首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of arrestin binding by rhodopsin phosphorylation level   总被引:1,自引:0,他引:1  
Arrestins ensure the timely termination of receptor signaling. The role of rhodopsin phosphorylation in visual arrestin binding was established more than 20 years ago, but the effects of the number of receptor-attached phosphates on this interaction remain controversial. Here we use purified rhodopsin fractions with carefully quantified content of individual phosphorylated rhodopsin species to elucidate the impact of phosphorylation level on arrestin interaction with three biologically relevant functional forms of rhodopsin: light-activated and dark phosphorhodopsin and phospho-opsin. We found that a single receptor-attached phosphate does not facilitate arrestin binding, two are necessary to induce high affinity interaction, and three phosphates fully activate arrestin. Higher phosphorylation levels do not increase the stability of arrestin complex with light-activated rhodopsin but enhance its binding to the dark phosphorhodopsin and phospho-opsin. The complex of arrestin with hyperphosphorylated light-activated rhodopsin is less sensitive to high salt and appears to release retinal faster. These data suggest that arrestin likely quenches rhodopsin signaling after the third phosphate is added by rhodopsin kinase. The complex of arrestin with heavily phosphorylated rhodopsin, which appears to form in certain disease states, has distinct characteristics that may contribute to the phenotype of these visual disorders.  相似文献   

2.
N Bennett  A Sitaramayya 《Biochemistry》1988,27(5):1710-1715
The inactivation of excited rhodopsin in the presence of ATP, rhodopsin kinase, and/or arrestin has been studied from its effect on the two subsequent steps in the light-induced enzymatic cascade: metarhodopsin II catalyzed activation of G-protein and G-protein-dependent activation of cGMP phosphodiesterase. The inactivation of G-protein (from light-scattering measurements) and that of phosphodiesterase (from measurements of cGMP hydrolysis) have been studied and compared in reconstituted systems containing various combinations of the proteins involved (rhodopsin, G-protein, phosphodiesterase, kinase, and arrestin). Our results show that rhodopsin kinase alone can terminate the activation of G-protein and that arrestin speeds up the process at a relative concentration similar to that reported in the rod (half-maximal effect at 50 nM for 4.4 microM rhodopsin). Measurements of rhodopsin phosphorylation under identical conditions show that in the presence of arrestin total metarhodopsin II inactivation is achieved when only 0.5-1.4 phosphates are bound per bleached rhodopsin, whereas in the absence of arrestin it requires binding of 12-16 phosphates per bleached rhodopsin. Phosphodiesterase activity can similarly be turned off by kinase, and the process is similarly accelerated by arrestin.  相似文献   

3.
Photoactivated rhodopsin is quenched upon its phosphorylation in the reaction catalyzed by rhodopsin kinase and the subsequent binding of a regulatory protein, arrestin. We have found that heparin and other polyanions compete with photoactivated, phosphorylated rhodopsin to bind arrestin (48-kDa protein, S-antigen). This is shown (a) by the suppression of stabilized metarhodopsin II; (b) by changes in the digestion of arrestin in the presence of heparin; and (c) by the restoration of arrestin-quenched phosphodiesterase activity. When bound to arrestin, heparin also mimics phosphorylated rhodopsin by similarly exposing arrestin to limited proteolysis. We conclude that heparin and rhodopsin have similar means of binding to arrestin, and we propose a cationic region of arrestin (beginning with Lys163 of the bovine sequence) as the interaction site. In agreement with previous kinetic data we interpret the results in terms of a binding conformation of arrestin which is stabilized by rhodopsin or heparin and is open to proteolytic attack.  相似文献   

4.
The binding of arrestin to rhodopsin is initiated by the interaction of arrestin with the phosphorylated rhodopsin C-terminus and/or the cytoplasmic loops, followed by conformational changes that expose an additional high-affinity site on arrestin. Here we use an arrestin mutant (R175E) that binds similarly to phosphorylated and unphosphorylated, wild-type rhodopsin to identify rhodopsin elements other than C-terminus important for arrestin interaction. R175E-arrestin demonstrated greatly reduced binding to unphosphorylated cytoplasmic loop mutants L72A, N73A, P142A and M143A, suggesting that these residues are crucial for high-affinity binding. Interestingly, when these rhodopsin mutants are phosphorylated, R175E-arrestin binding is less severely affected. This effect of phosphorylation on R175E-arrestin binding highlights the co-operative nature of the multi-site interaction between arrestin and the cytoplasmic loops and C-terminus of rhodopsin. However, a combination of any two mutations disrupts the ability of phosphorylation to enhance binding of R175E-arrestin. N73A, P142A and M143A exhibited accelerated rates of dissociation from wild-type arrestin. Using sensitivity to calpain II as an assay, these cytoplasmic loop mutants also demonstrated reduced ability to induce conformational changes in arrestin that correlated with their reduced ability to bind arrestin. These results suggest that arrestin bound to rhodopsin is in a distinct conformation that is co-ordinately regulated by association with the cytoplasmic loops and the C-terminus of rhodopsin.  相似文献   

5.
The structural and functional properties of arrestin were studied by subjecting the protein to limited proteolysis. Limited proteolysis by trypsin cleaves arrestin (48 kDa), producing 20-25-kDa fragments. Prior to this stage of proteolysis, trypsin produced 46.6-, 45.4-, and 42-kDa fragments. Structural analysis of the proteolytic fragments demonstrated major cleavage at the carboxyl terminus, indicating that the carboxyl terminus is highly exposed. We found that forms of arrestin truncated at their carboxyl terminus maintained their functional properties and bound to phosphorylated rhodopsin. Native arrestin binds only to photoexcited phosphorylated rhodopsin, whereas the truncated arrestin binds to phosphorylated rhodopsin independent of its exposure to light. The truncated forms of arrestin were separated from native arrestin by a chromatographic procedure and subsequently characterized in functional studies. The binding of the truncated forms of arrestin to phosphorylated photoexcited rhodopsin is more tight than the binding of native arrestin as determined by a direct binding assay and the phosphodiesterase assay. We suggest that the acidic carboxyl-terminal region of arrestin may act as a regulator for light-dependent binding to phosphorylated rhodopsin.  相似文献   

6.
The sulfhydryl groups of the three cysteines in bovine arrestin react with DTNB very slowly (over a period of several hours). In the presence of the synthetic phosphopeptide comprising the fully phosphorylated carboxyl-terminal 19 amino acids of bovine rhodopsin, the reactivity of one of the sulfhydryls was enhanced while that of another was greatly reduced. Since this synthetic peptide was shown to activate arrestin with respect to its binding to unphosphorylated, light-activated rhodopsin, the reactivity of the sulfhydryl groups of a constitutively active R175Q arrestin mutant was examined. All three of the sulfhydryl groups of the mutant arrestin R175Q reacted rapidly with DTNB, but not as rapidly as with SDS-denatured arrestin. The arrestin mutant R175Q bound to light-activated, unphosphorylated rhodopsin in ROS disk membranes. The arrestin mutant R175Q also inhibited the light-activated PDE activity with an IC50 of 1.3 microM under the experimental conditions that were used. These data indicate that each of these forms of arrestin is a different conformation. The activated conformation of arrestin that binds to phosphorylated rhodopsin in vivo may be yet another conformation. We conclude that arrestin is a flexible molecule that is able to attain several different conformations, all of which are able to attain the activated functional state of arrestin.  相似文献   

7.
Phosphorylation of activated G-protein-coupled receptors and the subsequent binding of arrestin mark major molecular events of homologous desensitization. In the visual system, interactions between arrestin and the phosphorylated rhodopsin are pivotal for proper termination of visual signals. By using high resolution proton nuclear magnetic resonance spectroscopy of the phosphorylated C terminus of rhodopsin, represented by a synthetic 7-phosphopolypeptide, we show that the arrestin-bound conformation is a well ordered helix-loop structure connected to rhodopsin via a flexible linker. In a model of the rhodopsin-arrestin complex, the phosphates point in the direction of arrestin and form a continuous negatively charged surface, which is stabilized by a number of positively charged lysine and arginine residues of arrestin. Opposite to the mostly extended structure of the unphosphorylated C-terminal domain of rhodopsin, the arrestin-bound C-terminal helix is a compact domain that occupies a central position between the cytoplasmic loops and occludes the key binding sites of transducin. In conjunction with other binding sites, the helix-loop structure provides a mechanism of shielding phosphates in the center of the rhodopsin-arrestin complex and appears critical in guiding arrestin for high affinity binding with rhodopsin.  相似文献   

8.
Visual arrestin plays an important role in regulating light responsiveness via its ability to specifically bind to the phosphorylated and light-activated form of rhodopsin. To further characterize rhodopsin/arrestin interactions we have utilized a rabbit reticulocyte lysate translation system to synthesize bovine visual arrestin. The translated arrestin (404 amino acids) was demonstrated to be fully functional in terms of its ability to specifically recognize and bind to phosphorylated light-activated rhodopsin (P-Rh*). Competitive binding studies revealed that the in vitro synthesized arrestin and purified bovine visual arrestin had comparable affinities for P-Rh*. In an effort to assess the functional role of different regions of the arrestin molecule, two truncated arrestin mutants were produced by cutting within the open reading frame of the bovine arrestin cDNA with selective restriction enzymes. In vitro translation of the transcribed truncated mRNAs resulted in the production of arrestins truncated from the carboxyl terminus. The ability of each of the mutant arrestins to bind to dark (Rh), light-activated (Rh*), dark phosphorylated (P-Rh), and light-activated phosphorylated rhodopsin were then compared. Arrestin lacking 39 carboxyl-terminal residues binds specifically not only to P-Rh* but also to Rh* and P-Rh. This suggests that the carboxyl-terminal domain of arrestin plays an important regulatory role in ensuring strict arrestin binding selectivity to P-Rh*. Arrestin that has only the first 191 amino-terminal residues predominately discriminates the phosphorylation state of the rhodopsin; however, it also retains some binding specificity for the activation state. These results suggest that the amino-terminal half of arrestin contains key rhodopsin recognition sites responsible for interaction with both the phosphorylated and light-activated forms of rhodopsin.  相似文献   

9.
Arrestins quench the signaling of a wide variety of G protein-coupled receptors by virtue of high-affinity binding to phosphorylated activated receptors. The high selectivity of arrestins for this particular functional form of receptor ensures their timely binding and dissociation. In a continuing effort to elucidate the molecular mechanisms responsible for arrestin's selectivity, we used the visual arrestin model to probe the functions of its N-terminal beta-strand I comprising the highly conserved hydrophobic element Val-Ile-Phe (residues 11-13) and the adjacent positively charged Lys(14) and Lys(15). Charge elimination and reversal in positions 14 and 15 dramatically reduce arrestin binding to phosphorylated light-activated rhodopsin (P-Rh*). The same mutations in the context of various constitutively active arrestin mutants (which bind to P-Rh*, dark phosphorylated rhodopsin (P-Rh), and unphosphorylated light-activated rhodopsin (Rh*)) have minimum impact on P-Rh* and Rh* binding and virtually eliminate P-Rh binding. These results suggest that the two lysines "guide" receptor-attached phosphates toward the phosphorylation-sensitive trigger Arg(175) and participate in phosphate binding in the active state of arrestin. The elimination of the hydrophobic side chains of residues 11-13 (triple mutation V11A, I12A, and F13A) moderately enhances arrestin binding to P-Rh and Rh*. The effects of triple mutation V11A, I12A, and F13A in the context of phosphorylation-independent mutants suggest that residues 11-13 play a dual role. They stabilize arrestin's basal conformation via interaction with hydrophobic elements in arrestin's C-tail and alpha-helix I as well as its active state by interactions with alternative partners. In the context of the recently solved crystal structure of arrestin's basal state, these findings allow us to propose a model of initial phosphate-driven structural rearrangements in arrestin that ultimately result in its transition into the active receptor-binding state.  相似文献   

10.
Gibson SK  Parkes JH  Liebman PA 《Biochemistry》2000,39(19):5738-5749
Reduced effector activity and binding of arrestin are widely accepted consequences of GPCR phosphorylation. However, the effect of receptor multiphosphorylation on G protein activation and arrestin binding parameters has not previously been quantitatively examined. We have found receptor phosphorylation to alter both G protein and arrestin binding constants for light-activated rhodopsin in proportion to phosphorylation stoichiometry. Rod disk membranes containing different average receptor phosphorylation stoichiometries were combined with G protein or arrestin, and titrated with a series of brief light flashes. Binding of G(t) or arrestin to activated rhodopsin augmented the 390 nm MII optical absorption signal by stabilizing MII as MII.G or MII.Arr. The concentration of active arrestin or G(t) and the binding constant of each to MII were determined using a nonlinear least-squares (Simplex) reaction model analysis of the titration data. The binding affinity of phosphorylated MII for G(t) decreased while that for arrestin increased with each added phosphate. G(t) binds more tightly to MII at phosphorylation levels less than or equal to two phosphates per rhodopsin; at higher phosphorylation levels, arrestin binding is favored. However, arrestin was found to bind much more slowly than G(t) at all phosphorylation levels, perhaps allowing time for phosphorylation to gradually reduce receptor-G protein interaction before arrestin capping of rhodopsin. Sensitivity of the binding constants to ionic strength suggests that a strong membrane electrostatic component is involved in both the reduction of G(t) binding and the increase of arrestin binding with increasing rhodopsin phosphorylation.  相似文献   

11.
Ascano M  Robinson PR 《Biochemistry》2006,45(7):2398-2407
Deactivation of the vertebrate photopigment rhodopsin is achieved through a two-step process. Rhodopsin is first phosphorylated by rhodopsin kinase and subsequently deactivated by the binding of the regulatory protein arrestin or its splice variant, p44. Although much is known about the overall differences between arrestin and p44 binding to different rhodopsin species (photolyzed versus unphotolyzed and/or phosphorylated versus unphosphorylated), the exact role of p44 during phototransduction remains to be fully elucidated. Our current study addresses this question by identifying structural differences between arrestin and p44 and characterizing the interaction between the negatively charged rhodopsin tail and either p44 or arrestin. Our results demonstrate that arrestin and p44 bind differently to different phosphorylated rhodopsin species and that this may be due to a structural difference between p44's and arrestin's basal states. This difference offers a potential regulatory mechanism that could regulate p44 and arrestin binding and, as a result, regulate the kinetics of the rod's light response.  相似文献   

12.
Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin   总被引:5,自引:0,他引:5  
Raman D  Osawa S  Weiss ER 《Biochemistry》1999,38(16):5117-5123
The binding of arrestin to rhodopsin is a multistep process that begins when arrestin interacts with the phosphorylated C terminus of rhodopsin. This interaction appears to induce a conformational change in arrestin that exposes a high-affinity binding site for rhodopsin. Several studies in which synthetic peptides were used have suggested that sites on the rhodopsin cytoplasmic loops are involved in this interaction. However, the precise amino acids on rhodopsin that participate in this interaction are unknown. This study addresses the role of specific amino acids in the cytoplasmic loops of rhodopsin in binding arrestin through the use of site-directed mutagenesis and direct binding assays. A series of alanine mutants within the three cytoplasmic loops of rhodopsin were expressed in HEK-293 cells, reconstituted with 11-cis-retinal, prephosphorylated with rhodopsin kinase, and examined for their ability to bind in vitro-translated, 35S-labeled arrestin. Mutations at Asn-73 in loop I as well as at Pro-142 and Met-143 in loop II resulted in dramatic decreases in the level of arrestin binding, whereas the level of phosphorylation by rhodopsin kinase was similar to that of wild-type rhodopsin. The results indicate that these amino acids play a significant role in arrestin binding.  相似文献   

13.
The deactivation of the bovine G-protein-coupled receptor, rhodopsin, is a two-step process consisting of the phosphorylation of specific serine and threonine residues in the cytoplasmic tail of rhodopsin by rhodopsin kinase. Subsequent binding of the regulatory protein arrestin follows this phosphorylation. Previous results find that at least three phosphorylatable sites on the rhodopsin tail (T340) and at least two of the S338, S334, or S343 sites are needed for complete arrestin-mediated deactivation. Thus, to elucidate the details of the interaction between rhodopsin with arrestin, we have employed both a computational and an in vitro experimental approach. In this work, we first simulated the interaction of the carboxy tail of rhodopsin with arrestin using a Monte Carlo simulated annealing method. Since at this time phosphorylation of specific serines and threonines is not possible in our simulations, we substitute either aspartic or glutamic acid residues for the negatively charged phosphorylated residues required for binding. A total of 17 simulations were performed and analysis of this shows specific charge-charge interactions of the carboxy tail of rhodopsin with arrestin. We then confirmed these computational results with assays of comparable constructed rhodopsin mutations using our in vitro assay. This dual computational/experimental approach indicates that sites S334, S338, and T340 in rhodopsin and K14 and K15 on arrestin are indeed important in the interaction of rhodopsin with arrestin, with a possible weaker S343 (rhodopsin)/K15 (arrestin) interaction.  相似文献   

14.
Bakshi K  Mercier RW  Pavlopoulos S 《FEBS letters》2007,581(25):5009-5016
Desensitization of the cannabinoid CB1 receptor is mediated by the interaction with arrestin. In this study, we report the structural changes of a synthetic diphosphorylated peptide corresponding to residues 419-439 of the CB1 C-terminus upon binding to arrestin-2. This segment is pivotal to the desensitization of CB1. Using high-resolution proton NMR, we observe two helical segments in the bound peptide that are separated by the presence a glycine residue. The binding we observe is with a diphoshorylated peptide, whereas a previous study reported binding of a highly phosphorylated rhodopsin fragment to visual arrestin. The arrestin bound conformations of the peptides are compared.  相似文献   

15.
Proper function of visual arrestin is indispensable for rapid signal shut-off in rod photoreceptors. Dramatic light-dependent changes in its subcellular localization are believed to play an important role in light adaptation of photoreceptor cells. Here we show that visual arrestin binds microtubules. The truncated splice variant of visual arrestin, p44, demonstrates dramatically higher affinity for microtubules than the full-length protein (p48). Enhanced microtubule binding of p44 underlies its earlier reported preferential localization to detergent-resistant membranes, where it is anchored via membrane-associated microtubules in a rhodopsin-independent fashion. Experiments with purified proteins demonstrate that arrestin interaction with microtubules is direct and does not require any additional protein partners. Most importantly, arrestin interactions with microtubules and light-activated phosphorylated rhodopsin are mutually exclusive, suggesting that microtubule interaction may play a role in keeping p44 arrestin away from rhodopsin in dark-adapted photoreceptors.  相似文献   

16.
Deactivation of G-protein-coupled receptors relies on a timely blockade by arrestin. However, under dim light conditions, virtually all arrestin is in the rod inner segment, and the splice variant p(44) (Arr(1-370A)) is the stop protein responsible for receptor deactivation. Using size exclusion chromatography and biophysical assays for membrane-bound protein-protein interaction, membrane binding, and G-protein activation, we have investigated the interactions of Arr(1-370A) and proteolytically truncated Arr(3-367) with rhodopsin. We find that these short arrestins do not only interact with the phosphorylated active receptor but also with inactive phosphorylated rhodopsin or opsin in membranes or solution. Because of the latter interaction they are not soluble (like arrestin) but membrane-bound in the dark. Upon photoexcitation, Arr(3-367) and Arr(1-370A) interact with prephosphorylated rhodopsin faster than arrestin and start to quench G(t) activation on a subsecond time scale. The data indicate that in the course of rhodopsin deactivation, Arr(1-370A) is handed over from inactive to active phosphorylated rhodopsin. This mechanism could provide a new aspect of receptor shutoff in the single photon operating range of the rod cell.  相似文献   

17.
Arrestins rapidly bind phosphorylated activated forms of their cognate G protein-coupled receptors, thereby preventing G protein coupling and often switching signaling to other pathways. Amphipathic α-helix I (residues 100-111) has been implicated in receptor binding, but the mechanism of its action has not been determined yet. Here we show that several mutations in the helix itself and in adjacent hydrophobic residues in the body of the N-domain reduce arrestin1 binding to light-activated phosphorylated rhodopsin (P-Rh?). On the background of phosphorylation-independent mutants that bind with high affinity to both P-Rh? and light-activated unphosphorylated rhodopsin, these mutations reduce the stability of the arrestin complex with P-Rh?, but not with light-activated unphosphorylated rhodopsin. Using site-directed spin labeling, we found that the local structure around α-helix I changes upon binding to rhodopsin. However, the intramolecular distances between α-helix I and adjacent β-strand I (or the rest of the N-domain), measured using double electron-electron resonance, do not change, ruling out relocation of the helix due to receptor binding. Collectively, these data demonstrate that α-helix I plays an indirect role in receptor binding, likely keeping β-strand I, which carries several phosphate-binding residues, in a position favorable for its interaction with receptor-attached phosphates.  相似文献   

18.
Arrestin blocks the interaction of rhodopsin with the G protein transducin (G(t)). To characterize the sites of arrestin that interact with rhodopsin, we have utilized a spectrophotometric peptide competition assay. It is based on the stabilization of the active intermediates metarhodopsin II (MII) and phosphorylated MII by G(t) and arrestin, respectively (extra MII monitor). The protocol involves native disc membranes and three sets of peptides 10-30 amino acids in length spanning the arrestin sequence. In the absence of arrestin, not one of the peptides by itself had an effect on the amount of MII formed. However, inhibition of arrestin-dependent extra MII was found for the peptides at residues 11-30 and 51-70 (IC(50) < 100 microm) and residues 231-260 (IC(50) < 200 microm). A similar pattern of inhibition by arrestin peptides was seen when arrestin was replaced by G(t) or the farnesylated G(t)gamma C-terminal peptide. Only arrestin-(11-30) inhibited MII.G(t) less (IC(50) = 300 microm) than phosphorylated MII.arrestin. We interpreted the data by competition of the arrestin peptides for interaction sites at rhodopsin, exposed in the MII conformation and specific for both arrestin and G(t). The arrestin sites are located in both the C- and N-terminal domains of the arrestin structure.  相似文献   

19.
Internalization of G-protein-coupled receptors is mediated by phosphorylation of the C-terminus, followed by binding with the cytosolic protein arrestin. To explore structural factors that may play a role in internalization of cannabinoid receptor 1 (CB1), we utilize a phosphorylated peptide derived from the distal C-terminus of CB1 (CB1(5P)(454-473)). Complexes formed between the peptide and human arrestin-2 (wt-arr2(1-418)) were compared to those formed with a truncated arrestin-2 mutant (tr-arr2(1-382)) using isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. The pentaphosphopeptide CB1(5P)(454-473) adopts a helix-loop conformation, whether binding to full-length arrestin-2 or its truncated mutant. This structure is similar to that of a heptaphosphopeptide, mimicking the distal segment of the rhodopsin C-tail (Rh(7P)(330-348)), binding to visual arrestin, suggesting that this adopted structure bears functional significance. Isothermal titration calorimetry (ITC) experiments show that the CB1(5P)(454-473) peptide binds to tr-arr2(1-382) with higher affinity than to the full-length wt-arr2(1-418). As the observed structure of the bound peptides is similar in either case, we attribute the increased affinity to a more exposed binding site on the N-domain of the truncated arrestin construct. The transferred NOE data from the bound phosphopeptides are used to predict a model describing the interaction with arrestin, using the data driven HADDOCK docking program. The truncation of arrestin-2 provides scope for positively charged residues in the polar core of the protein to interact with phosphates present in the loop of the CB1(5P)(454-473) peptide.  相似文献   

20.
Visual arrestin is converted from a 'basal' state to an 'activated' state by interaction with the phosphorylated C-terminus of photoactivated rhodopsin (R*), but the conformational changes in arrestin that lead to activation are unknown. Small-angle X-ray scattering (SAXS) was used to investigate the solution structure of arrestin and characterize changes attendant upon activation. Wild-type arrestin forms dimers with a dissociation constant of 60 micro m. Small conformational changes, consistent with local movements of loops or the mobile N- or C-termini of arrestin, were observed in the presence of a phosphopeptide corresponding to the C-terminus of rhodopsin, and with an R175Q mutant. Because both the phosphopeptide and the R175Q mutation promote binding to unphosphorylated R*, we conclude that arrestin is activated by subtle conformational changes. Most of the arrestin will be in a dimeric state in vivo. Using the arrestin structure as a guide [Hirsch, J.A., Schubert, C., Gurevich, V.V. & Sigler, P.B. (1999) Cell 97, 257-269], we have identified a model for the arrestin dimer that is consistent with our SAXS data. In this model, dimerization is mediated by the C-terminal domain of arrestin, leaving the N-terminal domains free for interaction with phosphorylated R*.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号