共查询到20条相似文献,搜索用时 0 毫秒
1.
A Bayesian CART algorithm 总被引:3,自引:0,他引:3
2.
3.
In clinical trials of a self-administered drug, repeated measures of a laboratory marker, which is affected by study medication and collected in all treatment arms, can provide valuable information on population and individual summaries of compliance. In this paper, we introduce a general finite mixture of nonlinear hierarchical models that allows estimates of component membership probabilities and random effect distributions for longitudinal data arising from multiple subpopulations, such as from noncomplying and complying subgroups in clinical trials. We outline a sampling strategy for fitting these models, which consists of a sequence of Gibbs, Metropolis-Hastings, and reversible jump steps, where the latter is required for switching between component models of different dimensions. Our model is applied to identify noncomplying subjects in the placebo arm of a clinical trial assessing the effectiveness of zidovudine (AZT) in the treatment of patients with HIV, where noncompliance was defined as initiation of AZT during the trial without the investigators' knowledge. We fit a hierarchical nonlinear change-point model for increases in the marker MCV (mean corpuscular volume of erythrocytes) for subjects who noncomply and a constant mean random effects model for those who comply. As part of our fully Bayesian analysis, we assess the sensitivity of conclusions to prior and modeling assumptions and demonstrate how external information and covariates can be incorporated to distinguish subgroups. 相似文献
4.
Bayesian analysis of factorial experiments by mixture modelling 总被引:3,自引:0,他引:3
5.
6.
On the Bayesian analysis of population size 总被引:2,自引:0,他引:2
7.
This paper introduces a statistical approach for high-level spatial analysis when there is little prior information about the shape or location of the region of interest in the underlying image and limited spatial resolution of the available data. Our work was motivated by a functional brain mapping technique called direct cortical electrical interference (DCEI) that gives binary observations at multiple sites throughout the brain. We estimate an underlying, binary spatial response function using a mixture of an unknown number of simple geometrical shapes (e.g. circles) with unknown centers and sizes to be estimated. Inference is made using reversible jump Markov chain Monte Carlo. The approach is illustrated with simulated examples and a real example with DCEI data. 相似文献
8.
Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis–Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. 相似文献
9.
A nationwide health card recording system for dairy cattle was introduced in Norway in 1975 (the Norwegian Cattle Health Services). The data base holds information on mastitis occurrences on an individual cow basis. A reduction in mastitis frequency across the population is desired, and for this purpose risk factors are investigated. In this paper a Bayesian proportional hazards model is used for modelling the time to first veterinary treatment of clinical mastitis, including both genetic and environmental covariates. Sire effects were modelled as shared random components, and veterinary district was included as an environmental effect with prior spatial smoothing. A non-informative smoothing prior was assumed for the baseline hazard, and Markov chain Monte Carlo methods (MCMC) were used for inference. We propose a new measure of quality for sires, in terms of their posterior probability of being among the, say 10% best sires. The probability is an easily interpretable measure that can be directly used to rank sires. Estimating these complex probabilities is straightforward in an MCMC setting. The results indicate considerable differences between sires with regards to their daughters disease resistance. A regional effect was also discovered with the lowest risk of disease in the south-eastern parts of Norway. 相似文献
10.
Huelsenbeck JP Joyce P Lakner C Ronquist F 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1512):3941-3953
Models of amino acid substitution present challenges beyond those often faced with the analysis of DNA sequences. The alignments of amino acid sequences are often small, whereas the number of parameters to be estimated is potentially large when compared with the number of free parameters for nucleotide substitution models. Most approaches to the analysis of amino acid alignments have focused on the use of fixed amino acid models in which all of the potentially free parameters are fixed to values estimated from a large number of sequences. Often, these fixed amino acid models are specific to a gene or taxonomic group (e.g. the Mtmam model, which has parameters that are specific to mammalian mitochondrial gene sequences). Although the fixed amino acid models succeed in reducing the number of free parameters to be estimated--indeed, they reduce the number of free parameters from approximately 200 to 0--it is possible that none of the currently available fixed amino acid models is appropriate for a specific alignment. Here, we present four approaches to the analysis of amino acid sequences. First, we explore the use of a general time reversible model of amino acid substitution using a Dirichlet prior probability distribution on the 190 exchangeability parameters. Second, we then explore the behaviour of prior probability distributions that are'centred' on the rates specified by the fixed amino acid model. Third, we consider a mixture of fixed amino acid models. Finally, we consider constraints on the exchangeability parameters as partitions,similar to how nucleotide substitution models are specified, and place a Dirichlet process prior model on all the possible partitioning schemes. 相似文献
11.
A two-component model for counts of infectious diseases 总被引:1,自引:0,他引:1
We propose a stochastic model for the analysis of time series of disease counts as collected in typical surveillance systems on notifiable infectious diseases. The model is based on a Poisson or negative binomial observation model with two components: a parameter-driven component relates the disease incidence to latent parameters describing endemic seasonal patterns, which are typical for infectious disease surveillance data. An observation-driven or epidemic component is modeled with an autoregression on the number of cases at the previous time points. The autoregressive parameter is allowed to change over time according to a Bayesian changepoint model with unknown number of changepoints. Parameter estimates are obtained through the Bayesian model averaging using Markov chain Monte Carlo techniques. We illustrate our approach through analysis of simulated data and real notification data obtained from the German infectious disease surveillance system, administered by the Robert Koch Institute in Berlin. Software to fit the proposed model can be obtained from http://www.statistik.lmu.de/ approximately mhofmann/twins. 相似文献
12.
BGX: a fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data 总被引:4,自引:0,他引:4
Hein AM Richardson S Causton HC Ambler GK Green PJ 《Biostatistics (Oxford, England)》2005,6(3):349-373
We present Bayesian hierarchical models for the analysis of Affymetrix GeneChip data. The approach we take differs from other available approaches in two fundamental aspects. Firstly, we aim to integrate all processing steps of the raw data in a common statistically coherent framework, allowing all components and thus associated errors to be considered simultaneously. Secondly, inference is based on the full posterior distribution of gene expression indices and derived quantities, such as fold changes or ranks, rather than on single point estimates. Measures of uncertainty on these quantities are thus available. The models presented represent the first building block for integrated Bayesian Analysis of Affymetrix GeneChip data: the models take into account additive as well as multiplicative error, gene expression levels are estimated using perfect match and a fraction of mismatch probes and are modeled on the log scale. Background correction is incorporated by modeling true signal and cross-hybridization explicitly, and a need for further normalization is considerably reduced by allowing for array-specific distributions of nonspecific hybridization. When replicate arrays are available for a condition, posterior distributions of condition-specific gene expression indices are estimated directly, by a simultaneous consideration of replicate probe sets, avoiding averaging over estimates obtained from individual replicate arrays. The performance of the Bayesian model is compared to that of standard available point estimate methods on subsets of the well known GeneLogic and Affymetrix spike-in data. The Bayesian model is found to perform well and the integrated procedure presented appears to hold considerable promise for further development. 相似文献
13.
Gasbarra D Pirinen M Sillanpää MJ Salmela E Arjas E 《Theoretical population biology》2007,72(3):305-322
An issue often encountered in statistical genetics is whether, or to what extent, it is possible to estimate the degree to which individuals sampled from a background population are related to each other, on the basis of the available genotype data and some information on the demography of the population. In this article, we consider this question using explicit modelling of the pedigrees and gene flows at unlinked marker loci, but then restricting ourselves to a relatively recent history of the population, that is, considering the genealogy at most some tens of generations backwards in time. As a computational tool we use a Markov chain Monte Carlo numerical integration on the state space of genealogies of the sampled individuals. As illustrations of the method, we consider the question of relatedness at the level of genes/genomes (IBD estimation), using both simulated and real data. 相似文献
14.
In the decade since their invention, spotted microarrays have been undergoing technical advances that have increased the utility, scope and precision of their ability to measure gene expression. At the same time, more researchers are taking advantage of the fundamentally quantitative nature of these tools with refined experimental designs and sophisticated statistical analyses. These new approaches utilise the power of microarrays to estimate differences in gene expression levels, rather than just categorising genes as up- or down-regulated, and allow the comparison of expression data across multiple samples. In this review, some of the technical aspects of spotted microarrays that can affect statistical inference are highlighted, and a discussion is provided of how several methods for estimating gene expression level across multiple samples deal with these challenges. The focus is on a Bayesian analysis method, BAGEL, which is easy to implement and produces easily interpreted results. 相似文献
15.
This paper describes a stochastic epidemic model developed to infer transmission rates of asymptomatic communicable pathogens within a hospital ward. Inference is complicated by partial observation of the epidemic process and dependencies within the data. The epidemic process of nosocomial communicable pathogens can be partially observed by routine swabs testing for the presence of the pathogen. False-negative swab results must be accounted for and make it difficult to ascertain the number of patients who were colonized. Reversible jump Markov chain Monte Carlo methods are used within a Bayesian framework to make inferences about the colonization rates and unknown colonization times. The methods are applied to routinely collected data concerning methicillin-resistant Staphylococcus Aureus in an intensive care unit to estimate the effectiveness of isolation on reducing transmission of the bacterium. 相似文献
16.
G. Thaller I. Hoeschele 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(7):1167-1174
A Bayesian approach to the statistical mapping of Quantitative Trait Loci (QTLs) using single markers was implemented via Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation and hypothesis testing. Parameters were estimated by marginal posterior means computed with a Gibbs sampler with data augmentation. Variables sampled included the augmented data (marker-QTL genotypes, polygenic effects), the event of linkage or nonlinkage, and the parameters (allele frequencies, QTL substitution effect, recombination rate, polygenic and residual variances). The analysis was evaluated empirically via application to simulated granddaughter designs consisting of 2000 sons, 20 related sires and their ancestors. Results obtained in this study and preliminary work on multiple linked markers and multiple QTLs support the usefulness of the Bayesian method for the statistical mapping of QTLs. 相似文献
17.
We present a statistical method, and its accompanying algorithms, for the selection of a mathematical model of the gating mechanism of an ion channel and for the estimation of the parameters of this model. The method assumes a hidden Markov model that incorporates filtering, colored noise and state-dependent white excess noise for the recorded data. The model selection and parameter estimation are performed via a Bayesian approach using Markov chain Monte Carlo. The method is illustrated by its application to single-channel recordings of the K+ outward-rectifier in barley leaf.Acknowledgement The authors thank Sake Vogelzang, Bert van Duijn and Bert de Boer for their helpful advice and useful comments and suggestions. 相似文献
18.
Johnson TD 《Biometrics》2003,59(3):650-660
Many hormones are secreted into the circulatory system in a pulsatile manner and are cleared exponentially. The most common method of analyzing these systems is to deconvolve the hormone concentration into a secretion function and a clearance function. Accurate estimation of the model parameters depends on the number and location of the secretion pulses. To date, deconvolution analysis assumes the number and approximate location of these pulses are known a priori. In this article, we present a novel Bayesian approach to deconvolution that jointly models the number of pulses along with all other model parameters. Our method stochastically searches for the secretion pulses. This is accomplished by viewing the set of parameters that define the pulses as a point process. Pulses are determined by a birth-death process which is embedded in Markov chain Monte Carlo algorithm. This idea originated with Stephens (2000, Annals of Statistics 28, 40-74) in the context of finite mixture model density estimation, where the number of mixture components is unknown. There are several advantages that our model enjoys over the traditional frequentist approaches. These advantages are highlighted with four datasets consisting of serum concentration levels of luteinizing hormone obtained from ovariectomized ewes. 相似文献
19.
In this article, the steady state condition for the multi-compartment models for cellular metabolism is considered. The problem is to estimate the reaction and transport fluxes, as well as the concentrations in venous blood when the stoichiometry and bound constraints for the fluxes and the concentrations are given. The problem has been addressed previously by a number of authors, and optimization-based approaches as well as extreme pathway analysis have been proposed. These approaches are briefly discussed here. The main emphasis of this work is a Bayesian statistical approach to the flux balance analysis (FBA). We show how the bound constraints and optimality conditions such as maximizing the oxidative phosphorylation flux can be incorporated into the model in the Bayesian framework by proper construction of the prior densities. We propose an effective Markov chain Monte Carlo (MCMC) scheme to explore the posterior densities, and compare the results with those obtained via the previously studied linear programming (LP) approach. The proposed methodology, which is applied here to a two-compartment model for skeletal muscle metabolism, can be extended to more complex models. 相似文献
20.
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination 总被引:102,自引:0,他引:102
Markov chain Monte Carlo methods for Bayesian computation haveuntil recently been restricted to problems where the joint distributionof all variables has a density with respect to some fixed standardunderlying measure. They have therefore not been available forapplication to Bayesian model determination, where the dimensionalityof the parameter vector is typically not fixed. This paper proposesa new framework for the construction of reversible Markov chainsamplers that jump between parameter subspaces of differingdimensionality, which is flexible and entirely constructive.It should therefore have wide applicability in model determinationproblems. The methodology is illustrated with applications tomultiple change-point analysis in one and two dimensions, andto a Bayesian comparison of binomial experiments. 相似文献