首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The meiotic behavior of heterozygotes from three different maize pericentric inversion stocks was quantitatively observed at a variety of stages throughout meiosis I and II. With heterozygosity for either of two of these inversions, the usual mode of pairing observed at pachytene involved synapsis of the centromere containing inverted region, and synaptic failure of the centromere region was rarely found. Abnormal chromosome behavior at subsequent meiotic stages was rare in these cases. With heterozygosity for the third inversion, however, homologous synapsis was generally found in the distal regions of the chromosome involved, the inverted region was often non-homologously synapsed, and a substantial frequency of cells apparently showed synaptic failure in the centromere containing inverted region. A substantial frequency of cells at anaphase II in this case contained two lagging monads in the plate region of the spindle. Where cells could be identified as sisters, sister cells showed identical behavior at anaphase II. Findings seem to be most simply explained by the supposition that pachytene synapsis of the centromere region is important to provision for sister centromere association until anaphase II.  相似文献   

2.
Two paracentric inversions in the mouse, In(1)1 Rk and In(2)5 Rk, have been studied in surface microspreads of spermatocytes from heterozygotes. At zytogene, synaptic initiation occurs independently in three regions: within the inversion, and without, on either side. Synaptonemal complex (SC) formation is restricted to homologous regions, resulting in inversion loops in all early pachytene spermatocytes. An adjusting phase then occurs during pachytene in which the inversion loop is reduced by desynapsis of homologously synapsed SC, followed immediately by non-homologous synapsis with the alternate pairing partner, progressing from the ends toward the middle. Adjustment occurs during the first half of pachytene, but is not closely synchronized with sub-stage. It is complete by late pachytene, the loop having been eliminated in all cases and replaced by straight SCs in which the inverted region is heterosynapsed. Synapsis in the adjustment phase is evidently permitted only after the homosynaptic phase, and is indifferent to homology. It may lead to heterosynapsis, as in the inversion region, or to synapsis of homologous regions not synapsed at zytogene. The anaphase bridge frequency, a measure of crossing over within the inversion, is about 34% for both inversions studied, indicating that such crossovers do not block adjustment, that crossing over probably occurs before or during the adjustment period, and that there is some crossover suppression. The last could be the consequence of blocking by desynapsis/heterosynapsis. Synaptic adjustment appears to be a general phenomenon that occurs to varying extents in different forms. A hypothetical scheme for two phases of synapsis is proposed: at zytogene, a basic propensity for indifferent SC formation is limited by a restricting condition to synapsis between homologous regions. Subsequently, the restriction is lifted, whereupon synaptic instability is resolved by desynapsis, followed by resynapsis that is indifferent to homology, but that results in a topologically more stable structure.  相似文献   

3.
Both light and electron microscopy were used to study the pairing behavior of the sex chromosomes of the harvest mouse, Micromys minutus, in surface-spread pachytene spermatocytes. The XY pairing pattern is very exceptional in that the site of synaptic initiation is located interstitially in the short arms of the X and the Y, next to their centromeric regions. From this tiny euchromatic site, synapsis proceeds unidirectionally along the homologous heterochromatic short arms of the X and the Y toward the ends of the chromosomes. After pairing of the short arm is concluded, synapsis begins between the nonhomologous long arms of the X and the Y in the immediate vicinity of the centromeres and progresses unidirectionally toward the end of the long arm of the Y. A synaptic complex develops between the constitutive heterochromatin of the long arm of the Y and the euchromatin of the long arm of the X. Analysis of C-banded and distamycin A/DAPI-stained diakineses revealed a trefoil-like XY bivalent, which was interpreted to be the result of an interstitial chiasma occurring in the paired short arms of the X and the Y. A conspicuous, electron-dense body, about 1 micron in diameter, was found closely associated with the centromeres of the X and the Y in numerous pachytene spermatocytes. A review of the literature showed that comparable XY-associated bodies have been found in only eight other mammals to date.  相似文献   

4.
Electron microscopic analysis of synaptonemal complexes in bouble heterozygotes for the partially overlapping inversions In(1) 1Rk and In(1)12Rk in chromosome 1 of the house mouse was carried out. A great variety of synaptic configurations with complicated combinations of homologously and non-homologously paired segments was observed. Analysis of these configurations revealed at least five independent pairing regions in chromosome 1. Interrelationships between these regions with respect to their pairing ability were estimated. Pairings in the distal non-inverted segment and in inversions inhibit each other, while pairing in either inverted segment facilitates synapsis in the other. In other words, pairing initiations in different parts of the same bivalent are not independent events.by H.C. MacgregorDedicated to Dr. Ann Chandley in view of her important contributions to the study of meiosis  相似文献   

5.
It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion.  相似文献   

6.
A Bardhan  T Sharma 《Génome》2000,43(1):172-180
Sequential meiotic prophase development has been followed in the pubertal male pygmy mouse Mus terricolor, with the objective to identify early meiotic prophase stages. The pygmy mouse differs from the common mouse by having large heterochromatic blocks in the X and Y chromosomes. These mice also show various chromosomal mutations; for example, fixed variations of autosomal short arms heterochromatin among different chromosomal species and pericentric inversion polymorphism. Identification of prophase stages was crucial to analyzing effects of heterozygosity for these chromosomal changes on the process of homologous synapsis. Here we describe identification of the prophase stages in M. terricolor, especially the pachytene substages, on the basis of morphology of the XY bivalent. Based on this substaging, we show delayed pairing of the heterochromatic short arms, which may be the reason for their lack of chiasmata. The identification of precise pachytene substages also reveals an early occurrence of "synaptic adjustment" in the pericentric inversion heterobivalents, a mechanism that would prevent chiasma formation in the inverted segment and thereby would abate adverse effects of such heterozygosity. The identification of pachytene substages would serve as the basis to analyze the nature of synaptic anomalies met in M. terricolor hybrids (which will be the basis of a subsequent paper).  相似文献   

7.
Synaptic Adjustment of Inversion Loops in Neurospora Crassa   总被引:1,自引:1,他引:0       下载免费PDF全文
M. Bojko 《Genetics》1990,124(3):593-598
Heterozygotes for three long inversions on chromosome 1 were analyzed by serial reconstruction from electron micrographs. Measurements of loop lengths at different meiotic prophase substages revealed that the homologous synapsis of the inverted region was gradually replaced by nonhomologous synapsis as loops were eliminated during pachytene. This synaptic adjustment was apparently not affected by crossovers which occurred within the 150- and 160-cM long loops.  相似文献   

8.
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RL(inv)) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RL(inv) during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.  相似文献   

9.
Chromosomal axes of chicken oocytes from pre- and post-hatching chickens were analyzed with a microspreading technique for electron microscopy. At leptotene, chromosomal axes begin to be formed as discontinuous, non-polarized axial segments. During zygotene synaptonemal complex (SC) formation begins at the axial ends attached to the nuclear envelope. Polarization of axial ends is nearly simultaneous with the beginning of SC formation. The complete SC set is found at pachytene and it consists of 38 SC's and an unequal SC which has been identified as the ZW pair. This unequal SC is formed by two axes of different length. The Z and W axes represent 6.2% and 4.5% respectively of the combined length of the SC set plus the Z axis. The unpaired segment of the Z axis shortens markedly from early to mid-pachytene and becomes thicker than the lateral elements of SCs. In the paired region the Z axis forms most of the twists around a straighter W axis, suggesting some extent of non-homologous pairing between the Z and W chromosomes in this region. The existence of partial synapsis of the Z and W axes without heteropycnosis of the sex chromosomes is in marked contrast to partial synapsis in the heteropycnotic XY body of mammalian spermatocytes.  相似文献   

10.
In mouse, asynaptic meiotic mutants arrest at Testis Epithelial Stage IV. This arrest is 4.5 days after homologous chromosomes begin to synapse and approximately 2.5 days after synapsis is usually completed. To correlate cytological events with meiotic progression in testis and to determine which meiotic events are normally completed by Stage IV, we induced spermatogenic arrest by placing mice on a vitamin A deficient diet. Subsequent injection of retinoic acid and a return to a normal diet resulted in resumption of spermatogenesis with all spermatocytes proceeding through meiosis in a highly synchronous cohort. Between Days 11 and 16 post-injection we prepared one testis for immunocytological and the other for histological evaluation, then used antibodies to SCP3 and either RPA, or MLH1 to follow quantitative changes in synapsis and recombination. RPA was found at sites along the synaptonemal complex as soon as homologs synapsed, and most, but not all, RPA disappeared by Stage IV. MLH1 foci appeared between Stage II and IV and remained through Stage VII, the end point of the study. The data suggest that the earliest the mid-pachytene checkpoint can be activated is Epithelial Stage IV, but that activities monitored by the checkpoint may not be completed by this time.  相似文献   

11.
Chromosomal pairing and recombination were analyzed in male specimens of Sceloporus grammicus heterozygous for a large pericentric inversion of macrochromosome 4. Analysis of silver-stained synaptonemal complexes (SCs) in surface-spread nuclei revealed that homologously paired inversion loops were not formed. Synapsis of the inverted segments proceeded directly to nonhomologous straight pairing. In some nuclei, this resulted in a configuration that could not be distinguished from homozygous bivalents of similar size. Examination of Giemsa- and silver-stained diakinetic nuclei indicated that crossing-over was limited to the noninverted (homologous) portion of the heteromorphic bivalent. Analysis of secondary spermatocytes (metaphase II configurations) revealed normal disjunction and balanced segregation of the elements of the heteromorphic bivalent. These observations indicate that the inversion heteromorphism does not lead to the production of unbalanced gametes.  相似文献   

12.
We analysed polymorphism for pericentric inversion in chromosome 3 of Oligoryzomys nigripes (Rodentia: Sigmodontinae) in several populations in Brazil and examined the meiotic behaviour of this chromosome in heterozygotes. We observed an orderly pairing of all chromosomes at pachytene in heterozygotes for the inverted chromosome 3. No indication of meiotic arrest and germ-cell death was found. Electron microscopy of synaptonemal complexes and conventional meiotic analysis indicated strictly nonhomologous synapsis and crossing-over suppression in the inverted region in the heterozygotes, which prevent the formation of unbalanced gametes. Thus, the pericentric inversion in chromosome 3 does not apparently result in any selective disadvantages in heterozygous carriers. In the majority of the populations studied, the frequencies of acrocentric homozygotes, metacentric homozygotes, and heterozygotes were in Hardy-Weinberg equilibrium. However, in some populations, we detected an excess of heterozygotes and a deficiency of acrocentric homozygotes.  相似文献   

13.
T. Ashley 《Genetica》1987,72(2):81-84
It has been previously supposed that meiotic synapsis is restricted to homology during early, but not late pachynema. The synaptic begavior of an inverted X chromosome, In(X)1H as reflected in the synaptonemal complexes of the sex chromosomes has been examined in microspread spermatocytes by electron microscopy and evidence of extensive nonhomologus synapsis between the X and Y during early pachynema has been obtained.  相似文献   

14.
We investigated the behaviour of centromeres and distal telomeres during the initial phases of female meiosis in mice. In particular, we wished to determine whether clustering of centromeres and telomeres (bouquet formation) played the same crucial role in homologous chromosome pairing in female meiosis as it does in the male. We found that synapsis (intimate homologous chromosome pairing) is most frequently initiated in the interstitial regions of homologous chromosomes, apparently ahead of the distal regions. The proximal ends of the chromosomes appear to be disfavoured for synaptic initiation. Moreover, initiation of synapsis occurred in oocytes that showed little or no evidence of bouquet formation. A bouquet was present in a substantial proportion of cells at mid to late zygotene, and was still present in some pachytene oocytes. This pattern of bouquet formation and pairing initiation is in stark contrast to that previously described in the male mouse. We propose that although dynamic movements of centromeres and telomeres to form clusters may facilitate alignment of homologues or homologous chromosome segments during zygotene, in the female mouse positional control of synaptic initiation is dependent on some other mechanism.  相似文献   

15.
During meiosis, DNA replication is followed by two successive rounds of chromosome segregation (meiosis I and II), which give rise to genetically diverse haploid gametes. The prophase of the first meiotic division is highly regulated and alignment and synapsis of the homologous chromosomes during this stage are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex results in cell death, impaired meiotic recombination and aneuploidy. Oocytes with meiotic defects often survive the first meiotic prophase and give rise to aneuploid gametes. Similarly affected spermatocytes, on the other hand, almost always undergo apoptosis at a male-specific meiotic checkpoint, located specifically at epithelial stage IV during spermatogenesis. Many examples of this stage IV-specific arrest have been described for several genetic mouse models in which DNA repair or meiotic recombination are abrogated. Interestingly, in C. elegans, meiotic recombination and synapsis are monitored by two separate checkpoint pathways. Therefore we studied spermatogenesis in several knockout mice (Sycp1(-/-), Sycp3(-/-), Smc1beta(-/-) and Sycp3/Sycp1 and Sycp3/Smc1beta double-knockouts) that are specifically defective in meiotic pairing and synapsis. Like for recombination defects, we found that all these genotypes also specifically arrest at epithelial stage IV. It seems that the epithelial stage IV checkpoint eliminates spermatocytes that fail a certain quality check, being either synapsis or DNA damage related.  相似文献   

16.
Analysis of meiotic pairing configurations in a deer mouse heterozygous for both a pericentric inversion and the presence of a heterochromatic short arm at chromosome 15 revealed straight-paired synaptonemal complexes with equal axial lengths in a majority of the pachytene nuclei. Nonhomologous pairing in this bivalent occurs by direct heterosynapsis of the inverted segments followed by synaptic adjustment of the heterochromatin heteromorphism.  相似文献   

17.
Electron microscopic analysis of synaptonemal complexes (SC) in single and double heterozygotes for the partially overlapping inversions In(1)1Icg, In(1)1Rk and In(1)12Rk in the Chromosome 1 of the house mouse reveals a dependence of synapsis and synaptic adjustment on the size and location of the inversions and their interaction. In(1)1Icg contains the insertions of inverted repeats Is(HSR: 1C5)1Icg and Is(HSR: 1I)2Icg as well as inverted euchromatic region. The synaptic adjustment of the D loops by shortening of asynapsed parts of the lateral elements of SC belonging to the insertions occurs at late zygotene-early pachytene stage. After that the synaptic adjustment of the inversion loops takes place. A delay in adjustment was found in diheterozygotes In(1)1Icg/In(1)1Rk and In(1)1Icg/In(1)12Rk. Morphological alterations of the asynapted terminal segments of lateral elements preventing synaptic adjustment were found in single and double heterozygotes for In(1)1Rk and In(1)12Rk. Correspondence between the size of asynapted regions and the probability of association of XY and heteromorphic bivalents was revealed.  相似文献   

18.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

19.
Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., γH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse.  相似文献   

20.
The effect on crossover frequency in maize of three hour heat treatment was studied when treatment was applied at zygotene (substantially later than the major DNA synthetic period) and at pachytene. Crossover frequency assay was based upon bridge and fragment frequency at anaphase I in heterozygotes for a short paracentric inversion. Effect of treatment was studied in three distinguishable synaptic classes: (1) overall crossover frequency within the inversion, (2) double crossover frequency where two separate events of pairing initiation are required (coincident crossovers within and proximal to the inversion) and (3) double crossover frequency within the inversion, where spreading of synapsis over a short distance from a single event of pairing initiation can provide the requisite pairing. Evidence is reported: (1) that overall crossover frequency within the inversion was very significantly increased by treatment at zygotene but not detectably affected by treatment at pachytene; (2) that double crossover frequency within the inversion was very significantly increased by treatment at pachytene and may have been somewhat increased by treatment at zygotene. Results are consistent with the model that most crossover sites may be established at, or approximately at, events of synaptic initiation but that establishment of infrequent second crossover sites near those formed first can follow or accompany the spreading of synapsis to adjoining regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号