首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrophoretic variant of the enzyme inosine triphosphatase was found by screening inbred strains of mice. Strains with the slower-migrating variant include BALB/cJ, DBA/1J, and PL/J. The Itp locus was mapped between the -2-microglobulin (B2m) and the agouti (a) loci on chromosome 2. The mapping of Itp on chromosome 2 identifies a chromosomal segment that has been conserved since the divergence of lineages leading to mouse and man.This work was supported by Grants GM18684 and CA33093 from the National Institutes of Health. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

2.
Three alleles at the Gpt-1 (glutamic-pyruvic transaminase-1) locus in the mouse, as identified by electrophoresis on cellulose acetate, and their distribution among inbred mouse strains and wild stocks are described. The Gpt-1 locus was shown to control the soluble form of the enzyme. Three-point linkage analysis established the location of Gpt-1 on chromosome 15 between uw and bt. In addition, a new staining procedure is described that allows the visualization of GPT activity on gels by the deposition of formazan. This is an improvement over previous methods that produced bands of nonfluorescence against a fluorescent background.This investigation was supported in part by Research Grant GM 20919 from the National Institute of General Medical Sciences, and by contract NO1-ES-4-2159 with the National Institute of Environmental Health Sciences. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

3.
A method for detecting two alleles at Np-1 (nucleoside phosphorylase) and three alleles at Es-10 (esterase 10) from mouse blood by cellulose acetate electrophoresis is described. The allelic constitution at these loci for 44 inbred strains and stocks was determined. The location of Np-1 on chromosome 14 was established by backcross experiments in which alleles at Np-1 and Robertsonian translocations were segregating. Es-10 was shown to be linked to Np-1, and the following genetic map of Chr 14 was constructed: centromere-(8.9±4.0 cM)-[Np-1, Wc]-(10.2±1.9 cM)-Es-10-(15.5±3.7 cM)-s. The homologous human loci, NP and ES-D, are not linked.This work was supported by Contract E(11-1)-3267 with the Energy Research and Development Administration, by Contracts NO1-ES4-2156 and NO1-ES4-2159 with the National Institute of Environmental Health Sciences, and by Grants GM 19656 and GM 20919 from the National Institute of General Medical Sciences. D. A. K. was a participant in the 1975 Summer Program for College, Graduate, and Medical Students, which was supported, in part, by the Clark Foundation. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

4.
The Ups locus has been mapped to mouse chromosome 9 in a three-point cross. The observed gene order is centromere-Ups-15-Mpi-1-22-Mod-1. Ups is unlinked to Lv, which encodes the previous enzyme in the heme biosynthesis pathway. Feral mice collected at Skive, Denmark, have been characterized at several biochemical loci; multiple differences from inbred strains make this a useful stock for linkage analysis.Supported by USPHS Grants GM 24872 and GM 19521.  相似文献   

5.
The sensitivity and accuracy of our previously reported transferase assay (Russell and DeMars, 1967) can be increased by lowering the pH during the chromatographic separation of the reaction product. This modification does not alter the quantitative nature of the assay.Paper # 1151 from the Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin. This work was supported by the National Institutes of Health (Grants GM 08217, GM 389, and GM 06903).  相似文献   

6.
Search for structural variants of three globin chains (x, y, z), synthesized only during mouse embryonic hematopoiesis, was carried out by electrophoretic analysis of blood from 12-day embryos, all with C57BL/6 mothers, and fathers from 115 inbred stocks selected for their diverse genetic origins. Structure of the -chains of adult hemoglobins differed among the tested strains, with 57 carrying the Hbb sallele, 56 the Hbb dallele, and two the Hbb pallele. The search revealed no x- or z-chain variants but confirmed and extended knowledge of a previously described y-chain variant. Blood of all embryos sired by males from the 57 Hbb sstrains contained only y1-chains, while blood of all embryos sired by Hbb dor Hbb pmales contained y2-chains as well as the y1-chains inherited from their C57 BL/6 mother. The locus controlling structure of the y-chain of mouse embryonic hemoglobins is thus extremely closely linked to the locus controlling structure of adult hemoglobin -chain, with maximum possible recombination frequency less than 0.019.This work was supported in part by Grants CA-01074 from the National Cancer Institute, USPHS, and GM 18684 from the National Institute of General Medical Sciences, in part by Grant ACS-VC58 from The American Cancer Society, in part by grants to the Jackson Laboratory from the Bushrod H. Campbell and Adah F. Hall Charity Fund and the Robert Sterling Clark Foundation, and in part by the Jackson Laboratory Endowment Fund. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

7.
The linkage of the locus for conversion of albumin (Acf-1) has been established on chromosome 1 with the following gene order and recombination percentages: Id-1 19.3±5.2% Acf-1 4.2±1.7% Dip-1 18.4±4.2% Lp.This work was supported by NIH Postdoctoral Fellowship 1F32 GM0527701, Grant BMS75-03397 from the National Science Foundation, Grant ACS VC-17-R from the American Cancer Society, and Contract NO1-ES42159 from the National Institute of Environmental Health Sciences. The Jackson Laboratory is fully accredited by the American Association for the Accreditation of Laboratory Animal Care.  相似文献   

8.
Chun YJ  Kim DI  Park KW  Kim HJ  Jeong SC  An JH  Cho KH  Back K  Kim HM  Kim CG 《Planta》2011,233(4):807-815
Gene flow from genetically modified (GM) crops to non-GM cultivars or weedy relatives may lead to the development of more aggressive weeds. We quantified the amount of gene flow from herbicide-tolerant GM rice (Protox GM, derived from the cultivar Dongjin) to three cultivars (Dongjin, Aranghyangchal and Hwaseong) and a weedy rice line. Gene flow frequency generally decreased with increasing distance from the pollen donor. At the shortest distance (0.5 m), we observed a maximum frequency (0.039%) of gene flow. We found that the cultivar Dongjin received the greatest amount of gene flow, with the second being weedy rice. Heterosis of F2 inbred progeny was also examined between Protox GM and weedy rice. We compared growth and reproduction between F2 progeny (homozygous or hemizygous for the Protox gene) and parental rice lines (GM and weedy rice). Here, transgene-homozygous F2 progeny was significantly taller and produced more seeds than the transgene-hemizygous F2 progeny and parental lines. Although the gene flow frequency was generally low, our results suggest that F2 progeny between GM and weedy relatives may exhibit heterosis.  相似文献   

9.
Hybrids with low grain moisture (GM) at harvest are specially required in mid- to short-season environments. One of the most important factors determining this trait is field grain drying rate (FDR). To produce hybrids with low GM at harvest, inbred lines can be obtained through selection for either GM or FDR. Thus, a single-cross population (181 F 2:3-generation plants) of two divergent inbred lines was evaluated to locate QTL affecting GM at harvest and FDR as a starting point for marker assisted selection (MAS). Moisture measurements were made with a hand-held moisture meter. Detection of QTL was facilitated with interval mapping in one and two dimensions including an interaction term, and a genetic linkage map of 122 SSR loci covering 1,557.8 cM. The markers were arranged in ten linkage groups. QTL mapping was made for the mean trait performance of the F 2:3 population across years. Ten QTL and an interaction were associated with GM. These QTL accounted for 54.8 and 65.2% of the phenotypic and genotypic variation, respectively. Eight QTL and two interactions were associated with FDR accounting for 35.7 and 45.2% of the phenotypic and genotypic variation, respectively. Two regions were in common between traits. The interaction between QTL for GM at harvest had practical implications for MAS. We conclude that MAS per se will not be an efficient method for reducing GM at harvest and/or increasing FDR. A selection index including both molecular marker information and phenotypic values, each appropriately weighted, would be the best selection strategy.  相似文献   

10.
A genetic locus controlling the electrophoretic mobility of an acid phosphatase in mouse kidney is described. This locus, called acid phosphatase-kidney (Apk), is not expressed in erythrocytes, liver, spleen, heart, lung, brain, skeletal muscle, stomach, or testes. The product of Apk hydrolyzes the substrate naphthol AS-MX phosphoric acid but is not active on a-naphthylphosphate or 4-methylumbelliferylphosphate. It is not inactivated by 50 C for 1 hr, nor is its electrophoretic mobility altered by incubation with neuraminidase. The locus is invariant among 31 inbred strains (Apk a), with a variant allele (Apk m) observed only in Mus musculus molossinus. Codominant expression was observed in F1 hybrids of M. m. molossinus and inbred strains. Apk was mapped on Chr 10, near the neurological mutant waltzer (v).This work was supported by Contract NO1-ES42159 from the National Institute of Environmental Health Sciences and by Grant 1-476 from the National Foundation—March of Dimes. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

11.
Mouse kidney histidine decarboxylase (HDC) provides a model system to study genetic control of a hormone-regulated enzyme (inducible by estrogen and thyroxine; repressible by testosterone). Five major HDC phenotypes scored on the basis of (i) enzyme activity and (ii) the difference in activity between the sexes (females usually higher than males) have been discovered by screening 38 strains of mice. One genetic difference between high-activity strains (DBA/2 and C3H/He) and low-activity strains (C57BL/6 and C57BL/10) has been examined in detail. The phenotypic difference segregates as a single gene in both conventional crosses and between recombinant inbred (RI) strains. Immunoprecipitation has shown that the activity difference is due to an alteration in the number of enzyme molecules. The phenotypic difference between high and low strains can therefore be attributed to different alleles of a single regulatory locus, Hdc; the alleleHdc d determines low HDC concentration, and the allele Hdc d high concentration. Hdc has been mapped to chromosome 2 using data from both comparisons of strain distribution patterns of previously mapped loci within RI strains and a conventional three-point cross. The probable gene order is B2m-pa-Hdc, with map distances of 3.1±1.7 and 2.0±1.4 cM, respectively.This work was supported by an MRC project grant to Grahame Bulfield, an SERC research studentship to S. A. M. Martin, and NIH Research Grant GM 18684 from the National Institute of General Medical Sciences to B. A. Taylor. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory animal care.  相似文献   

12.
The ganglioside patterns in the liver of different inbred and hybrid strains of mice were investigated. The inbred strains were Balb/cAnNCr1BR, C57BL/6NCr1BR, DBA/2NCr1BR. C3H/HeNCr1BR; the hybrid strain was the Swiss albino. The following major gangliosides were found to be present in mouse liver: GM3-NeuAc; GM3-NeuGl, GM2 [a mixture of one species carrying N-acetylneuraminic acid (NeuAc) and one carrying N-glycollylneuraminic acid (NeuGl)], GM1 and GD1a-(NeuAc,NeuGl). The qualitative and quantitative patterns of liver gangliosides were markedly different in the various inbred strains of mice; in Balb/cAnNCr1BR strain, ganglioside GM2 was preponderant (99.2% of total ganglioside content); in C57BL/6NCr1BR, the major ganglioside was GM2 (90.4%), followed by GM3-NeuAc (5.6%) and GM3-NeuGl (4.0%); in DBA/2NCr1BR, GM2 accounted for 77.1%, GD1a-(NeuAc,NeuGl) 18.9% and GM1 3.1% of gangliosides; in C3H/HeNCr1BR, GM2 constituted 50.6%, GM1 22.8% and GD1a-(NeuAc,NeuGl) 22.1%. In the hybrid Swiss albino mice, liver ganglioside composition markedly varied from one animal to another, GM3-NeuGl, GM2 and GD1a-(NeuAc,NeuGl) being the predominant gangliosides in the various cases.  相似文献   

13.
Genes for serum amyloid A proteins map to Chromosome 7 in the mouse   总被引:10,自引:0,他引:10  
Summary Several restriction fragment length variants have been detected among inbred strains using a mouse serum amyloid A cDNA clone. Five variants were shown to segregate as a single genetic unit and were mapped to Chromosome 7 between the glucose phosphate isomerase locus (Gpi-1) and the pink eye dilution locus (p) using recombinant inbred and congenic strains. The finding that no major MspI or BclI restriction fragments were shared between digests of DNAs from a Chromosome 7 congenic strain and its inbred partner, indicate that most, and probably all, sequences detected with the probe are clustered on Chromosome 7. Aneuploid mapping was used to show that the serum amyloid A gene complex (Saa) is proximal to the Chromosome 7 breakpoint in T(7;X)1Ct, a translocation in which the middle third of Chromosome 7 is inserted into the X-chromosome. A survey of inbred strains revealed a single common Saa haplotype and eight rare haplotypes. The complex distribution of 14 different variants suggests that recombination may have played a role in haplotype evolution.This work was supported by grants GM18684 and CA33093 from the National Institute of General Medical Sciences and the National Cancer Institute, respectively.  相似文献   

14.
An electrophoretically detectable variant of pyruvate kinase (EC 2.7.1.40) has been found in the house mouse Mus musculus. The variant was seen in all tissues examined except liver and red cells. The gene (Pk-3) determining this electrophoretic variation is inherited as an autosomal codominant located on chromosome 9. Our data confirm that the genetic determination of pyruvate kinase in liver and red cells is separate from that in other tissues. In addition, our results indicate that the muscle (M1) and kidney (M2) pyruvate kinase isozymes share at least one genetic determinant and may in fact be determined by the same structural gene.This work was supported by the Medical Research Council and by NIH Grants GM 20919 and RR 01183. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

15.
A metabolic screening program of inbred strains of mice has detected a marked organic aciduria in the BALB/cByJ strain. Gas chromatographic and mass spectrometric analysis identified large quantities ofn-butyrylglycine plus lesser quantities of ethylmalonic acid. Crosses with the nonexcreting C57BL/6J strain indicate that this condition is inherited as an autosomal recessive trait. Independently from this screening a variant with no detectable enzyme activity of butyryl CoA dehydrogenase (BCD) in liver and kidney of the BALB/cByJ strain but not other BALB/c sublines was discovered. Data from a three-point cross indicated that the null variant maps to the structural locus for the enzyme,Bcd-1, on chromosome 5. The findings indicate that a mutation at or nearBcd-1 in the BALB/cByJ strain resulted in a biochemical abnormality manifest as the BCD deficiency. It is concluded that accumulation of butyryl CoA due to a block in the oxidation of short-chain fatty acids results in an overproduction of organic metabolites leading to the observed organic aciduria. The fact that other BALB/c substrains do not exhibit this abnormality further suggests that this disorder reflects subline divergence within the BALB/c family.This work was supported by NIH Grants RR02512 and GM32592 to the University of Pennsylvania and HD23168, NS17752, and HD08536 to the Children's Hospital of Philadelphia, National Science Foundation Grant BSR 84-18828 to The Jackson Laboratory, and a Postdoctoral Fellowship from the Juvenile Diabetes Foundation International to Dr. Prochazka.  相似文献   

16.
Here, we show that differences between genetically modified (GM) and non‐GM comparators cannot be attributed unequivocally to the GM trait, but arise because of minor genomic differences in near‐isogenic lines. Specifically, this study contrasted the effect of three GM traits (drought tolerance, MON 87460; herbicide resistance, NK603; insect protection, MON 89034) on maize grain composition relative to the effects of residual genetic variation from backcrossing. Important features of the study included (i) marker‐assisted backcrossing to generate genetically similar inbred variants for each GM line, (ii) high‐resolution genotyping to evaluate the genetic similarity of GM lines to the corresponding recurrent parents and (iii) introgression of the different GM traits separately into a wide range of genetically distinct conventional inbred lines. The F1 hybrids of all lines were grown concurrently at three replicated field sites in the United States during the 2012 growing season, and harvested grain was subjected to compositional analysis. Proximates (protein, starch and oil), amino acids, fatty acids, tocopherols and minerals were measured. The number of statistically significant differences (α = 0.05), as well as magnitudes of difference, in mean levels of these components between corresponding GM variants was essentially identical to that between GM and non‐GM controls. The largest sources of compositional variation were the genetic background of the different conventional inbred lines (males and females) used to generate the maize hybrids and location. The lack of any compositional effect attributable to GM suggests the development of modern agricultural biotechnology has been accompanied by a lack of any safety or nutritional concerns.  相似文献   

17.
Summary Monokaryotic fruiting is used as a tool to study mushroom development and differentiation in Schizophyllum commune. This paper reports data which further elucidate the genetic control of the monokaryotic fruiting response to mechanical injury. Models relating the various genes implicated in monokaryotic fruiting body production are proposed and evaluated on their ability to explain the observed data. A minimum estimate is made of the number of genes involved in the initiation of monokaryotic fruiting in response to mechanical injury.Paper # 2260 from the Laboratory of Genetics, University of Wisconsin, Madison. Wisconsin 53706, USASupported in part by the College of Agriculture and Life Sciences, University of Wisconsin and by NIH Predoctoral Training Grant # GM 07133 to the Laboratory of Genetics, University of Wisconsin  相似文献   

18.
Five laboratory procedures: 1) immunodiffusion, 2) immunofluorescence, 3) in vitro hair perforation, 4) pigment stimulation, and 5) a urease test were compared for their ability to differentiateT. rubrum fromT. mentagrophytes. Of the physiological tests, thein vitro hair perforation technique was the most reliable for differentiating the two species. With the serological tests, the organisms were not differentiated by immunodiffusion, but if appropriate dilutions of the conjugates were used in immunofluorescence testing, most isolates could be differentiated.A portion of a Dissertation submitted by the senior author to the University of North Carolina in partial fulfillment of the requirements for the degree of Doctor of Public Health in the School of Public Health. Training was provided by the Laboratory Director's Program which is supported by Training Grant TO1 GM 00567-07 from the National Institute of General Medical Sciences, National Institutes of Health, United States Public Health Service. The laboratory research was performed at the Laboratory Division, Center for Disease Control, under the supervision of William Kaplan.  相似文献   

19.
Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse   总被引:4,自引:0,他引:4  
Summary We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found forLamB2 and two forLamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 betweenSas-1 andLy-m22, 7.4±3.2 cM distal to thePep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins. This work was supported by U. S. Public Health Service Grant GM28464 to R.W.E. Editor's Statement Investigation into the biosynthesis of laminin indicates that several different polypeptides are assembled to form the intact molecule. This paper represents an extension of previous work which takes a genetic approach to further define the relationships among the polypeptides involved. Gordon H. Sato  相似文献   

20.
Phosphoglucomutase (PGM; EC 2.7.5.1) isozyme variants were studied in a large number of inbred lines, crosses, and races of maize (Zea mays L.). Patterns of Mendelian inheritance demonstrated for PGM isozyme variants indicated that they are encoded by nuclear genes. Two unlinked loci, Pgm1 and Pgm2, located on the long arm of chromosome 1 and the short arm of chromosome 5, respectively, specify the observed electrophoretic variation on starch gels. No intra- or interlocus hybrid bands were found, suggesting that each isozyme band consists of a single polypeptide. PGM isozymes were present in all plant parts studied and the activity specified by both loci appears to reside in the cytoplasm. In studies of 520 racial collections of maize from Latin America, a single allele at each locus predominated in most collections. Likewise, the same alleles predominated in a set of 406 inbred lines of maize from the United States and Canada.This work was supported in part by NIH Research Grant GM 11546.Paper No. 8496 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号