induce the formation of alkyl-[32P]PA and alkyl-[32P]PEt, suggesting that receptor-mediated activation of PLD might involve cooperative interactions between Ca2+ and diglyceride. Although PLD is activated by agents that also activate protein kinase C, the protein kinase C inhibitor, K252a, inhibits PMA-induced protein phosphorylation but causes only partial inhibition of PLD activation. We conclude that phorbol esters, OAG, and A23187 activate PLD in HL-60 granulocytes via protein kinase-independent as well as protein kinase-dependent mechanisms.  相似文献   

11.
Two functional isoforms (1) and + (3) of the Na,K-ATPase catalytic subunit coexist in canine cardiac myocytes [J. Biol. Chem. (1987) 262, 8941-8943]. The in vitro turnover rates of ATP hydrolysis have been determined in sarcolemma preparations by comparing [3H]ouabain-binding and Na,K-ATPase activity at various doses of ouabain (0.3–300 nM). The correlation between the occupancy of the ouabain-binding sites and the degree of Na,K-ATPase inhibition was not linear. The results showed that the form of low-affinity for ouabain (Kd = 300–700 nM) exhibited a lower turnover rate (88 ± 10 vs. 147 ± 15 molecules of ATP hydrolyzed per second per ouabain-binding site) than the high affinity form (Kd = 1–8 nM). Thus our results indicate this specific isoform kinetic difference could contribute to differences in the cardiac cellular function.  相似文献   

12.
Reactions of [(PPh3)2Pt(η3-CH2CCPh)]OTf with each of PMe3, CO and Br result in the addition of these species to the metal and a change in hapticity of the η3-CH2CCPh to η1-CH2CCPh or η1-C(Ph)=C=CH2. Thus, PMe3 affords [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+, CO gives both [trans-(PPh3)2Pt(CO)(η1-CH2CCPh)]+ and [trans-(PPh3)2Pt(CO)(η1-C(Ph)=C=CH2)]+, and LiBr yields cis-(PPh3)2PtBr(η1-CH2CCPh), which undergoes isomerization to trans-(PPh3)2PtBr(η1-CH2CCPh). Substitution reactions of cis- and trans-(PPh3)2PtBr(η1-CH2CCPh) each lead to tautomerization of η1-CH2CCPh to η1-C(Ph)=C=CH2, with trans-(PPh3)2PtBr(η1-CH2CCPh) affording [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+ at ambient temperature and the slower reacting cis isomer giving [trans-(PPh3)(PMe3)2Pt(η1-C(Ph)=C=CH2)]+ at 54 °C . All new complexes were characterized by a combination of elemental analysis, FAB mas spectrometry and IR and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The structure of [(PMe3)3Pt(η1-C(Ph)=C=CH2)]BPh4·0.5MeOH was determined by single-crystal X-ray diffraction analysis.  相似文献   

13.
The reactions of [(H5C6)3P]2ReH6 with (CH3CN)3Cr(CO)3, (diglyme)Mo(CO)3 or (C3H7CN)3W(CO)3 led to the formation of [(H5C6)3P]2ReH6M(CO)3 (M = Cr, Mo, W) complexes. These have been characterized by IR and NMR spectroscopies, as well as elemental analyses. A single crystal X-ray diffraction study has also been carried out for the M = Cr complex as a K(18-crown-6)+ salt. The complex crystallizes as a THF monosolvate in the monoclinic space group P21/n with a = 22.323(6), B = 9.523(2), C = 27.502(5) Å, β = 104.98(2)0 and V = 5648 Å3 for Z = 4. The Re---Cr separation is 2.5745(12) Å, and the two phosphine ligands are oriented unsymmetrically. Although the hydride ligands were not found, the presence of three bridging hydrides and a dodecahedral coordination geometry about rhenium could be inferred. Low temperature 1H and 31P NMR spectroscopic studies did not reveal the low symmetry of the solid state structure.  相似文献   

14.
Release of [3H]dopamine ([3H]DA) from rat striatal slices kept under hypoxic or/and glucose-free conditions was measured using a microvolume perfusion method. The corresponding changes in nucleotide content were determined by reverse-phase high-performance liquid chromatography (RPHPLC). The resting release of [3H]DA was not affected by hypoxia, but under glucose-free conditions massive [Ca2+]0-independent release of [3H]DA was observed. Hypoxia reduced the energy charge (E.C.) and the total purine content from 19.36 ± 4.15 to 6.98 ± 1.83 mol/mg protein. Glucose deprivation by itself, or in combination with hypoxia, markedly reduced the levels of adenosine 5′-triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP). The E.C. under glucose-free conditions was significantly reduced from 0.73 ± 0.04 to 0.44 ± 0.20. When the tissue was exposed to hypoxic and glucose-free conditions for 18 min the level of ATP was reduced to 3.15 ± 0.11 mol/mg protein. However, when the exposure time was 30 min the ATP level was further reduced to 1.11 ± 0.37 nmol/mg protein. The resting release was enhanced in a [Ca2+]0-independent manner, but there was no release in response to stimulation, and tetrodotoxin did not affect the enhanced resting release, indicating that the release was not associated with axonal activity. Similarly, 50 μM ouabain, inhibitor of Na+/K+-activated ATPase, enhanced the release of [3H]DA at rest in a [Ca2+]0-independent manner. It seems very likely that the reduced ATP level under glucose-free conditions leads to an inhibition of the activity of Na+/K+-ATPase that results in reversal of the uptake processes and in [Ca2+]0-independent [3H]DA release from the axon terminals.  相似文献   

15.
[3H]Lysergic acid diethylamide (LSD) in the presence of 40 nM ketanserin labeled the 5-HT1A receptor subtype in rat hippocampal membranes. In the presence of guanosine triphosphate (GTP), the Bmax and affinity of [3H]LSD binding to the 5-HT1A binding site were significantly decreased. [3H]LSD in the presence of 40 nM WB4101 labeled the 5-HT2 receptor subtype in homogenates of rat frontal cortex. In contrast to the effect on [3H]LSD binding to the 5-HT1A binding site, GTP produced no significant effect on either the Bmax or the KD of [3H]LSD binding to the 5-HT2 binding site. Competition of 5-HT for [3H]LSD binding to the 5-HT2 binding site was best described by a computer-derived model assuming two binding sites. In the presence of GTP, the 5-HT competition curve was shifted significantly to the right with an approx. 3-fold increase in the IC50. These binding characteristics are consistent with [3H]LSD acting as an antagonist at the 5-HT2 receptor which has multiple affinity states for agonists and is coupled to a guanine nucleotide regulatory subunit. Thus, [3H]LSD has binding characteristics consistent with it acting as an agonist at the 5-HT1A receptor subtype but as an antagonist at the 5-HT2 receptor subtype in rat brain.  相似文献   

16.
Abstract: In primary cultures of cerebellar granule cells, glutamate, aspartate, and N -methyl-d-aspartate (NMDA) induced a dose-dependent release of [3H]arachidonic acid ([3H]AA) which was selective for these agonists and was inhibited by NMDA receptor antagonists. The agonist-induced [3H]AA release was reduced by quinacrine at concentrations that inhibited phospholipase A2 (PLA2) but affected neither the activity of phospholipase C (PLC) nor the hydrolysis of phosphoinositides induced by glutamate or quisqualate. Thus, the increased formation of AA was due to the receptor-mediated activation of PLA2 rather than to the action of PLC followed by diacylglycerol lipase. The receptor-mediated [3H]AA release was dependent on the presence of extracellular Ca2+ and was mimicked by the Ca2+ ionophore ionomycin. Pretreatment of granule cells with either pertussis or cholera toxin failed to inhibit the receptor-mediated [3H]AA release. Hence, in cerebellar granule cells, the stimulation of NMDA-sensitive glutamate receptors leads to the activation of PLA2 that is mediated by Ca2+ ions entering through the cationic channels functioning as effectors of NMDA receptors. A coupling through a toxin-sensitive GTP-binding protein can be excluded.  相似文献   

17.
Under aerobic conditions the addition of (C2N5)2N(N[O]NO) · Na+(DEA/NO), S-nitroso-N-macetyl penicillamine and nitric oxide (NO)-saturated buffer, but not S-nitroso- -glutathione, to dopamine solutions resulted in dopamine o-semiquinone formation that was dependent on the formation of a NO/oxygen intermediate. High pressure liquid chromatography (HPLC) electrochemical analysis of dopamine demonstrated that the DEA/NO-induced oxidation of dopamine was abrogated in the presence of the antioxidants, ascorbate and glutathione. NO spontaneously released from DEA/NO decreased [3H]dopamine accumulation in primary cultures of mesencephalic neurons in a dose-dependent fashion. In contrast, [3H]γ-aminobutyric acid uptake by mesencephalic neurons tested under the same conditions was unchanged. When DEA/NO was added to incubation buffer that contained [3H]dopamine and the antioxidant, ascorbate or glutathione, [3H]dopamine uptake was also inhibited. These data excluded that oxidation of extracellular [3H]dopamine by the intermediates of the NO/O2 reaction could have caused this decrease. Instead, NO may have acted directly on a not yet identified target operative in the regulation of dopamine storage and release. Analysis of the rate constants for the NO reaction with ascorbate, glutathione and dopamine revealed that dopamine quinone formation was delayed by the presence of antioxidants. Since the formation of NO as well as neurotransmitter release are activated during ischemia reperfusion injury, it is possible that prolonged NO exposure could deplete antioxidants and facilitate the oxidation of dopamine and thereby cause neurotoxicity.  相似文献   

18.
Several novel dimers of the composition [M2Cl4(trans-dppen)2] (M=Ni (1), Pd (2), Pt (3)) containing trans-1,2-bis(diphenylphosphino)ethene (trans-dppen) have been prepared and characterized by X-ray diffraction methods, NMR spectroscopy (195Pt{1H}, 31P{1H}), elemental analyses, and melting points. The intramolecular [2+2] photocycloaddition of the two diphosphine-bridges in 3 produces [Pt2Cl4(dppcb)] (4), where dppcb is the new tetradentate phosphine cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutane. Neither 1 nor the free diphosphine trans-dppen shows this reaction. In the case of 2 the photocycloaddition is slower than in 3. This difference can be explained by the shorter distance between the two aliphatic double bonds in 3 than in 2, but also different transition probabilities within ground and excited states of the used metals could be involved. Furthermore, variable-temperature 31P{1H} NMR spectroscopy of 2 or 3 reveals a negative activation entropy of 2 for the [2+2] photocycloaddition, but a positive of 3. The removal of chloride from 4 by precipitating AgCl with AgBF4, and subsequent treatment with 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen) leads to [Pt2(dppcb)(bipy)2](BF4)4 (5) and [Pt2(dppcb)(phen)2](BF4)4 (6), respectively. In an analogous reaction of 4 with PMe2Ph or PMePh2, [Pt2(dppcb)(PMe2Ph)4](BF4)4 (7) and [Pt2(dppcb)(PMePh2)4](BF4)4 (8) are formed. Complexes 1–8 show square–planar coordinations, where the compounds 4–8 have also been characterized by the above mentioned methods together with fast atom bombardment mass spectrometry (7, 8). The crystal structure of 4 reveals two conformations, which arise from an energetic competition between the sterical demands of dppcb and an ideal square–planar environment of Pt(II). The free tetraphosphine dppcb can be obtained easily from 4 by treatment with NaCN. It has been characterized fully by the above methods including 13C{1H} and 1H NMR spectroscopy. The X-ray structure analysis shows the pure MMMP-enantiomer in the solid crystal, which is therefore optically active. This chirality is induced by a conformation of dppcb, where all four PPh2 groups are non-equivalent. Variable-temperature 31P{1H} NMR spectroscopy of dppcb confirms this explanation, since the single signal at room temperature is split into two doublets at 183 K. The goal of this article is to demonstrate the facile production of a new tetradentate phosphine from a diphosphine precursor via Pt(II) used as a template.  相似文献   

19.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is known to be involved in regulating the proliferation of parathyroid cells and PTH synthesis through reactions involving its nuclear receptor. We evaluated the effects of 1,25-(OH)2D3 and its hexafluorinated analog, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3), on parathyroid cells. The 1,25-(OH)2D3 and 26,27-F6-1,25-(OH)2D3 each inhibited [3H]thymidine incorporation and ornithine decarboxylase (ODC) activity, which is important in cell proliferation, in primary cultured bovine parathyroid cells. The inhibitory effect of 26,27-F6-1,25-(OH)2D3 on PTH secretion from parathyroid cells was significantly more potent than that of 1,25-(OH)2D 3 between 10−11 M and 10−8 M. Study of 26,27-F6-1,25-(OH)2D3 metabolism in parathyroid cells in vitro elucidated its slower degradation than that of 1,25-(OH)2D3. After 48 h of incubation with [1β-3H]26,27-F6-1,25-(OH)2D3, two HPLC peaks, one for [1β-3H]26,27-F6-1,25-(OH)2D3, and a second larger peak for [1β-3H]26,27-F6-1,23(S),25-(OH)3D3, were detected. No metabolites were detected after the same period of incubation with 1,25-(OH)2[26,27-3H]D3. We observed that 26,27-F6-1,23(S),25-(OH)3D3 was as potent as 1,25-(OH)2D3 in inhibiting the proliferation of parathyroid cells.

Data suggest that the greater biological activity of 26,27-F6-1,25-(OH)2D3 is explained by its slower metabolisms and by the retention of the biological potency of 26,27-F6-1,25-(OH)2D3 even after 23(S)-hydroxylation.  相似文献   


20.
Affinity probes for the noncompetitive blocker or picrotoxinin site of the γ-aminobutyric acid (GABA)-gated chloride channel were designed for four types of applications: photoaffinity reagents to covalently label the binding site; fluorescent probes for receptor analysis; biotinylated compounds and agarose/sepharose conjugates for affinity chromatography; ligand-protein/enzyme conjugates for immunoassay. These 5e-tert-butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes were optimized by structure-activity studies for potency as inhibitors of 3H ethynylbicycloorthobenzoate binding to bovine brain membranes, measured as the concentration for 50% inhibition (IC50). Preferred compounds are 5e-(CH3)3CCH(CH2S)2CH-2e-C6H4-4-CCCH2OCH2C(O)R, wherein R confers the following properties and 1C50 values: R = SCH2CH2SCH2C(O)C6H4-4-N3, photo-affinity, 9 nM; R = NHCH2CH2NHC(O)C6H2-2-OH,5-1,4-N3, photoaffinity, 105 nM; R = SCH2CH2S-4-benzofurazan-7-NO2, fluorescent, 13 nM; R = SCH2CH2SCH2-5-fluorescein, fluorescent, 27 nM; R = NHCH2CH2NH[C(O)(CH2)5NH]2-biotin, affinity chromatography, 190 nM. The most potent photoaffinity ligand (IC50 9 nM) was labeled at 7 Ci mmol−1 by reacting the appropriate thiol with 3H 4-azidophenacyl bromide (obtained by alumina-catalyzed tritium exchange of its enolizable hydrogens). The first steps have been taken in using the NCB site for affinity chromatography of the GABAA receptor in CHAPS-solubilized bovine brain membranes with the dithiane-biotin probe and an avidin-acrylic bead system or with an analogous dithiane-agarose/sepharose column eluting with GABA or dithiane as above (R = OH). A protein conjugate of a related dithiane-monosulfone elicited production of specific antisera in rabbits. These findings illustrate the diversity and utility of new affinity probes prepared in the alkynylphenyldithiane series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号