首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Taurine/alpha-ketoglutarate dioxygenase (TauD), a non-heme mononuclear Fe(II) oxygenase, liberates sulfite from taurine in a reaction that requires the oxidative decarboxylation of alpha-ketoglutarate (alphaKG). The lilac-colored alphaKG-Fe(II)TauD complex (lambda(max) = 530 nm; epsilon(530) = 140 M(-)(1) x cm(-)(1)) reacts with O(2) in the absence of added taurine to generate a transient yellow species (lambda(max) = 408 nm, minimum of 1,600 M(-)(1) x cm(-)(1)), with apparent first-order rate constants for formation and decay of approximately 0.25 s(-)(1) and approximately 0.5 min(-)(1), that transforms to yield a greenish brown chromophore (lambda(max) = 550 nm, 700 M(-)(1) x cm(-)(1)). The latter feature exhibits resonance Raman vibrations consistent with an Fe(III) catecholate species presumed to arise from enzymatic self-hydroxylation of a tyrosine residue. Significantly, (18)O labeling studies reveal that the added oxygen atom derives from solvent rather than from O(2). The transient yellow species, identified as a tyrosyl radical on the basis of EPR studies, is formed after alphaKG decomposition. Substitution of two active site tyrosine residues (Tyr73 and Tyr256) by site-directed mutagenesis identified Tyr73 as the likely site of formation of both the tyrosyl radical and the catechol-associated chromophore. The involvement of the tyrosyl radical in catalysis is excluded on the basis of the observed activity of the enzyme variants. We suggest that the Fe(IV) oxo species generally proposed (but not yet observed) as an intermediate for this family of enzymes reacts with Tyr73 when substrate is absent to generate Fe(III) hydroxide (capable of exchanging with solvent) and the tyrosyl radical, with the latter species participating in a multistep TauD self-hydroxylation reaction.  相似文献   

2.
Ryle MJ  Padmakumar R  Hausinger RP 《Biochemistry》1999,38(46):15278-15286
Taurine/alpha-ketoglutarate dioxygenase (TauD), a member of the broad class of non-heme Fe(II) oxygenases, converts taurine (2-aminoethanesulfonate) to sulfite and aminoacetaldehyde while decomposing alpha-ketoglutarate (alphaKG) to form succinate and CO(2). Under anaerobic conditions, the addition of alphaKG to Fe(II)TauD results in the formation of a broad absorption centered at 530 nm. On the basis of studies of other members of the alphaKG-dependent dioxygenase superfamily, we attribute this spectrum to metal chelation by the substrate C-1 carboxylate and C-2 carbonyl groups. Subsequent addition of taurine perturbs the spectrum to yield a 28% greater intensity, an absorption maximum at 520 nm, and distinct shoulders at 480 and 570 nm. This spectral change is specific to taurine and does not occur when 2-aminoethylphosphonate or N-phenyltaurine is added. Titration studies demonstrate that each TauD subunit binds a single molecule of Fe(II), alphaKG, and taurine. In addition, these studies indicate that the affinity of TauD for alphaKG is enhanced by the presence of taurine. alpha-Ketoadipate, the other alpha-keto acid previously shown to support TauD activity, and alpha-ketocaproate lead to the formation of weak 520 nm-like spectra with Fe(II)TauD in the presence of taurine; however, corresponding spectra at 530 nm are not observed in the absence of taurine. Pyruvate and alpha-ketoisovalerate fail to elicit absorption bands in this region of the spectrum, even in the presence of taurine. Stopped-flow UV-visible spectroscopy reveals that the 530 and 520 nm spectra associated with alphaKG-Fe(II)TauD and taurine-alphaKG-Fe(II)TauD are formed at catalytically competent rates ( approximately 40 s(-)(1)). The rate of chromophore formation was independent of substrate or enzyme concentration, suggesting that alphaKG binds to Fe(II)TauD prior to the formation of a chromophoric species. Significantly, the taurine-alphaKG-Fe(II)TauD state, but not the alphaKG-Fe(II)TauD species, reacts rapidly with oxygen (42 +/- 9 s(-)(1)). Using the data described herein, we develop a preliminary kinetic model for TauD catalysis.  相似文献   

3.
Taurine/alpha-ketoglutarate (alphaKG) dioxygenase (TauD), an archetype alphaKG-dependent hydroxylase, is a non-heme mononuclear Fe(II) enzyme that couples the oxidative decarboxylation of alphaKG with the conversion of taurine to aminoacetaldehyde and sulfite. The crystal structure of taurine-alphaKG-Fe(II)TauD is known, and spectroscopic studies have kinetically defined the early steps in catalysis and identified a high-spin Fe(IV)-oxo reaction intermediate. The present analysis extends our understanding of TauD catalysis by investigating the steady-state and transient kinetics of wild-type and variant forms of the enzyme with taurine and alternative sulfonates. TauD proteins substituted at residues surrounding the active site were shown to fold properly based on their abilities to form a diagnostic chromophore associated with the anaerobic Fe(II)-alphaKG chelate complex and to generate a tyrosyl radical upon subsequent reaction with oxygen. Steady-state studies of mutant proteins confirmed the importance of His 70 and Arg 270 in binding the sulfonate moiety of taurine and indicated the participation of Asn 95 in recognizing the substrate amine group. The N97A and S158A variants are likely to undergo an increase in hydrophobicity and expansion of the substrate-binding pocket, thus accounting for their decreased K(m) toward pentanesulfonic acid compared to wild-type TauD. Stopped-flow UV-visible spectroscopic examination of the reaction of oxygen with taurine-alphaKG-Fe(II)TauD confirmed a minimal three-step sequence of reactions attributed to Fe(IV)-oxo formation (k(1)), bleaching to the Fe(II) state upon substrate hydroxylation (k(2)), rebinding of excess substrates (k(3)), and indicated that none of the steps exhibit detectable solvent k(H)/k(D) isotope effects. This demonstrates that no protons are involved in the rate-determining step of Fe(IV)-oxo formation, in contrast to heme iron oxygenases. The Fe(IV)-oxo species is likely to be utilized in conversion of the alternative substrates pentanesulfonic acid and 3-N-morpholinopropanesulfonic acid; however, this spectroscopic intermediate was not detected because of the decreased k(1)/k(2) ratio. With taurine, k(1) was shown to depend on the oxygen concentration allowing calculation of a second-order rate constant of 1.58 x 10(5) M(-)(1) s(-)(1) for this irreversible reaction. Stopped-flow analyses of TauD variants provided several insights into how the protein environment influences the rates of Fe(IV)-oxo formation and decay. The Fe(IV)-oxo species was not detected in the N95D or N95A variants because of a reduced k(1)/k(2) ratio, likely related to a decreased substrate-dependent conversion of the six-coordinate to five-coordinate metal site.  相似文献   

4.
Taurine/alpha-ketoglutarate dioxygenase (TauD), a non-heme Fe(II) oxygenase, catalyses the conversion of taurine (2-aminoethanesulfonate) to sulfite and aminoacetaldehyde concurrent with the conversion of alpha-ketoglutarate (alphaKG) to succinate and CO(2). The enzyme allows Escherichia coli to use taurine, widely available in the environment, as an alternative sulfur source. Here we describe the X-ray crystal structure of TauD complexed to Fe(II) and both substrates, alphaKG and taurine. The tertiary structure and fold of TauD are similar to those observed in other enzymes from the broad family of Fe(II)/alphaKG-dependent oxygenases, with closest structural similarity to clavaminate synthase. Using the TauD coordinates, a model was determined for the closely related enzyme 2,4-dichlorophenoxyacetate/alphaKG dioxygenase (TfdA), supporting predictions derived from site-directed mutagenesis and other studies of that biodegradative protein. The TauD structure and TfdA model define the metal ligands and the positions of nearby aromatic residues that undergo post-translational modifications involving self-hydroxylation reactions. The substrate binding residues of TauD were identified and those of TfdA predicted. These results, along with sequence alignment information, reveal how TauD selects a tetrahedral substrate anion in preference to the planar carboxylate selected by TfdA, providing insight into the mechanism of enzyme catalysis.  相似文献   

5.
Recent studies on taurine:alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli have provided evidence for a three-step, minimal kinetic mechanism involving the quaternary TauD.Fe(II).alpha-ketoglutarate.taurine complex, the taurine-hydroxylating Fe(IV)-oxo intermediate (J) that forms upon reaction of the quaternary complex with O(2), and a poorly defined, Fe(II)-containing intermediate state that converts in the rate-limiting step back to the quaternary complex [Price, J. C., Barr, E. W., Tirupati, B., Bollinger, J. M., Jr., and Krebs, C. (2003) Biochemistry 42, 7497-7508]. The mapping of this kinetic mechanism onto the consensus chemical mechanism for the Fe(II)- and alpha-ketoglutarate-dependent engendered several predictions and additional questions that have been experimentally addressed in the present study. The results demonstrate (1) that postulated intermediates between the quaternary complex and J accumulate very little or not at all; (2) that decarboxylation of alpha-ketoglutarate occurs prior to or concomitantly with formation of J; (3) that the second intermediate state comprises one or more product complex with Mossbauer features that are partially resolved from those of the binary TauD.Fe(II), ternary TauD.Fe(II).alpha-ketoglutarate, and quaternary TauD.Fe(II).alpha-ketoglutarate.taurine complexes; and (4) that the rate-determining step in the catalytic cycle is release of product(s) prior to the rapid, ordered binding of alpha-ketoglutarate and then taurine to regenerate the O(2)-reactive quaternary complex. The results thus integrate the previously proposed kinetic and chemical mechanisms and indicate which of the postulated intermediates in the latter will be detectable only upon perturbation of the kinetics by changes in reaction conditions (e.g., temperature), protein mutagenesis, the use of substrate analogues, or some combination of these.  相似文献   

6.
Co(II), Ni(II), and N-oxalylglycine (NOG) are well-known inhibitors of Fe(II)/alpha-ketoglutarate (alphaKG)-dependent hydroxylases, but few studies describe their kinetics and no spectroscopic investigations have been reported. Using taurine/alphaKG dioxygenase (TauD) as a paradigm for this enzyme family, time-dependent inhibition assays showed that Co(II) and Ni(II) follow slow-binding inhibition kinetics. Whereas Ni(II)-substituted TauD was non-chromophoric, spectroscopic studies of the Co(II)-substituted enzyme revealed a six-coordinate site (protein alone or with alphaKG) that became five-coordinate upon taurine addition. The Co(II) spectrum was not perturbed by a series of anions or oxidants, suggesting the Co(II) is inaccessible and could be used to stabilize the protein. NOG competed weakly (Ki approximately 290 microM) with alphaKG for binding to TauD, with the increased electron density of NOG yielding electronic transitions for NOG-Fe(II)-TauD and taurine-NOG-Fe(II)-TauD at 380 nm (epsilon380 90-105 M(-1) cm(-1)). The spectra of the NOG-bound TauD species did not change significantly upon oxygen exposure, arguing against the formation of an oxygen-bound state mimicking an early intermediate in catalysis.  相似文献   

7.
The three metal-binding ligands of the archetype Fe(II)/alpha-ketoglutarate (alphaKG)-dependent hydroxylase, taurine/alphaKG dioxygenase (TauD), were systematically mutated to examine the effects of various ligand substitutions on enzyme activity and metallocenter properties. His99, coplanar with alphaKG and Fe(II), is unalterable in terms of maintaining an active enzyme. Asp101 can be substituted only by a longer carboxylate, with the D101E variant exhibiting 22% the k(cat) and threefold the K(m) of wild-type enzyme. His255, located opposite the O(2)-binding site, is less critical for activity and can be substituted by Gln or even the negatively charged Glu (81% and 33% active, respectively). Transient kinetic studies of the three highly active mutant proteins reveal putative Fe(IV)-oxo intermediates as reported in wild-type enzyme, but with distinct kinetics. Supplementation of the buffer with formate enhances activity of the D101A variant, consistent with partial chemical rescue of the missing metal ligand. Upon binding Fe(II), anaerobic samples of wild-type TauD and the three highly active variants generate a weak green chromophore resembling a catecholate-Fe(III) species. Evidence is presented that the quinone oxidation state of dihydroxyphenylalanine, formed by aberrant self-hydroxylation of a protein side chain of TauD during aerobic bacterial growth, reacts with Fe(II) to form this species. The spectra associated with Fe(II)-TauD and Co(II)-TauD in the presence of alphaKG and taurine were examined for all variants to gain additional insights into perturbations affecting the metallocenter. These studies present the first systematic mutational analysis of metallocenter ligands in an Fe(II)/alphaKG-dependent hydroxylase.  相似文献   

8.
The enzymes in the alpha-ketoglutarate (alphaKG) dependent dioxygenase superfamily represent the largest class of non-heme iron oxidases and have important medical, ecological, and biotechnological roles. One such enzyme, taurine/alpha-ketoglutarate dioxygenase (TauD), catalyzes the conversion of 2-aminoethanesulfonate (taurine) to sulfite and aminoacetaldehyde while decomposing alphaKG to succinate and CO(2). This alphaKG dependent dioxygenase is expressed in Escherichia coli under sulfur starvation conditions and allows the cell to utilize taurine, and other similar sulfonates in the environment, as an alternative sulfur source. In this work, we report the structures of the apo and holo forms of TauD to 1.9 A resolution (R(cryst) = 21.2%, R(free) = 24.9%) and 2.5 A resolution (R(cryst) = 22.5%, R(free) = 27.8%), respectively. The models reported herein provide significant new insight into the substrate orientations at the active site and the conformational changes that are induced upon taurine binding. Furthermore, analysis of our crystallographic data coupled with reanalysis of the crystallographic model (resolution = 3.0 A, R(cryst) = 28.1, R(free) = 32.0) presented by Elkins et al. (Biochemistry (2002) 41, 5185-5192) reveals an alternative oligomeric arrangement for the enzyme that is consistent with the conserved primary and secondary structure elements of other alphaKG dependent dioxygenases.  相似文献   

9.
The structural relationship between substrate taurine and the non-heme Fe(II) center of taurine/alpha-ketoglutarate (alphaKG) dioxygenase (TauD) was measured using electron spin echo envelope modulation (ESEEM) spectroscopy. Studies were conducted on TauD samples treated with NO, cosubstrate alphaKG, and either protonated or specifically deuterated taurine. Stimulated echo ESEEM data were divided to eliminate interference from 1H and 14N modulations and accentuate modulations from 2H. For taurine that was deuterated at the C1 position (adjacent to the sulfonate group), 2H ESEEM spectra show features that arise from dipole-dipole and deuterium nuclear quadrupole interactions from a single deuteron. Parallel measurements taken for taurine deuterated at both C1 and C2 show an additional ESEEM feature at the deuterium Larmor frequency. Analysis of these data at field positions ranging from g = 4 to g = 2 have allowed us to define the orientation of substrate taurine with respect to the magnetic axes of the Fe(II)-NO, S = 3/2, paramagnetic center. These results are discussed in terms of previous X-ray crystallographic studies and the proposed catalytic mechanism for this family of enzymes.  相似文献   

10.
2,4-Dichlorophenoxyacetic acid (2,4-D)/alpha-ketoglutarate (alphaKG) dioxygenase, TfdA, couples the oxidative decarboxylation of alphaKG to the oxidation of the herbicide 2,4-D using a mononuclear non-heme Fe(II) active site. The intrinsic tryptophan fluorescence associated with the four Trp residues in TfdA allows for the use of fluorescence spectroscopy to monitor the binding of iron and alphaKG to the enzyme. The fluorescence spectrum of TfdA is quenched by 50-85% upon addition of Fe(II) or alphaKG, allowing determination of their binding affinities (K(d)=7.45+/-0.61 and 3.35+/-0.35 microM, respectively). Cu, Zn, Mn, Co, Mg, and Ca dictations also quench the TfdA fluorescence with affinities similar to that of Fe(II), whereas monovalent cations such as Na, K, and Li do not. H114A and D116A mutant forms of TfdA, lacking either a histidine or aspartate metallocenter ligand, exhibit weaker affinity for both Fe(II) and alphaKG based on the fluorescence changes. Trp256 is predicted to lie within 5 A of the metal and alphaKG binding sites; however, its substitution by Phe or Leu has negligible effects on the Fe(II)- and alphaKG-dependent fluorescence quenching. Because Trp195 is predicted to be quite distant ( approximately 15 A) from the active site, we conclude that some combination of Trp113 and Trp248 serves as the reporter that senses metal and cofactor binding to TfdA.  相似文献   

11.
Escherichia coli AlkB is a DNA/RNA repair enzyme containing a mononuclear Fe(II) site that couples the oxidative decomposition of alpha-ketoglutarate (alphaKG) to the hydroxylation of 1-methyladenine or 3-methylcytosine lesions in DNA or RNA, resulting in release of formaldehyde and restoration of the normal bases. In the presence of Fe(II), alphaKG, and oxygen, but the absence of methylated DNA, AlkB was found to catalyze an aberrant reaction that generates a blue chromophore. The color is proposed to derive from Fe(III) coordinated by a hydroxytryptophan at position 178 as revealed by mass spectrometric analysis. Protein structural modeling confirms that Trp 178 is reasonably positioned to react with the Fe(IV)-oxo intermediate proposed to form at the active site.  相似文献   

12.
Enzymatic incorporation of a halogen atom is a common feature in the biosyntheses of more than 4,500 natural products. Halogenation of unactivated carbon centers in the biosyntheses of several compounds of nonribosomal peptide origin is carried out by a class of mononuclear nonheme iron enzymes that require alpha-ketoglutarate (alphaKG, 1), chloride and oxygen. To investigate the ability of these enzymes to functionalize unactivated methyl groups, we characterized the chlorination of the gamma-methyl substituent of L-2-aminobutyric acid (L-Aba, 2) attached to the carrier protein CytC2 by iron halogenase (CytC3) from soil Streptomyces sp. We identified an intermediate state comprising two high-spin Fe(IV) complexes in rapid equilibrium. At least one of the Fe(IV) complexes abstracts hydrogen from the substrate. The demonstration that chlorination proceeds through an Fe(IV) intermediate that cleaves a C-H bond reveals the mechanistic similarity of aliphatic halogenases to the iron- and alphaKG-dependent hydroxylases.  相似文献   

13.
Phenylalanine hydroxylase is a mononuclear non-heme iron protein that uses tetrahydropterin as the source of the two electrons needed to activate dioxygen for the hydroxylation of phenylalanine to tyrosine. Rapid-quench methods have been used to analyze the mechanism of a bacterial phenylalanine hydroxylase from Chromobacterium violaceum. Mo?ssbauer spectra of samples prepared by freeze-quenching the reaction of the enzyme-(57)Fe(II)-phenylalanine-6-methyltetrahydropterin complex with O(2) reveal the accumulation of an intermediate at short reaction times (20-100 ms). The Mo?ssbauer parameters of the intermediate (δ = 0.28 mm/s, and |ΔE(Q)| = 1.26 mm/s) suggest that it is a high-spin Fe(IV) complex similar to those that have previously been detected in the reactions of other mononuclear Fe(II) hydroxylases, including a tetrahydropterin-dependent tyrosine hydroxylase. Analysis of the tyrosine content of acid-quenched samples from similar reactions establishes that the Fe(IV) intermediate is kinetically competent to be the hydroxylating intermediate. Similar chemical-quench analysis of a reaction allowed to proceed for several turnovers shows a burst of tyrosine formation, consistent with rate-limiting product release. All three data sets can be modeled with a mechanism in which the enzyme-substrate complex reacts with oxygen to form an Fe(IV)═O intermediate with a rate constant of 19 mM(-1) s(-1), the Fe(IV)═O intermediate hydroxylates phenylalanine with a rate constant of 42 s(-1), and rate-limiting product release occurs with a rate constant of 6 s(-1) at 5 °C.  相似文献   

14.
2-Aminoethanesulfonic acid (taurine)/α-ketoglutarate (αKG) dioxygenase (TauD) is a mononuclear non-heme iron enzyme that catalyzes the hydroxylation of taurine to generate sulfite and aminoacetaldehyde in the presence of O2, αKG, and Fe(II). Fe(II)TauD complexed with αKG or succinate, the decarboxylated product of αKG, reacts with O2 in the absence of prime substrate to generate 550- and 720-nm chromophores, respectively, that are interconvertible by the addition or removal of bound bicarbonate and have resonance Raman features characteristic of an Fe(III)–catecholate complex. Mutagenesis studies suggest that both reactions result in the self-hydroxylation of the active-site residue Tyr73, and liquid chromatography nano-spray mass spectrometry/mass spectrometry evidence corroborates this result for the succinate reaction. Furthermore, isotope-labeling resonance Raman studies demonstrate that the oxygen atom incorporated into the tyrosyl residue derives from H2 18O and 18O2 for the αKG and succinate reactions, respectively, suggesting distinct mechanistic pathways. Whereas the αKG-dependent hydroxylation likely proceeds via an Fe(IV)=O intermediate that is known to be generated during substrate hydroxylation, we propose Fe(III)–OOH (or Fe(V)=O) as the oxygenating species in the succinate-dependent reaction. These results demonstrate the two oxygenating mechanisms available to enzymes with a 2-His-1-carboxylate triad, depending on whether the electron source donates one or two electrons.  相似文献   

15.
Fe(II)- and α-ketoglutarate (α-KG)-dependent dioxygenases are a large and diverse superfamily of mononuclear, non-heme enzymes that perform a variety of oxidative transformations typically coupling oxidative decarboxylation of α-KG with hydroxylation of a prime substrate. The biosynthetic gene clusters for several nucleoside antibiotics that contain a modified uridine component, including the lipopeptidyl nucleoside A-90289 from Streptomyces sp. SANK 60405, have recently been reported, revealing a shared open reading frame with sequence similarity to proteins annotated as α-KG:taurine dioxygenases (TauD), a well characterized member of this dioxygenase superfamily. We now provide in vitro data to support the functional assignment of LipL, the putative TauD enzyme from the A-90289 gene cluster, as a non-heme, Fe(II)-dependent α-KG:UMP dioxygenase that produces uridine-5'-aldehyde to initiate the biosynthesis of the modified uridine component of A-90289. The activity of LipL is shown to be dependent on Fe(II), α-KG, and O(2), stimulated by ascorbic acid, and inhibited by several divalent metals. In the absence of the prime substrate UMP, LipL is able to catalyze oxidative decarboxylation of α-KG, although at a significantly reduced rate. The steady-state kinetic parameters using optimized conditions were determined to be K(m)(α-KG) = 7.5 μM, K(m)(UMP) = 14 μM, and k(cat) ≈ 80 min(-1). The discovery of this new activity not only sets the stage to explore the mechanism of LipL and related dioxygenases further but also has critical implications for delineating the biosynthetic pathway of several related nucleoside antibiotics.  相似文献   

16.
Kovaleva EG  Lipscomb JD 《Biochemistry》2008,47(43):11168-11170
The reactive oxy intermediate of the catalytic cycle of extradiol aromatic ring-cleaving dioxygenases is formed by binding the catecholic substrate and O2 in adjacent ligand positions of the active site metal [usually Fe(II)]. This intermediate and the following Fe(II)-alkylperoxo intermediate resulting from oxygen attack on the substrate have been previously characterized in a crystal of homoprotocatechuate 2,3-dioxygenase (HPCD). Here a subsequent intermediate in which the O-O bond is broken to yield a gem diol species is structurally characterized. This new intermediate is stabilized in the crystal by using the alternative substrate, 4-sulfonylcatechol, and the Glu323Leu variant of HPCD, which alters the crystal packing.  相似文献   

17.
The study of high-valent-iron enzyme intermediates began in the mid-1900s with the discovery of compounds I (or ES) and II in the heme peroxidases, progressed to non-heme-diiron enzymes in the 1990s with the detection and characterization of the Fe(III)-Fe(IV) complex, X, and the Fe(IV)-Fe(IV) complex, Q, in O(2) activation by ribonucleotide reductase R2 (RNR-R2) and soluble methane monooxygenase (sMMO), respectively, and was most recently extended to mononuclear non-heme-iron oxygenases with the trapping and spectroscopic characterization of the Fe(IV)-oxo intermediate, J, in the reaction of taurine:alpha-ketoglutarate dioxygenase (TauD). Individually, each of these landmark studies helped reveal the chemical logic of that particular enzyme system. Collectively, they have significantly advanced our understanding of Nature's strategies for oxidative transformation of biomolecules (both natural and "xenobiotic"). With high-valent complexes now having been described in representatives of three major classes of iron enzymes, it is an appropriate time to ask whether and what additional insights might be gleaned from further stalking of related intermediates in other systems. In this review, we advocate that there is still much to be learned from this pursuit and summarize the insight provided by two of the landmark discoveries mentioned above (the latter two) and the subsequent studies that they spurred to support our contention. In addition, we attempt to provide, to the extent that it is possible to do so, a "how-to" guide for detection and characterization of such intermediates, focusing primarily on enzymes in which they form by activation of molecular oxygen. In this latter objective, we have drawn from an earlier review by Johnson (Enzymes, third ed. vol. 20, 1992, pp. 1-61) covering, more generally, dissection of enzyme reaction pathways by transient-state kinetic methods. That work elegantly illustrated that, although it may be impossible to develop a true algorithm for the process, a synthesis of guidelines and general principles can be of considerable value.  相似文献   

18.
The direct interrogation of fleeting intermediates by rapid-mixing kinetic methods has significantly advanced our understanding of enzymes that utilize dioxygen. The gas's modest aqueous solubility (<2 mM at 1 atm) presents a technical challenge to this approach, because it limits the rate of formation and extent of accumulation of intermediates. This challenge can be overcome by use of the heme enzyme chlorite dismutase (Cld) for the rapid, in situ generation of O(2) at concentrations far exceeding 2 mM. This method was used to define the O(2) concentration dependence of the reaction of the class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis, in which the enzyme's Mn(IV)/Fe(III) cofactor forms from a Mn(II)/Fe(II) complex and O(2) via a Mn(IV)/Fe(IV) intermediate, at effective O(2) concentrations as high as ~10 mM. With a more soluble receptor, myoglobin, an O(2) adduct accumulated to a concentration of >6 mM in <15 ms. Finally, the C-H-bond-cleaving Fe(IV)-oxo complex, J, in taurine:α-ketoglutarate dioxygenase and superoxo-Fe(2)(III/III) complex, G, in myo-inositol oxygenase, and the tyrosyl-radical-generating Fe(2)(III/IV) intermediate, X, in Escherichia coli RNR, were all accumulated to yields more than twice those previously attained. This means of in situ O(2) evolution permits a >5 mM "pulse" of O(2) to be generated in <1 ms at the easily accessible Cld concentration of 50 μM. It should therefore significantly extend the range of kinetic and spectroscopic experiments that can routinely be undertaken in the study of these enzymes and could also facilitate resolution of mechanistic pathways in cases of either sluggish or thermodynamically unfavorable O(2) addition steps.  相似文献   

19.
The Proteus mirabilis catalase is one of the most efficient heme-containing catalase and forms a relatively stable compound II. Samples of compound II were prepared from PMC enriched in (57)Fe. For the first time, two different forms of compound II, namely low pH compound II (LpH II) (43%) and high pH compound II (HpH II) (25%), have been characterized by M?ssbauer spectroscopy at pH 8.3. The ratio LpH II/HpH II increases irreversibly with decreasing pH. The large quadrupole splitting value of LpH II (DeltaE(Q)=2.29 (2) mm/s, with delta(/Fe)=0.03 (2) mm/s), compared to that of HpH II (DeltaE(Q)=1.47 (2) mm/s, with delta(/Fe)=0.07 (2) mm/s), reflects the protonation of the ferryl group. Quadrupole splitting values of 1.46 and 2.15mm/s have been computed by DFT for optimized models of the ferryl compound II (model 1) and the protonated ferryl compound II (model 2), respectively, starting from the Fe(IV)O model initially published by Rovira and Fita [C. Rovira, I. Fita, J. Phys. Chem. B 107 (2003) 5300-5305]. Therefore, we attribute the LpH II compound to a protonated ferryl Fe(IV)-OH complex, whereas the HpH II compound corresponds to the classical ferryl Fe(IV)O complex.  相似文献   

20.
The alkylsulfatase AtsK from Pseudomonas putida S-313 is a member of the non-heme iron(II)-alpha-ketoglutarate-dependent dioxygenase superfamily. In the initial step of their catalytic cycle, enzymes belonging to this widespread and versatile family coordinate molecular oxygen to the iron center in the active site. The subsequent decarboxylation of the cosubstrate alpha-ketoglutarate yields carbon dioxide, succinate, and a highly reactive ferryl (IV) species, which is required for substrate oxidation via a complex mechanism involving the transfer of radical species. Non-productive activation of oxygen may lead to harmful side reactions; therefore, such enzymes need an effective built-in protection mechanism. One of the ways of controlling undesired side reactions is the self-hydroxylation of an aromatic side chain, which leads to an irreversibly inactivated species. Here we describe the crystal structure of the alkylsulfatase AtsK in complexes with succinate and with Fe(II)/succinate. In the crystal structure of the AtsK-Fe(II)-succinate complex, the side chain of Tyr(168) is co-ordinated to the iron, suggesting that Tyr(168) is the target of enzyme self-hydroxylation. This is the first structural study of an Fe(II)-alpha-ketoglutarate-dependent dioxygenase that presents an aromatic side chain coordinated to the metal center, thus allowing structural insight into this protective mechanism of enzyme self-inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号