首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.  相似文献   

2.
Mucin 1 (MUC1) is a glycoprotein in human endometrium and is abundant at the luminal epithelial surface in the receptive phase. It has a highly glycosylated ecto-domain that contains keratan sulfate chains, that disappears at the time of implantation. In addition, the glycoforms on MUC1 differ in fertile and infertile women. Therefore the aims of this study were investigations on glycosylation of MUC1 with the Thomsen-Friedenreich (TF) epitope on normal human endometrium throughout the menstrual cycle and binding of galectin-1 on the TF epitope in the endometrium and the expression of galectin-1 on the human oocyte. Human endometrial tissue was obtained from 54 premenopausal patients and was immunohistochemically analyzed with monoclonal antibodies against MUC1, TF epitope, galectin-1, and biotinylated galectin-1. In addition, human oocytes were analyzed for TF, galectin-1 expression, and galectin-1 binding. We identified a significant upregulation of MUC1 and TF epitope and, in addition, galectin-1 binding in glandular epithelium and epithelial apical surface tissue from proliferative to secretory phase. With double staining experiments, we identified a coexpression of TF and MUC1 in the early secretory phase and galectin-1 binding to TF during the same period of time. In addition we identified TF epitope and galectin-1 expression plus binding on the human oocyte and irregularly fertilized oocytes. Upregulation of TF epitope on the glandular epithelium and epithelial apical surface tissue in the secretory phase and binding of galectin-1 at the same time show the possibility of galectin-1–mediated trophectoderm binding to the endometrium within the window of implantation. (J Histochem Cytochem 57:871–881, 2009)  相似文献   

3.
Endometrial secretions in the uterine cavity contain mediators important for endometrial receptivity and embryo implantation. Unbiased analysis of uterine fluid from a receptive versus nonreceptive time of the menstrual cycle and in fertile and infertile women will provide new insights into uterine receptivity. We hypothesized that proteomic analysis of human uterine lavages would identify proteins important for the establishment of pregnancy in humans. Lavages collected from fertile (n = 7) and infertile (n = 8) women during the midsecretory (MS) phase, and from fertile women during the midproliferative (MP) (n = 7) phase, were assessed using 2D-differential in gel electrophoresis (2D-DiGE) over a pI 4-7 range. Statistical analysis revealed 7 spots that were significantly decreased in the MP compared to the MS phase, while 18 spots showed differential expression between fertile and infertile women. A number of proteins were identified by mass spectrometry, including antithrombin III and alpha-2-macroglobulin, whose production was confirmed in endometrial epithelium. Their staining pattern suggests roles during embryo implantation. Assessment of the human endometrial secretome has identified differences in the protein content of uterine fluid with respect to receptivity and fertility.  相似文献   

4.
Endometrium--an extragonadal source of inhibin.   总被引:1,自引:0,他引:1  
Using polyclonal antibodies generated against human seminal plasma inhibin (10.5 KDa), immunocytochemical localization was carried out in paraffin embedded tissue sections of human endometrial biopsies obtained at various phases of the menstrual cycle. A positive reaction which indicated the presence of inhibin was characterized by the presence of golden yellow or brown colour in the cytoplasm of epithelial cells that formed the glands as well as the luminal lining. The stromal cells however, showed negative staining. In early proliferative phase, the endometrial glands exhibited weak positive staining for inhibin which gradually increased and was intense in late follicular and early secretory phases. The intensity of the staining although was not diminished in the glandular epithelium in the mid as well as late secretory phases, the number of cells showing positive staining appeared to be reduced. Incubation of endometrial biopsies in vitro with labelled amino acid and immunoprecipitation of newly synthesized protein with specific antibodies to inhibin indicated that endometrium is capable of de novo synthesizing inhibin. The above results suggest that endometrium is an extra ovarian source of inhibin and the possible role of endometrial peptide in sperm fertilizing capabilities as well as in pre and post implantation events is suggested.  相似文献   

5.
The concentrations of tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA) and plasminogen activator inhibitor (PAI-1) have been determined in endometrial curettings obtained from 46 subfertile women during proliferative, early or late secretory phases of the menstrual cycle. t-PA activity and antigen concentrations was significantly higher (P < 0.001) in late secretory endometrium than in proliferative or early secretory endometrium. Higher concentrations of PAI-1 antigen (P < 0.05) were also noted in late secretory phase than in proliferative and early secretory endometrium. However, u-PA concentration was not significantly different and no PAI activity could be demonstrated in the menstrual phases studied. Zymography studies confirmed the presence of both t-PA and u-PA in the endometrium. Ovarian hormonal patterns may therefore influence the activity of plasminogen activators especially of t-PA in the endometrium during various phases of the menstrual cycle.  相似文献   

6.
Maintenance of calcium balance in the uterus is essential for many of its functions, including embryo implantation. The plasma membrane Ca2+‐pumping ATPase proteins are encoded by four genes designated PMCA1‐4, and PMCA1 is expressed in the uterus of rats during the estrous cycle. Although transient receptor potential cation channel subfamily V, member 6 (TRPV6), has been detected in the human placenta, pancreas and the prostate gland, expression patterns of uterine TRPV6 and PMCA1 and their potential roles in the human endometrium remain to be elucidated. In the present study, the expression patterns of TRPV6 and PMCA1 were examined to predict their potential roles in the human endometrium during the menstrual cycle. Human classified endometrial tissues (total n = 40) were separated into three groups according to menstrual cycle phase: menstrual, proliferative (early‐, mid‐, late), and secretory phase (early‐, mid‐, late). The expression of TRPV6 and PMCA1 mRNA and protein in the uterine endometrium during the menstrual cycle increased by 1.5‐ to 1.8‐fold at the proliferative phase (early‐, mid‐, and late‐) in comparison to the other phases. Estrogen treatment caused a significant increase in TRPV6 and PMCA1 mRNA expression. Immunohistochemical analysis of the distribution of TRPV6 and PMCA1 in the uterus revealed that both proteins are abundantly expressed in the cytoplasm of endometrial and glandular epithelial cells during menstrual phases. Taken together, these results suggest that uterine expression of TRPV6 and PMCA1 may be involved in human reproductive function. Mol. Reprod. Dev. 78:274–282, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

7.

Background

Synchronous development of the endometrium (to achieve a receptive state) and of the embryo is essential for successful implantation and ongoing pregnancy. Endometrial receptivity exists only for a finite time in a menstrual cycle and the endometrium is refractory to embryo implantation outside of this window. Administration of hormones to stimulate multifollicular development within the ovary, integral to the majority of assisted reproduction (ART) protocols, dramatically alters the hormonal milieu to which the endometrium is exposed versus normal menstrual cycles. Endometrial maturation may be profoundly affected by this altered endocrine environment.

Aim

Compare endometrial histology in fertile women, fertile women undergoing hormonal stimulation for oocyte donation and infertile women undergoing fresh embryo transfers in an ART cycle with further comparisons between women who did or did not become pregnant. Examine the presence of leukocytes and markers of endometrial maturation.

Methods

Endometrial histology was examined by hematoxylin and eosin staining with a semi quantitative scoring method developed to compare histological appearance of tissues. The presence of leukocytes and developmental markers was examined by immunohistochemistry and scored.

Results

Endometrial histology was dramatically altered upon stimulation for ART. However, those women who became pregnant presented with significantly less alterations in histological endometrial maturation. Numbers and activation status of leukocyte populations were also altered within the endometria stimulated for ART, with neutrophils undergoing degranulation, usually observed only pre-menstrually.

Conclusion

We propose that such developmental changes render the endometrium hostile to the embryo and that modifications to ART protocols should be considered to take account of the requirement for endometrial receptivity and hence increase pregnancy rates.  相似文献   

8.
Changes in the surface epithelium of the endometrium, characterized in part by alterations in cell-surface molecules, sex steroid receptors and the appearance of pinopodes, coincide with the window of endometrial receptivity in the menstrual cycle. This study was performed to evaluate the usefulness of hematoxylin and eosin staining, scanning and transmission microscopy, and MUC1 glycoform, sex steroid receptor, and interleukin receptor (type 1) expression as biomarkers of endometrial receptivity using carefully characterized clinical fertile and infertile groups of women. Using a combination of immunohistochemistry and scanning electron microscopy (SEM) called scanning immunoelectron microscopy (SIM), we confirmed that MUC1 mucin was not associated with the endometrial pinopodes, which have been linked with embryo adhesion. We also showed that failure of embryo implantation was associated with an abnormal endometrial expression of MUC1 mucin, and retention of nuclear progesterone receptor (PR) particularly in epithelial cells. Hematoxylin and eosin staining, transmission electron microscopy (TEM), SEM in isolation and immunohistochemistry for interleukin receptor were not shown to be useful markers. Progesterone-dependent regulation of MUC1 appears to be an important factor in determining endometrial receptivity.  相似文献   

9.
The progesterone-induced differentiation of endometrial tissue from proliferative into secretory and decidua seems to be modulated by locally produced hormones and cytokines. Transforming growth factor beta (TGFbeta). a cytokine produced by endometrial cells, has been shown to modulate endometrial cell proliferation in vitro. Our aim was to evaluate the effects of medroxyprogesterone acetate (MPA) and the influence of menstrual cycle on the expression of TGFbeta1 and TGFbeta3 in human endometrium in vivo. In a double-blind, placebo-controlled trial, 46 healthy women with regular menstrual cycles received either MPA (10 mg/day) or placebo during 10 days. Endometrial and blood samples were collected 8-12 hours after the last MPA or placebo administration. Patients were classified into three groups according to biopsy dating and treatment: proliferative [tissue]/placebo, secretory [tissue]/placebo and secretory [tissue]/MPA. The immunohistochemical distribution of TGFbeta1 and TGFbeta1 mRNA was similar in all groups. Immunoreactive TGFbeta3 was present in the epithelium in 9.1% of proliferative samples, in 41.2% of secretory/placebo samples and in 87.5% of secretory/MPA samples (p=0.001). In the stroma, the frequency of TGFbeta3 staining was markedly increased after treatment with MPA (62.5%) compared to placebo (proliferative: 9.1%; secretory: 5.9%; p=0.005). The levels of TGFbeta3 mRNA increased during the secretory phase and were higher in the MPA-treated group, being directly correlated with morphological endometrial differentiation. It is concluded that MPA administration to healthy women increased TGFbeta3 but did not change TGFbeta1 gene and protein expression in the endometrium. This finding suggests that TGFbeta3 may be a local factor mediating progesterone- and progestogen-induced endometrial differentiation.  相似文献   

10.

Background

Compromised receptivity of the endometrium is a major cause of unexplained infertility, implantation failure and subclinical pregnancy loss. In order to investigate the changes in endometrial protein profile as a cause of unexplained infertility, the current study was undertaken to analyze the differentially expressed proteins of endometrium from early-secretory (LH+2) to mid-secretory phase (LH+7), in women with unexplained infertility.

Methods

2-D gel electrophoresis was performed to analyze the proteomic changes between early- (n = 8) and mid-secretory (n = 8) phase endometrium of women with unexplained infertility. The differentially expressed protein spots were identified by LC-MS analysis and validated by immunoblotting and immuno-histochemical analysis in early- (n = 4) and mid-secretory (n = 4) phase endometrium of infertile women. Validated proteins were also analyzed in early- (n = 4) and mid-secretory (n = 4) phase endometrium of fertile women.

Results

Nine proteins were found to be differentially expressed between early- and mid- secretory phases of endometrium of infertile women. The expression of Ras-related protein Rap-1b, Protein disulfide isomerase A3, Apolipoprotein-A1 (Apo-A1), Cofilin-1 and RAN GTP-binding nuclear protein (Ran) were found to be significantly increased, whereas, Tubulin polymerization promoting protein family member 3, Superoxide dismutase [Cu-Zn], Sorcin, and Proteasome subunit alpha type-5 were significantly decreased in mid- secretory phase endometrium of infertile women as compared to early-secretory phase endometrium of infertile women. Validation of 4 proteins viz. Sorcin, Cofilin-1, Apo-A1 and Ran were performed in separate endometrial biopsy samples from infertile women. The up-regulated expression of Sorcin and down-regulated expression of Cofilin-1 and Apolipoprotein-A1, were observed in mid-secretory phase as compared to early-secretory phase in case of fertile women.

Conclusions

De-regulation of the expression of Sorcin, Cofilin-1, Apo-A1 and Ran, during early- to mid-secretory phase may have physiological significance and it may be one of the causes for altered differentiation and/or maturation of endometrium, in women with unexplained infertility.  相似文献   

11.
In vitro fertilization has overcome infertility issues for many couples. However, achieving implantation of a viable embryo into the maternal endometrium remains a limiting step in optimizing pregnancy success. The molecular mechanisms which characterize the transient state of endometrial receptivity, critical in enabling embryo‐endometrial interactions, and proteins which underpin adhesion at the implantation interface, are limited in humans despite these temporally regulated processes fundamental to life. Hence, failure of implantation remains the “final frontier” in infertility. A human coculture model is utilized utilizing spheroids of a trophectoderm (trophoblast stem) cell line, derived from pre‐implantation human embryos, and primary human endometrial epithelial cells, to functionally identify “fertile” versus “infertile” endometrial epithelium based on adhesion between these cell types. Quantitative proteomics identified proteins associated with human endometrial epithelial receptivity (“epithelial receptome”) and trophectoderm adhesion (“adhesome”). As validation, key “epithelial receptome” proteins (MAGT‐1/CDA/LGMN/KYNU/PC4) localized to the epithelium of receptive phase (mid‐secretory) endometrium obtained from fertile, normally cycling women but is largely absent from non‐receptive (proliferative) phase tissues. Factors involved in embryo‐epithelium interaction in successive temporal stages of endometrial receptivity and implantation are demonstrated and potential targets for improving fertility are provided, enhancing potential to become pregnant either naturally or in a clinical setting.  相似文献   

12.
Endometrial gland development occurs during the proliferative phase of a woman’s menstrual cycle, laying the foundation for the subsequent receptive, secretory phase when pregnancy is established. Idiopathic infertility has been rarely investigated with respect to the proliferative phase endometrium. We investigated whether gland development and/or altered secretion of cytokines during the proliferative phase is associated with infertility. Area of the glandular epithelium (GE) was measured in proliferative phase endometrial tissue collected from fertile (n = 18) and infertile (n = 14) women. Cytokines were measured in proliferative phase uterine lavage of fertile (n = 15) and infertile (n = 15) women. Immunohistochemistry determined cellular localisation of transforming growth factor alpha (TGFα) and interferon gamma (IFNγ) in proliferative phase endometrial tissue. For statistical analysis the cohort was divided into women <35 years and ⩾35 years. There were no significant differences in GE area of infertile and fertile women. C-C motif chemokine 11 (P = 0.048), TGFα (P = 0.049), IFNγ (P = 0.033) and interleukin-1 alpha (P = 0.047) were significantly elevated in uterine lavage from infertile women <35 years compared to fertile but not in women ⩾35 years. TGFα and IFNγ localised predominantly to GE in both the fertile and infertile endometrium. The potential impact of this altered proliferative phase environment on subsequent receptivity is discussed.  相似文献   

13.
In order to further identify physiological similarities between 17β-hydroxysteroid dehydrogenase (HSD) in human and monkey endometrium, and to evaluate the role of estradiol-17β (E2) oxidation to estrone (E1) during periimplantation events, 30 rhesus monkeys were studied at different intervals of the nonfertile menstrual cycle (days 8, 12, 15, 18 and 24). Also, five pregnant monkeys provided endometrial tissue on day 24 of the fertile menstrual cycle, near the expected time of implantation. HSD activity in endometrium was low at midfollicular phase (day 8), increased to maximal levels (8-fold) during the periovulatory span (days 12 and 15),and was intermediate in mid to late luteal phase (days 18 and 24) in non-fertile menstrual cycles. In the absence of ovulation, HSD was low throughout. These enzyme data fit with a pattern of daily peripheral serum levels of E2 and progesterone (P) and suggest that when the normal sequence of P follows elevated estrogens in late follicular phase, HSD activity is markedly enhanced in the early luteal phase. However, HSD activity in endometrium did not increase more in the fertile menstrual cycle, despite further elevations of serum P during rescue of the corpus luteum.  相似文献   

14.
The human endometrium is a highly dynamic tissue with the ability to cyclically regenerate during the reproductive life. Endometrial mesenchymal stem-like cells (eMSCs) located throughout the endometrium have shown to functionally contribute to endometrial regeneration. In this study we examine whether the menstrual cycle stage and the location in the endometrial bilayer (superficial and deep portions of the endometrium) has an effect on stem cell activities of eMSCs (CD140b+CD146+ cells). Here we show the percentage and clonogenic ability of eMSCs were constant in the various stages of the menstrual cycle (menstrual, proliferative and secretory). However, eMSCs from the menstrual endometrium underwent significantly more rounds of self-renewal and enabled a greater total cell output than those from the secretory phase. Significantly more eMSCs were detected in the deeper portion of the endometrium compared to the superficial layer but their clonogenic and self-renewal activities remained similar. Our findings suggest that eMSCs are activated in the menstrual phase for the cyclical regeneration of the endometrium.  相似文献   

15.
Increased expression of Notch signaling pathway components is observed in Kaposi sarcoma (KS) but the mechanism underlying the manipulation of the canonical Notch pathway by the causative agent of KS, Kaposi sarcoma herpesvirus (KSHV), has not been fully elucidated. Here, we describe the mechanism through which KSHV directly modulates the expression of the Notch ligands JAG1 and DLL4 in lymphatic endothelial cells. Expression of KSHV-encoded vFLIP induces JAG1 through an NFκB-dependent mechanism, while vGPCR upregulates DLL4 through a mechanism dependent on ERK. Both vFLIP and vGPCR instigate functional Notch signalling through NOTCH4. Gene expression profiling showed that JAG1- or DLL4-stimulated signaling results in the suppression of genes associated with the cell cycle in adjacent lymphatic endothelial cells, indicating a role for Notch signaling in inducing cellular quiescence in these cells. Upregulation of JAG1 and DLL4 by KSHV could therefore alter the expression of cell cycle components in neighbouring uninfected cells during latent and lytic phases of viral infection, influencing cellular quiescence and plasticity. In addition, differences in signaling potency between these ligands suggest a possible complementary role for JAG1 and DLL4 in the context of KS.  相似文献   

16.
We conducted a quantitative analysis of ERalpha and ERbeta mRNA expression in normal human endometrium throughout the menstrual cycle in regular menstruating premenopausal women, taking advantage of this real-time PCR assay. Endometrial dating was determined from the histology of the endometrium and classified into: proliferative endometrium and secretory endometrium. Both ERalpha and ERbeta mRNA expression were detected in all endometrial samples at both proliferative and secretion phase. However ERalpha mRNA expression level was higher than that of ERbeta specially during proliferative phase. These results suggest that estrogenic effects occur predominantly through ERalpha than ERbeta.  相似文献   

17.
Objective(s): To investigate the expression of periostin in the eutopic and ectopic endometrium of women diagnosed as endometriosis and evaluate the role of periostin in the pathogenesis of endometriosis. Study design: In this study, the expression of periostin was evaluated in the endometrial specimens from 35 women diagnosed as endometriosis and from 30 healthy women. To assess the presence and localization of periostin throughout the menstrual cycle in both eutopic and ectopic endometrium of women with endometriosis, microscopic evaluation was conducted. It was also subsequently compared with normal endometrium. Results: In the eutopic and ectopic endometrium of women with endometriosis, immunoreactivities of periostin increased compared with those of normal endometrium. We also observed a cyclic variation in the eutopic stromal periostin immunoreactivity throughout their menstrual cycle because higher H score values were observed in the proliferative phase than those in the secretory phase. Conclusion(s): These findings indicated that periostin may be involved in the pathophysiology of endometriosis.  相似文献   

18.
The specific activity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase was measured in human endometrial tissue obtained from ovulatory and anovulatory women. Employing PGE2 as substrate, the specific activity of this enzyme was found to be highest in endometrial tissue during the secretory phase of the cycle (ovarian cycle days 15–25) and lowest in menstrual (days 1–5) and premenstrual (days 26–28) endometrium. The specific activity of prostaglandin dehydrogenase in endometrium of anovulatory women was low, being similar to that found in proliferative endometrium (days 6–14) of ovulatory women. Prostaglandin dehydrogenase activity was found in the cytosolic fraction prepared from endometrial tissue, and was found principally in the glandular epithelium following separation of endometrial glands and stromal cells.  相似文献   

19.
A radioimmunoassay for 5-androstene-3 beta, 17 beta-diol (ADIOL) in human endometrium and plasma is described. The recognised criteria of reliability have been fulfilled. Plasma and endometrial tissue concentrations of ADIOL were determined in samples obtained from normal premenopausal and perimenopausal women (average ages 37 and 48 years respectively) at different phases of the menstrual cycle. In perimenopausal women plasma concentrations of ADIOL did not vary throughout the cycle (proliferative phase: 411 +/- 95 (SEM) pg/ml; secretory phase: 462 +/- 28.5 (SEM) pg/ml). For the premenopausal group the pattern was similar (proliferative phase: 568.4 +/- 56.9 (SEM) pg/ml; secretory phase: 663.1 +/- 64.7 (SEM) pg/ml) although a significant difference (P less than 0.05) was noted between late proliferative and late secretory phase levels in these women. A different pattern was observed for endometrial tissue concentrations of ADIOL. In both groups of women a significant (3-4-fold) increase occurred during the secretory phase. There was no apparent relationship between plasma and tissue concentrations of ADIOL either during the proliferative or the secretory phase. There was, however, an age associated decrease for both tissue and plasma ADIOL. Theories are proposed to account for the increase in ADIOL concentration during the luteal phase.  相似文献   

20.
Inhibins are dimeric glycoproteins composed of an alpha (alpha) subunit and one of two possible beta (beta-) subunits (betaA or betaB). The aims of this study were to assess the frequency and tissue distribution patterns of the inhibin subunits in normal human endometrium. Samples from human endometrium from proliferative phase (PP; n=32), early secretory phase (ES; n=10) and late secretory phase (LS; n=12) were obtained. Immunohistochemistry, immunofluorescence and a statistical analysis were performed. All three inhibin subunits were expressed by normal endometrium by immunohistochemistry and immunofluorescence. Inhibin-alpha was primarily detected in glandular epithelial cells, while inhibin-beta subunits were additionally localised in stromal tissue. Inhibin-alpha staining reaction increased significantly between PP and ES (P<0.05), PP and LS (P<0.01), and ES and LS (P<0.02). Inhibin-betaA and -betaB were significant higher in LS than PP (P<0.05) and LS than ES (P<0.05). All three inhibin subunits were expressed by human endometrium varying across the menstrual cycle. This suggests substantial functions in human implantation of inhibin-alpha subunit, while stromal expression of the beta subunits could be important in the paracrine signalling for adequate endometrial maturation. The distinct expression in human endometrial tissue suggests a synthesis of inhibins into the lumen and a predominant secretion of activins into the stroma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号