共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Studies on the mechanism of hepatic microsomal N-oxide formation. N-oxidation of NN-dimethylaniline by a reconstituted rabbit liver microsomal cytochrome P-448 enzyme system. 下载免费PDF全文
The N-oxidation of NN-dimethylaniline was studied by using a reconstituted rabbit liver microsomal enzyme system consisting of highly purified cytochrome P-448, NADPH-cytochrome c reductase and lipid factor. Both cytochrome P-448 and NADPH-cytochrome c reductase were required for optimum N-oxygenating activity; the catalytic capacity of the reductase fraction for supporting N-oxide formation varied with the isolation procedure applied. Addition of microsomal lipids to the assay media stimulated N-oxidation of the arylamine. N-Oxide formation appeared to be not generally controlled by electron transfer from cytochrome b5 to cytochrome P-448. The present work confirms that cytochrome P-448 can mediate about 44% of the rabbit liver microsomal N-oxidation of NN-dimethylaniline, thus reinforcing the existence of at least two distinct tertiary amine N-oxidases, i.e. haemoprotein and flavoprotein oxidase, in liver microsomal fractions. 相似文献
3.
Highly purified liver microsomal cytochrome P-450 catalyzes the hydroperoxide-dependent hydroxylation of a variety of substrates in the absence of NADPH, NADPH-cytochrome P-450 reductase, and molecular oxygen. The addition of phosphatidylcholine is necessary for maximal activity. The absence of flavoproteins and cytochrome b5 from the cytochrome P-450 preparations rules out the involvement of other known microsomal electron carriers. The ferrous form of cytochrome P-450 is not involved in peroxide-dependent hydroxylation reactions, as indicated by the lack of inhibition by carbon monoxide. With cumene hydroperoxide present, a variety of substrates is attacked, including N-methylaniline, N,N-dimethylaniline, cyclohexane, benzphetamine, and aminopyrine. With benzphetamine as the substrate, cumene hydroperoxide may be replaced by other peroxides, including hydrogen peroxide, or by peracids or sodium chlorite. A study of the stoichiometry indicated that equimolar amounts of N-methylaniline, formaldehyde, and cumyl alcohol (α,α-dimethylbenzyl alcohol) are formed in the reaction of N,N-dimethylaniline with cumene hydroperoxide. Since H218O is incorporated only slightly into cyclohexanol in the reaction of cyclohexane with cumene hydroperoxide, it appears that the oxygen atom in cyclohexanol is derived primarily from the peroxide. The data obtained are in accord with a peroxidase-like mechanism for the action of cytochrome P-450. 相似文献
4.
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed. 相似文献
5.
6.
7.
Rabbit liver microsomal cytochrome P-450 was immobilized by entrapment in calcium alginate gel. Aminopyrine demethylation experiments showed that the immobilized enzyme system is highly active and exhibits an unimpaired functional stability as compared with crude microsomes. The alginate entrapped microsomes were employed in a fixed bed recirculation reactor, where aminopyrine was continuously demethylated. Such model enzyme reactor can be a useful tool for studying extracorporeal drug detoxification or preparative substrate conversion with microsomal enzyme systems. 相似文献
8.
The regularities of changes in the functional activity of the microsomal monooxygenase system reconstituted by self-assembly from intact rat liver microsomes solubilized with 4% sodium cholate were studied at variable levels of NADPH-cytochrome P-450 reductase and the 3-methylcholanthrene-induced form of cytochrome P-450. Using antibodies against cytochrome P-448, the role of cytochrome P-448 in the overall reaction of benzopyrene hydroxylation induced in the microsomal membrane by a set of molecular forms of cytochrome P-450 was investigated. The effect of NADPH-cytochrome P-450 reductase and cytochrome P-448 incorporation into reconstituted microsomal membranes on benzpyrene metabolism suggests that in intact microsomal membranes benzopyrene metabolism induced by different forms of cytochrome P-450, with the exception of P-448, is limited by reductase is not the limiting component; however, cytochrome P-448 reveals its maximum activity at the cytochrome to reductase optimal molar ratio of 5:1; above this level, the catalytic activity of cytochrome P-448 is lowered. 相似文献
9.
Simple and informative method for the elucidation of de novo synthesized forms of microsomal cytochrome P-448 induced by 3-methylcholanthrene and 2,3,7,8-tetrachlordibenzo-p-dioxine has been developed. The method is based on gel fluorography upon electrophoretic separation of microsomal proteins obtained from the liver of rats pre-treated with the inducers of monooxygenase system components and then with 14C-leucine. At least two forms of cytochrome P-448 (with molecular weight of 56000 and 53000) were shown to be de novo synthesized under the influence of 3-methylcholanthrene and 2,3,7,8-tetrachlodbibenzo-p-dioxine. 相似文献
10.
Spin state transitions of membrane-bound cytochrome P-450 were investigated by difference spectrophotometry using the 'D'-charge transfer absorbance band at 645 nm as a measure of the amount of hemin iron present in the 5-coordinated state. The magnitude of the 'D'-absorbance band in the absence of exogenous substrates, e.g., the concentration of native high spin cytochrome P-450, was evaluated from the difference in absorbance at 645 nm between ferric cytochrome P-450 and the carbon monoxide derivative of the pigment in its ferrous state. The contribution of the native high spin species to the total cytochrome P-450 content of microsomes was calculated to be between 40% and 65% after induction with phenobarbital and polycyclic hydrocarbons, respectively. Up to 80% of the cytochrome P-450 was found to be present in the high spin state after the addition of exogenous substrates. Further, the steady state concentrations of high spin cytochrome P-450, observed in the presence of reduced pyridine nucleotides, suggest that the rate limiting step for microsomal mixed function oxidation reactions is variable and dependent on the substrate under investigation. 相似文献
11.
12.
A partially purified preparation of hepatic cytochrome P-448 from 3-methylcholanthrene treated rats was used to produce antisera in rabbits. Using both Ouchterlony double diffusion and quantitative immunoprecipitation analysis, this antisera was found to be more specific for cytochrome P-448 than for cytochrome P-450 from phenobarbital induced rats. The antisera did not form precipitin bands with the following rat liver microsomal proteins: cytochrome b5, NADH-cytochrome b5 reductase, NADPH-cytochrome c reductase or epoxide hydrase. 相似文献
13.
V L Tsuprun K N Myasoedova P Berndt O N Sograf E V Orlova A I Chernyak VYaArchakov V P Skulachev 《FEBS letters》1986,205(1):35-40
Cytochrome P-450LM2 was isolated from rabbit liver microsomes in a form which was shown to be homogeneous in AcA-22 Ultrogel and ultracentrifugation studies. The molecular mass determined by sedimentation equilibrium roughly corresponded to hexamer composed of 56 kDa monomers. Hexamer structure of the cytochrome was directly demonstrated by electron microscopic study. In the cytochrome P-450LM2 hexamer, monomers seem to be arranged in two layers (three monomers in the layer) in such a way that each monomer occupies a position at the vertices of a triangular antiprism with a 32 point group symmetry. 相似文献
14.
Cytochrome P-450 forms appearing in the liver after injection of methylcholanthrene, polychlorinated biphenyls and perfluorochemical emulsion to rats were studied. Activities of marker enzymes, benzpyrenehydroxylase and 7-ethoxyresorufin-O-deethylase, as well as the interaction of liver microsomal membranes with antibodies against different cytochrome forms were investigated. It was shown that fluorocarbon emulsion containing perfluorodecalin did not induce cytochrome P-448 in the rat liver. 相似文献
15.
V I Popova L M Va?ner I I Gorshkova O A Gromova V V Liakhovich 《Biokhimii?a (Moscow, Russia)》1985,50(1):53-62
The previously described, iodine-labeled alkylating stable nitroxyl radicals located at different distances between the N-O. group and the iodine atom were used for a comparative study of the structure of microsomal cytochromes P-450 and P-448 active centers. The radicals were shown to change the optical spectra of Fe3+ located in the active site of the enzyme that are similar to those induced by cytochrome P-450 substrates. Some differences in the type of the radicals binding to control, phenobarbital- and 3-methylcholanthrene-induced microsomes were revealed. The alkylating radical substrate analogs covalently bound to microsomal cytochrome P-450 in the vicinity of the active center, resulting in the inhibition of oxidation of type I and II substrates (e. g., aniline and naphthalene). The value of the spectral binding constant (Ks) for naphthalene in the presence of the radical covalently bound to the cytochrome P-450 active center showed a tendency to increase. Using the ESR technique, the interaction between Fe3+ and the radical localized in the active site of cytochrome P-450 was demonstrated. The contribution of Fe3+ to the relaxation of the radicals covalently bound to cytochrome P-450 was evaluated from the values of the spin label ESR spectra saturation curves at 77K. The distances between the N-O. group of these radicals and Fe3+ in the enzyme active center for the three types of microsomes were determined. The data obtained point to structural peculiarities of the active center of cytochrome P-450, depending on the microsomal type. 相似文献
16.
The aerobic metabolism of benzphetamine by liver microsomes, during a cytochrome P-450-catalyzed mixed-function oxidation reaction, results in the formation of an easily detected spectral complex with an absorption band maximum at 456 nm. Electron paramagnetic resonance studies, as well as studies with the chemical reductant, sodium dithionite, or the oxidant, potassium ferricyanide, indicate that the spectral complex results from the formation of a product adduct with reduced cytochrome P-450. The spectral properties of this product complex of cytochrome P-450 have been compared to those observed with carbon monoxide, metyrapone, and ethylisocyanide. The reaction of these reagents to specific pools of microsomal cytochrome P-450 permits the identification of at least two major and two minor types of cytochrome P-450 in liver microsomes prepared from phenobarbital-treated rats. 相似文献
17.
For a set of 10 para-substituted toluene derivatives, three enzymatic constants were determined describing their interaction with purified rabbit liver microsomal P-450LM2. The three constants were the catalytic rate constant (Kcat) for hydroxylation, the apparent dissociation constant (Kd) for the enzyme-substrate complex, and the interaction energy (delta Gint) between the substrate-binding and spin-state equilibria. The para-substituents of the toluene substrates were: hydrogen, fluoro, bromo, chloro, iodo, nitro, methyl, cyano, isopropyl, and t-butyl. Linear free energy correlations were sought between the enzymatic constants and several physical constants of the individual substrate molecules. These correlations would be useful both for empirical prediction purposes and for insight into active site chemistry and mechanics. Catalytic rates were correlated by a linear combination of the Hansch pi hydrophobic constant and the Hammett sigma value. A deuterium isotope effect (DV) of 2.6 for d8-toluene compared to d0-toluene confirmed that hydrogen abstraction was partially rate-limiting with this series of substrates. Apparent dissociation constants were predicted by a linear combination of the molar volume and pi, while the spin-state interaction energies were best predicted by a linear combination of the Hansch pi hydrophobic constant and the reciprocal of the dielectric constant. 相似文献
18.
J E Tomaszewski D M Jerina W Levin A H Conney 《Archives of biochemistry and biophysics》1976,176(2):788-798
A radiometric assay for the in vitro metabolism of zoxazolamine has been developed which combines high sensitivity and rapid determination of product. [4,6-3H]zoxazolamine was metabolized to 6-hydroxyzoxazolamine, and the tritium released as 3H2O was determined after treating the incubation mixture with activated charcoal. This treatment efficiently removes labeled substrate (99.98%), permitting enzymatically released tritium to be measured directly in the aqueous medium. Since the preponderant in vitro product of zoxazolamine metabolism by rat liver microsomes and the purified reconstituted mixed function oxidase system is 6-hydroxyzoxazolamine, and since this aryl hydroxylation occurs without significant NIH shift, the subsequent release of tritium from the 6-position accurately represents metabolism of the molecule. The use of [4,6-3H]zoxazolamine for a tritium release assay of mixed function oxidase activity is ideal since this compound shows no significant isotope effect or NIH shift during metabolic conversion to 6-hydroxyzoxazolamine. 3-Methylcholanthrene treatment of rats resulted in a fourfold induction of zoxazolamine hydroxylation while phenobarbital or pregnenolone 16α-carbonitrile pretreatment caused only a 20–50% increase in zoxazolamine metabolism. The use of a purified reconstituted system revealed that cytochrome P-448 from 3-methylcholanthrene-treated rats was approximately 10- to 15-fold more efficient than cytochrome P-450 from phenobarbital-treated rats in catalyzing the hydroxylation of zoxazolamine. 相似文献
19.
Studies on the mechanism of reduction of azo dye carcinogens by rat liver microsomal cytochrome P-450 总被引:1,自引:0,他引:1
This laboratory has described the azoreduction of p-dimethylaminoazobenzene (1c) by rat liver microsomal cytochrome P-450. To elucidate the mechanisms involved, the reduction of structurally related azobenzenes by hepatic microsomes was investigated. High substrate reactivity was observed for 1c, its corresponding secondary (1a) and primary (1b) amines and p-hydroxyazobenzene (1d). In contrast, only negligible rates were obtained for unsubstituted azobenzene (1g), hydrazobenzene (2g), p-isopropylazobenzene (1e) and 1f, the benzoylamide derivative of 1b. These results clearly indicate that electron-donating groups, such as hydroxyl or primary, secondary and tertiary amines, are essential for binding of azo dye carcinogens to liver microsomal cytochrome P-450 and, by implication, their enzymic reduction. No inhibition of azoreduction of 1c or 1d was obtained by addition of 1e, 1g, or 2g to the reaction mixture. In the presence of hepatic microsomes, a type I binding spectrum was obtained for 1d and type II binding spectra for 1a, 1b and 1c, the reactive azo dyes. In contrast, very weak binding was observed for the unreactive compounds 1e, 1f, 1g and 2g. Thus, there is good correlation between binding and substrate reactivity. The apparent lack of binding may explain the inability of the non-reactive compounds to inhibit azoreduction. The difference in the reduction rate observed for 1g vs. 1d suggested that hydroxylation would facilitate the reduction of an otherwise non-reactive azo dye. Support for such a mechanism was obtained in two experiments. In the first, marked facilitation of azoreduction of both the inactive compounds, 2g and 2f, was seen when they were incubated with microsomes under aerobic conditions where preliminary hydroxylation can occur. In the second, azobenzene was initially incubated aerobically with microsomes from phenobarbital- or beta-naphthoflavone-induced rats. The hydroxyazobenzene formed was then readily reduced anaerobically by microsomes from untreated rats. 相似文献
20.
D Ryan Y H Lu J Kawalek S B West L Levin 《Biochemical and biophysical research communications》1975,64(4):1134-1141
Cytochrome P-448 from 3-methylcholanthrene-treated rats has been purified to a specific content of greater than 20 nmoles/mg protein, and cytochrome P-450 from phenobarbital-treated rats to greater than 17 nmoles/mg protein. Both cytochromes are catalytically active when reconstituted with lipid and NADPH-cytochrome c reductase and exhibit differential substrate specificities for benzphetamine and benzo[a]pyrene. Cytochrome P-448 has a minimum molecular weight of approximately 53,000, and cytochrome P-450, 48,000 by SDS polyacrylamide gel electrophoresis. 相似文献