首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
We have developed an intermediate frequency (IF) magnetic field exposure system for in vitro studies. Since there are no previous studies on exposure to heating-frequency magnetic fields generated from an induction heating (IH) cook top, there is a strong need for such an exposure system and for biological studies of IF magnetic fields. This system mainly consists of a magnetic-field-generating coil housed inside an incubator, inside which cultured cells can be exposed to magnetic field. Two systems were prepared to allow the experiment to be conducted in a double-blind manner. The level of the generated magnetic field was set to 532 microT rms in the exposure space, 23 kHz, 80 times the value in the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines, with a spatial field uniformity better than 3.8%. The waveforms were nearly sinusoidal. It was also confirmed that the parasitic electric field was 157 V/m rms and the induced electric field was 1.9 V/m rms. The temperature was maintained at 36.5 +/- 0.5 degrees C for 2 h. Furthermore, leaked magnetic flux density was 0.7 microT rms or lower at extremely low frequency (ELF) and IF in the stopped system when the other system was being operated, and the environmental magnetic flux density was 0.1 microT rms or lower at the center of the coils. As a result, it was confirmed that this system could be successfully used to evaluate the biological effects of exposure to IF magnetic fields.  相似文献   

3.
In a previous article we developed an in vitro 23 kHz magnetic field (MF) exposure system that generated an MF of 532 µTrms. Using this system, the biological effects of 23 kHz MFs on cell functions have been reported. To further clarify the biological effect of intermediate‐frequency (IF) MFs and investigate the dose–response relationship in cell lines, an exposure system that generates stronger MFs is required. To meet this requirement, we developed a 6.25 mTrms MF exposure system for in vitro study. This level is 1000 times the reference level for the general public in the ICNIRP guidelines. This system provides an MF of 6.25 mTrms at 23 kHz with a uniformity within ±5%. To verify that in vitro experimental conditions are maintained, we examined the temperature, environmental MF, and MF leakage for a sham exposure system. In addition, we examined the harmonics, coil shape, and heat generated in the medium by the high‐strength MF. As a result, it was confirmed that this system can be used to evaluate the biological effects of IF MFs. This article presents the design and successful construction of the in vitro exposure system. Bioelectromagnetics 31:156–163, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
Regulated protein biosynthesis in dendrites of neurons might be a key mechanism underlying learning and memory. Neuronal dendritic BC1 RNA and BC200 RNA and similar small untranslated RNAs inhibit protein translation in vitro systems, such as rabbit reticulocyte lysate. Likewise, co-transfection of these RNAs with reporter mRNA suppressed translation levels in HeLa cells. The oligo(A)-rich region of all active small RNAs were identified as the RNA domains chiefly responsible for the inhibitory effects. Addition of recombinant human poly(A)-binding protein (PABP) significantly compensated the inhibitory effect of the small oligo(A)-rich RNA. In vivo, all BC1 RNA appears to be complexed with PABP. Nevertheless, in the micro-environment of dendritic spines of neuronal cells, BC1 RNPs or BC200 RNPs might mediate regulatory functions by differential interactions with locally limited PABP and/or directly or indirectly, with other translation initiation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号