首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Combining measurements of electric potential and pH with such of chlorophyll fluorescence and leaf gas exchange showed heat stimulation to evoke an electrical signal (propagation speed: 3–5 mm s−1) that travelled through the leaf while reducing the net CO2 uptake rate and the photochemical quantum yield of both photosystems (PS). Two-dimensional imaging analysis of the chlorophyll fluorescence signal of PS II revealed that the yield reduction spread basipetally via the veins through the leaf at a speed of 1.6 ± 0.3 mm s−1 while the propagation speed in the intervein region was c. 50 times slower. Propagation of the signal through the veins was confirmed because PS I, which is present in the bundle sheath cells around the leaf vessels, was affected first. Hence, spreading of the signal along the veins represents a path with higher travelling speed than within the intervein region of the leaf lamina. Upon the electrical signal, cytoplasmic pH decreased transiently from 7.0 to 6.4, while apoplastic pH increased transiently from 4.5 to 5.2. Moreover, photochemical quantum yield of isolated chloroplasts was strongly affected by pH changes in the surrounding medium, indicating a putative direct influence of electrical signalling via changes of cytosolic pH on leaf photosynthesis.  相似文献   

2.
Fully expanded leaves of tomato (Lycopersicon esculentum) growing with either complete or nitrogen-deficient nutrient solution were analysed for leaf water status, gas exchange and chlorophyll fluorescence during the vegetative and reproductive phases. N-deficiency did not affect leaf water relations but did decrease light saturated photosynthetic rate as well as stomatal conductance in the vegetative stage. A lower variable to maximum fluorescence ratio (Fv/Fm) was found in N-limited plants which also showed an increase in leaf starch content and in starch to sucrose ratio. The inhibition of photosynthesis and the alteration of photosynthates partitioning were responsible for the growth reduction in N-stressed plants. During the reproductive phase the limitation of photosynthesis may be due to a large accumulation of starch which determines both a decrease in the carbon demand from the sinks and a decrease in CO2 conductance in the mesophyll. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
New functions for electrical signals in plants   总被引:12,自引:0,他引:12  
Eric  Davies 《The New phytologist》2004,161(3):607-610
  相似文献   

4.
Abstract. The 'hormone' idea is based on a peculiarly chemical notion of substance and time. Although the chemical view of substance is advanced, its view of time is primitive compared to that of physics. This leads to considerable difficulties when applied to oscillatory systems, such as the nutating hypocotyl. There is evidence of involvement of a wide range of oscillatory systems in plants. In considering the properties of such systems, the possibility of physiological signals based on frequency becomes apparent. Some implications of this possibility for both theory and experimental programmes are discussed.  相似文献   

5.
五节芒不同种群对Cd污染胁迫的光合生理响应   总被引:9,自引:0,他引:9  
秦建桥  夏北成  赵鹏 《生态学报》2010,30(2):288-299
通过盆栽模拟试验,以分别来自粤北大宝山矿区和惠州博罗非矿区的两个五节芒种群为试验材料,比较研究了两个种群在Cd胁迫下的气体交换参数、叶绿素荧光特性、光合色素含量和叶绿体超微结构变化的差异。结果表明:(1)Cd胁迫下五节芒两种群叶片净光合速率(Pn)、蒸腾速率(E)、气孔导度(Gs)、胞间二氧化碳浓度(Ci)、叶绿素含量(Chl)都有不同幅度的下降;叶绿体超微结构遭到破坏。矿区种群随Cd胁迫程度的加深,净光合速率下降较慢,叶绿体的外形及基粒结构受到的影响较小。(2)轻度Cd胁迫下气孔限制是五节芒非矿区种群Pn降低的主要因素,中度和重度Cd胁迫下非气孔限制是Pn降低的主要因素。(3)Cd胁迫下五节芒两种群PSⅡ反应中心最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)、PSⅡ有效光化学效率Fv′/Fm′均有所下降。总体上矿区种群降幅较小,PSⅡ利用光能的能力及PSⅡ的潜在活性均较强。PSⅡ光化学猝灭系数(qP)、非光化学猝灭系数(NPQ)的变化表现为Cd胁迫下两种群qP值降低、NPQ值升高,总体上抗性强的矿区种群qP降低的幅度低且NPQ升高幅度大。随着Cd胁迫浓度增加,矿区种群实际光化学反应效率(ΦPSⅡ)和电子传递速率(ETR)变化幅度不大,而非矿区种群显著下降,表明矿区种群PSⅡ反应中心电子传递活性受到的影响小,光合机构的损伤程度低。研究表明,五节芒矿区种群对重金属Cd有较强的耐受能力,适合作为金属矿区植被恢复建设的禾本科先锋物种。  相似文献   

6.
The introduction of a more efficient means of measuring leaf photosynthetic rates under field conditions may help to clarify the relationship between single leaf photosynthesis and crop growth rates of commercial maize hybrids. A large body of evidence suggests that gross photosynthesis (AG) of maize leaves can be accurately estimated from measurements of thylakoid electron transport rates (ETR) using chlorophyll fluorescence techniques. However, before this technique can be adopted, it will first be necessary to determine how the relationship between chlorophyll fluorescence and CO2 assimilation is affected by the non-steady state PPFD conditions which predominate in the field. Also, it must be determined if the relationship is stable across different maize genotypes, and across phenological stages. In the present work, the relationship between ETR and AG was examined in leaves of three maize hybrids by making simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, both under controlled environment conditions and in the field. Under steady-state conditions, a linear relationship between ETR and AG was observed, although a slight deviation from linearity was apparent at low AG. This deviation may arise from an error in the assumption that respiration in illuminated leaves is equivalent to respiration in darkened leaves. The relationship between chlorophyll fluorescence and photosynthetic CO2 assimilation was not stable during fluctuations in incident PPFD. Since even minor (e.g. 20%) fluctuations in incident PPFD can produce sustained ( > 20 s) departures from the mean relationship between ETR and AG, chlorophyll fluorometry can only provide an accurate estimate of actual CO2 assimilation rates under relatively stable PPFD conditions. In the field, the mean value of ETR / AG during the early part of the season (4.70 ± 0.07) was very similar to that observed in indoor-grown plants in the vegetative stage (4.60 ± 0.09); however, ETR / AG increased significantly over the growing season, reaching 5.00 ± 0.09 by the late grain-filling stage. Differences in ETR / AG among the three genotypes examined were small (less than 1% of the mean) and not statistically significant, suggesting that chlorophyll fluorometry can be used as the basis of a fair comparison of leaf photosynthetic rates among different maize cultivars.  相似文献   

7.
Scald reduces the photosynthetic area, causing yield losses in rice. Changes in gas exchange parameters caused by the pathogen begin before the onset of symptoms. Chemical methods are most commonly applied to control this disease; further research into biological control methods is required. Since Trichoderma asperellum induces plant pathogen defences, increases growth, and improves photosynthetic capability, this study investigated the efficacy of T. asperellum (Ufra T06, UfraT09, Ufra T12, and Ufra T52 (Ta)) in reducing the scald lesion size and the area under the disease progress curve and in minimising the negative effects of scald on gas exchange, chlorophyll a fluorescence, chlorophyll content, and oxidative stress enzyme activity. The experiment was a completely randomised design with five replications and two treatments. Scald was reduced by 62% in plants treated with T. asperellum compared with that in control. There was a 62% increase in the net CO2 assimilation rate (A) and a drop of 78% in the transpiration rate (E) in plants treated with T. asperellum. The maximum fluorescence (Fm) was 128% higher, and ascorbate peroxidase activity was also higher in plants treated with T. asperellum than in the control. This shows that the use of T. asperellum may be effective in improving the sustainability of the integrated management of rice diseases.  相似文献   

8.
A method for measuring whole plant photosynthesis in Arabidopsis thaliana   总被引:5,自引:0,他引:5  
Measurement of photosynthesis of intact leaves of Arabidopsis thaliana has been prohibitive due to the small leaf size and prostrate growth habit. Because of the widespread use of Arabidopsis for plant science research it is important to have a procedure for accurate, nondestructive measurement of its photosynthesis. We developed and tested a method for analysis of photosynthesis in whole plants of Arabidopsis. Net carbon assimilation and stomatal conductance were measured with an open gas exchange system and photosynthetic oxygen evolution was determined from chlorophyll fluorescence parameters. Individual plants were grown in 50 cubic centimeter tubes that were attached with an air tight seal to an enclosed gas exchange chamber for measurement of carbon dioxide and water exchange by the whole plant. Chlorophyll fluorescence from intact leaves was simultaneously measured with a pulse modulated fluorometer. Photosynthetic CO2 assimilation and stomatal conductance rates were calculated with established gas exchange procedures and O2 evolution was determined from chlorophyll fluorescence measurement of Photosystem II yield. Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.  相似文献   

9.
尘污染对植物的生理和生态特性影响   总被引:1,自引:0,他引:1  
王宏炜  曹琼辉  黄峰  袁琳 《广西植物》2009,29(5):621-626
综述了尘污染对植物和植物群落的生理和生态作用和影响,并初步探讨了其原因和机制。尘污染能影响植物的光合作用、呼吸作用和蒸腾作用,并携带有毒性污染物穿透进入植物组织。尘污染会导致植物发生可见的伤害症状,引起生产力的下降。大部分的植物群落也会受到尘的影响而改变群落结构。今后要加强对自然条件下尘对植物影响的深入研究和植物不同种类间对尘敏感性的差异的研究。  相似文献   

10.
Local damaging stimuli delivered to the Pelargonium leafstalk induce propagating electrical signals (variation potentials) that alter the parameters of delayed luminescence in the leaf blade. The response includes two phases with apparently different mechanisms.  相似文献   

11.
Three Bromeliaceae species of the medium Orinoco basin, Venezuela, were compared in their light-use characteristics. The bromeliads studied were two species of pineapple, i.e. the wild species Ananas ananassoides originating from the floor of covered moist forest, and the primitive cultivar Panare of Ananas comosus mostly cultivated in semi-shaded palm swamps, and Pitcairnia pruinosa, a species abundant in highly sun exposed sites on rock outcrops. Ananas species are Crassulacean acid metabolism (CAM) plants, P. pruinosa is C3 plant. Plants were grown at low daily irradiance (LL = 1.3 mol m–2 d–1 corresponding to an incident irradiance of 30 mol m–2 s–1) and at high irradiance (HL = 14.7 mol m–2 d–1 or 340 mol m–2 s–1), and CO2 and H2O-vapour gas exchange and photochemical (qP) and non-photochemical quenching (qNP) of chlorophyll a fluorescence of photosystem 2 (PS2) were measured after transfer to LL, medium irradiance (ML = 4.1 mol m–2 d–1 or 95 mol m–2 s–1) and HL. All plants showed flexible light-use, and qP was kept high under all conditions. LL-grown plants of Ananas showed particularly high rates of CAM-photosynthesis when transferred to HL and were not photoinhibited.  相似文献   

12.
Gas exchange, chlorophyll fluorescence and water potentials, together with ascorbate and glutathione concentrations, were studied during moderate and severe drought stress and in response to re-watering in Allocasuarina luehmannii seedlings. Moderate drought stress (MS) decreased stomatal conductance (gs) and net CO2 assimilation rates (A) to ∼40% and ∼60% of control values, respectively, and caused decreases in internal CO2 concentration (Ci) and maximum light use efficiency of light-acclimated photosystem II (PSII) centres (Fv'/Fm'). Severe drought stress (SS) decreased gs and A to ∼5% and ∼15% of the control values, respectively, and caused increases in Ci and PSII excitation pressure (1 − qP), as well as decreases in water potentials, effective quantum yield of PSII (ΦPSII), maximum efficiency of PSII (Fv/Fm) and Fv'/Fm'. Ascorbate and glutathione concentrations remained unaffected by drought treatments, but ascorbate became more oxidised under severe stress. MS seedlings recovered within 1 day (Ci, Fv'/Fm') to 1 week (A, gs) of re-watering. In comparison, SS seedlings had longer-lasting after-stress effects, with recovery of many variables (gs, water potentials, Fv/Fm, ΦPSII, Fv'/Fm') taking between 1 and 3 weeks from re-watering. We found no indication that interaction with antioxidants played a significant role in recovery. In conclusion, A. luehmannii seedlings appear to function normally under moderate drought, but do not seem to have particular metabolic tolerance mechanisms to endure severe drought, which may have implications for its persistence under climate change at the drier margins of its distribution.  相似文献   

13.
The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc) than in the dark (Tc). Heat stress caused a significant de‐epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions.  相似文献   

14.
15.
Ecophysiological responses of six co‐occurring dune species were investigated in a field study to determine whether they exhibit similar functional traits in response to environmental stressors. The species included Brachylaena discolor DC, Chrysanthemoides monilifera (L.), Scaevola plumieri (L.) Vahl, Canavalia maritima (Aubl.) Thouars, Gazania rigens (L.) Gaertn. and Cyperus esculentis L. Carbon dioxide exchange was saturated at 1,800 μmol m?2 s?1 in S. plumieri and at 1,000–1,300 μmol m?2 s?1 in the others. Maximal CO2 exchange occurred during mid‐morning. Midday stomatal closure occurred in S. plumieri, C. monilifera and B. discolor, while stomatal regulation was achieved by maintaining low conductance. Photoinhibition was minimized by efficient mechanisms for light dissipation. Species such as S. plumieri, C. maritima and B. discolor exhibited sclerophylly, a trait for survival in saline and nutrient‐ and water‐deficient environments. Concentrations of Na+ and Cl?1 were high in C. monilifera, G. rigens, B. discolor and S. plumieri, while the high C:N ratio in S. plumieri and C. esculentis suggested nitrogen deficiency. The responses of the six species to environmental stressors in terms of light use, gas exchange, ion and water relations and degree of sclerophylly suggest similar strategies for survival in the dune environment.  相似文献   

16.
Thermotolerance of photosynthesis in salt‐adapted Atriplex centralasiatica plants (100–400 mm NaCl) was evaluated in this study after detached leaves and whole plants were exposed to high temperature stress (30–48 °C) either in the dark or under high light (1200 mol m?2 s?1). In parallel with the decrease in stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate decreased significantly with increasing salt concentration. There was no change in the maximal efficiency of PSII photochemistry (Fv/Fm) with increasing salt concentration, suggesting that there was no damage to PSII in salt‐adapted plants. On the other hand, there was a striking difference in the response of PSII and CO2 assimilation capacity to heat stress in non‐salt‐adapted and salt‐adapted leaves. Leaves from salt‐adapted plants maintained significantly higher Fv/Fm values than those from non‐salt‐adapted leaves at temperatures higher than 42 °C. The Fv/Fm differences between non‐salt‐adapted and salt‐adapted plants persisted for at least 24 h following heat stress. Leaves from salt‐adapted plants also maintained a higher net CO2 assimilation rate than those in non‐salt‐adapted plants at temperatures higher than 42 °C. This increased thermotolerance was independent of the degree of salinity since no significant changes in Fv/Fm and net CO2 assimilation rate were observed among the plants treated with different concentrations of NaCl. The increased thermotolerance of PSII induced by salinity was still evident when heat treatments were carried out under high light. Given that photosynthesis is considered to be the physiological process most sensitive to high temperature damage, increased thermotolerance of photosynthesis may be of significance since A. centralasiatica, a typical halophyte, grows in the high salinity regions in the north of China, where the temperature in the summer is often as high as 45 °C.  相似文献   

17.
研究不同水势(SWP)对温室黄瓜花后叶片气体交换及叶绿素荧光参数的影响.结果表明: -10和-30 kPa分别为黄瓜开始产生干旱胁迫和干旱胁迫由气孔限制转向非气孔限制的水势临界值.在无干旱胁迫阶段(-10 kPas)、胞间CO2浓度(Ci)、净光合速率(Pn)、表观量子效率(ε)、蒸腾速率(Tr)、羧化效率(CE)、Rubisco限制下的最大羧化速率(Vc max)、最大电子传递速率(Jmax)、磷酸丙糖利用速率(VTPU)、PSⅡ的潜在和实际量子效率(ΦPSⅡ和Fv/Fm)以及光化学淬灭系数(qP)下降,光补偿点(LCP)、暗呼吸速率(Rd)、CO2补偿点(CCP)、气孔限制值(Ls)、瞬时水分利用效率(WUEi)和非光化学淬灭系数(qN)上升,气体交换参数随水势的变化速度快于叶绿素荧光参数,各处理间差异显著;在非气孔限制阶段(-45 kPa≤SWP≤-30 kPa),随着SWP下降,光饱和点(LSP)、Rd、CE、Vc max、VTPU、Ls、WUEi、ΦPSII、Fv/Fm和qP下降,CCP、Ci和qN上升,叶绿素荧光参数随水势的变化速度快于气体交换参数,各处理间差异显著.设施黄瓜生产中,当土壤或基质的水势下降到-10 kPa时应及时灌溉,灌溉到水势上升为-5 kPa时停止;水势下降到-30 kPa之前的灌溉可有效恢复作物的气孔性限制,水势降到-30 kPa以下,干旱胁迫会对作物造成不可恢复的伤害.  相似文献   

18.
Photosynthesis is an important component of upland cotton (Gossypium hirsutum L.) yield, but little has been done to increase the photosynthetic performance within the cotton germplasm pool. Part of this dilemma is due to the multi-component aspect of this process and also to lack of information on genetic variation among such components. The objectives of this research were to identify genetic variability in photosynthetic components for six cotton genotypes previously shown to differ in leaf CO2-exchange rates (CER) and to determine if an afternoon decline in photosynthesis altered genotypic differences in CER. CO2-exchange rates were measured at several internal CO2 levels (Ci) to generate CER vs. Ci curves for each genotype and thereby isolate some of the components of photosynthesis. Ribulose 1,5 bisphosphate carboxylase-oxygenase (Rubisco), hydroxypyruvate reductase, malate dehydrogenase, and catalase activities were assayed on leaves used to generate the CER vs. Ci curves. Ambient CER and chlorophyll (Chl) fluorescence measurements were taken before and after solar noon to test for an afternoon decline in photosynthesis. Dixie King, a low ambient CER genotype, exhibited a greater CO2 compensation point, lower carboxylation efficiency, and reduced Photosystem II (PS II) activity than the other genotypes. The carboxylation efficiency of DES 119 was 13% greater than STV 508 and 29% greater than Dixie King, but not different from the other genotypes in 1994. Pee Dee 3 had greater maximum assimilation rate (A) than all other genotypes except STV 213 in 1993. Although no significant genotype by time of day interaction was detected, CER and Chl fluorescence variable to maximum ratio (Fv/Fm) were reduced 8% and 39%, respectively, in the afternoon as compared to the morning. This study demonstrates genetic variations in many of the components of photosynthesis. However, the narrow range of variation in such components for superior photosynthesizing genotypes explains why difficulties are encountered when breeding for increased photosynthesis.  相似文献   

19.
Sunflower seedlings ( Helianthus annuus hybrid Select) were grown in a complete nutrient solution in the absence or presence of Cd2+ (10 and 20 μM). Analyses were performed to establish whether there was a differential effect of Cd2+ on mature and young leaves. After 7 d the growth parameters as well as the leaf area had decreased in both mature and young leaves. Accumulation of Cd2+ in the roots exceeded that in the shoots. Seedlings treated with Cd2+ exhibited reduced contents of chlorophyll and CO2 assimilation rate, with a greater decrease in young leaves. The photochemical efficiency of photosystem II (PSII) was not altered by Cd2+ treatment in either mature or young leaves, although during steady-state photosynthesis in young leaves there was a significant alteration in the following parameters: quantum yield of electron transport by PSII (ΦPSII), photochemical quenching ( q P), non-photochemical quenching ( q NP), and excitation capture efficiency of PSII (Φexc).  相似文献   

20.
冯强  胡聃  李娜 《生态学报》2009,29(7):3477-3484
采用Li-6400便携式光合作用测定系统对夏秋季典型城区与郊区环境下大叶黄杨的气体交换和叶绿素荧光特性进行了现场实验比较研究.研究显示,叶片净光合速率的大小由总光合速率(光合能力)和呼吸速率共同决定,城区环境温度较高、相对湿度较低、大气CO2浓度较高, 不同月份城区和郊区样点大叶黄杨的净光合速率差异显著性存在不同.城区环境下大叶黄杨的胞间CO2浓度、叶面水气压亏缺、蒸腾速率高于郊区环境.城区环境中温度、大气CO2浓度等的变化会影响叶片呼吸作用,造成呼吸速率升高或是降低,城区环境中污染物浓度变化也会损伤叶片光合结构从而导致总光合能力降低,这两者都会引起净光合速率的变化.通过大叶黄杨叶片叶绿素荧光指标的进一步对比分析发现,城区大叶黄杨叶片叶绿素总量、叶绿素a/b、Fv/Fm、Fv/Fo、qP、ΦPSⅡ、ETR降低,但qN升高.表明叶片叶绿体PSⅡ的功能受到负面影响.城区大叶黄杨叶片荧光参数的变化,从微观机制上表明城区环境中污染物浓度的上升导致叶绿素及叶绿体光合结构受损的确是叶片光合能力下降的主要原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号